Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 87(11): 5029-5041, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36193550

RESUMEN

The purpose of this study is to evaluate the effect of high hydrostatic pressure (HHP) as a novel approach for yeast cell disruption and lipid extraction from Lipomyces starkeyi DSM 70295 grown in glucose medium (40 g/L and C/N:55/1) at initial pH of 5.0, 25°C, and 130 rpm for 8 days. HHP extraction conditions including pressure, time, and temperature were optimized by response surface methodology. The high speed homogenizer-assisted extraction (HSH) was also used for comparison. The biomass subjected to HHP was examined under scanning electron microscopy and light microscope. A maximal lipid yield of 45.8 ± 2.1% in dry cell basis (w/w) was achieved at 200 MPa, 40°C, and 15 min, while a minimum yield of 15.2 ± 0.9% was observed at 300 MPa, 40°C, and 10 min (p < 0.05). The lipid yield decreased with increasing pressure. It was demonstrated that low pressure (200 MPa) collapsed the cells, while high pressure (400 MPa) created protrusions on the cell wall and cell fragments spread in the environment. This study favors HHP as a promising method for Lipomyces oil extraction. PRACTICAL APPLICATION: Single-cell oils are considered future alternatives to plant-based oils as food additives and dietary supplements. Oleaginous microorganisms accumulate oils in their cell plasma, which makes extraction essential. One of the main obstacles with existing methods is the utilization of strong acids to destroy cell walls. This study aims to demonstrate high hydrostatic pressure as a rapid method for lipid extraction from oleaginous yeast Lipomyces starkeyi.


Asunto(s)
Lipomyces , Lipomyces/metabolismo , Biomasa , Presión Hidrostática , Aceites , Levaduras/metabolismo
2.
J Cell Sci ; 135(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35833504

RESUMEN

Lipid droplets are cytoplasmic organelles that store lipids for energy and membrane synthesis. The oleaginous yeast Lipomyces starkeyi is one of the most promising lipid producers and has attracted attention as a biofuel source. It is known that the expansion of lipid droplets is enhanced under nutrient-poor conditions. Therefore, we prepared a novel nitrogen-depleted medium (N medium) in which to culture L. starkeyi cells. Lipid accumulation was rapidly induced, and this was reversed by the addition of ammonium. In this condition, cell proliferation stopped, and cells with giant lipid droplets were arrested in G1 phase. We investigated whether cell cycle arrest at a specific phase is required for lipid accumulation. Lipid accumulation was repressed in hydroxyurea-synchronized S phase cells and was increased in nocodazole-arrested G2/M phase cells. Moreover, the enrichment of G1 phase cells seen upon rapamycin treatment induced massive lipid accumulation. From these results, we conclude that L. starkeyi cells store lipids from G2/M phase and then arrest cell proliferation in the subsequent G1 phase, where lipid accumulation is enhanced. Cell cycle control is an attractive approach for biofuel production.


Asunto(s)
Biocombustibles , Lipomyces , Puntos de Control de la Fase G1 del Ciclo Celular , Lípidos , Lipomyces/metabolismo , Levaduras
3.
Genes Cells ; 26(8): 627-635, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34085353

RESUMEN

Emerging evidence implicates the vital role of mitochondria in lipid consumption and storage, highlighting the intimate link between energy production and saving. Although formation of giant lipid droplets, which is the key hallmark of the oleaginous yeast Lipomyces starkeyi, appears to be regulated in response to changes in mitochondrial shape and metabolism, technical limitations of genetic manipulation have become an obstacle to uncover the mitochondrial behavior in this nonconventional yeast. Here, we established an L. starkeyi strain stably expressing a fluorescent marker for monitoring mitochondrial morphology and degradation and found that mitochondria are mostly fragmented in L. starkeyi cells under fermentable, nonfermentable, and nitrogen depletion conditions. Notably, a fraction of mitochondria-specific fluorescent signals was localized to the vacuole, a lytic organelle in yeast, indicating degradation of mitochondria in those cells. This possible catabolic event was more predominant in cells under nutrient-poor conditions than that in cells under nutrient-rich conditions, concomitantly with lipid droplet formation. Collectively, our studies provide a new tool to investigate mitochondrial dynamics in L. starkeyi and decipher the potential role of mitochondrial degradation in lipid metabolism.


Asunto(s)
Lipomyces/metabolismo , Dinámicas Mitocondriales , Fermentación , Metabolismo de los Lípidos , Nitrógeno/deficiencia , Nitrógeno/metabolismo , Vacuolas/metabolismo
4.
ACS Synth Biol ; 10(5): 1000-1008, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33915043

RESUMEN

Oleaginous yeast, such as Lipomyces starkeyi, are logical organisms for production of higher energy density molecules like lipids and terpenes. We demonstrate that transgenic L. starkeyi strains expressing an α-zingiberene synthase gene from lemon basil or Hall's panicgrass can produce up to 17 mg/L α-zingiberene in yeast extract peptone dextrose (YPD) medium containing 4% glucose. The transgenic strain was further examined in 8% glucose media with C/N ratios of 20 or 100, and YPD. YPD medium resulted in 59 mg/L α-zingiberene accumulation. Overexpression of selected genes from the mevalonate pathway achieved 145% improvement in α-zingiberene synthesis. Optimization of the growth medium for α-zingiberene production led to 15% higher titer than YPD medium. The final transgenic strain produced 700 mg/L α-zingiberene in fed-batch bioreactor culture. This study opens a new synthetic route to produce α-zingiberene or other terpenoids in L. starkeyi and establishes this yeast as a platform for jet fuel biosynthesis.


Asunto(s)
Ingeniería Genética/métodos , Lipomyces/genética , Lipomyces/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Reactores Biológicos , Medios de Cultivo/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos , Glucosa/metabolismo , Hidrocarburos/metabolismo , Lípidos/biosíntesis , Lipomyces/crecimiento & desarrollo , Ácido Mevalónico/metabolismo , Microorganismos Modificados Genéticamente , Ocimum basilicum/enzimología , Ocimum basilicum/genética , Panicum/enzimología , Panicum/genética , Transducción de Señal/genética , Transgenes
5.
J Biosci Bioeng ; 131(6): 613-621, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33582014

RESUMEN

The oleaginous yeast Lipomyces starkeyi is an intriguing lipid producer that can produce triacylglycerol (TAG), a feedstock for biodiesel production. We previously reported that the L. starkeyi mutant E15 with high levels of TAG production compared with the wild-type was efficiently obtained using Percoll density gradient centrifugation. However, considering its use for biodiesel production, it is necessary to further improve the lipid productivity of the mutant. In this study, we aimed to obtain mutants with better lipid productivity than E15, evaluate its lipid productivity, and analyze lipid synthesis-related gene expression in the wild-type and mutant strains. The mutants E15-11, E15-15, and E15-25 exhibiting higher lipid productivity than E15 were efficiently isolated from cells exposed to ultraviolet light using Percoll density gradient centrifugation. They exhibited approximately 4.5-fold higher lipid productivity than the wild-type on day 3. The obtained mutants did not exhibit significantly different fatty acid profiles than the wild-type and E15 mutant strains. E15-11, E15-15, and E15-25 exhibited higher expression of acyl-CoA synthesis- and Kennedy pathway-related genes than the wild-type and E15 mutant strains. Activation of the pentose phosphate pathway, which supplies NADPH, was also observed. These results suggested that the increased expression of acyl-CoA synthesis- and Kennedy pathway-related genes plays a vital role in lipid productivity in the oleaginous yeast L. starkeyi.


Asunto(s)
Lípidos/biosíntesis , Lipomyces , Rayos Ultravioleta , Biocombustibles , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/efectos de la radiación , Lípidos/efectos de la radiación , Lipomyces/genética , Lipomyces/aislamiento & purificación , Lipomyces/metabolismo , Lipomyces/efectos de la radiación , Ingeniería Metabólica , Organismos Modificados Genéticamente , Vía de Pentosa Fosfato/genética , Vía de Pentosa Fosfato/efectos de la radiación , Triglicéridos/metabolismo , Levaduras/genética , Levaduras/metabolismo , Levaduras/efectos de la radiación
6.
Biotechnol Lett ; 43(5): 967-979, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33517513

RESUMEN

OBJECTIVE: The extraction of the hemicellulose fraction of sugarcane bagasse (SCB) by acid hydrolysis was evaluated in an autoclave and a Parr reactor aiming the application of the hydrolysate as a carbon source for lipid production by Lipomyces starkeyi. RESULTS: The hydrolysis that resulted in the highest sugar concentration was obtained by treatment in the Parr reactor (HHR) at 1.5% (m/v) H2SO4 and 120 °C for 20 min, reaching a hemicellulose conversion of approximately 82%. The adaptation of the yeast to the hydrolysate provided good fermentability and no lag phase. The fermentation of hemicellulose-derived sugars (HHR) by L. starkeyi resulted in a 27.8% (w/w) lipid content and YP/S of 0.16 g/l.h. Increasing the inoculum size increased the lipid content by approximately 61%, reaching 44.8% (w/w). CONCLUSION: The hemicellulose hydrolysate from SCB is a potential substrate for L. starkeyi to produce lipids for biodiesel synthesis based on the biorefinery concept.


Asunto(s)
Lipomyces/metabolismo , Aceites/metabolismo , Polisacáridos/química , Saccharum/química , Adaptación Fisiológica , Biocombustibles , Reactores Biológicos , Celulosa/química , Celulosa/metabolismo , Fermentación , Calor , Hidrólisis , Lípidos/biosíntesis , Lipomyces/crecimiento & desarrollo , Polisacáridos/metabolismo , Azúcares/química , Azúcares/metabolismo , Ácidos Sulfúricos/química
7.
Microb Cell Fact ; 19(1): 204, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167962

RESUMEN

BACKGROUND: Lipids from oleaginous yeasts emerged as a sustainable alternative to vegetable oils and animal fat to produce biodiesel, the biodegradable and environmentally friendly counterpart of petro-diesel fuel. To develop economically viable microbial processes, the use of residual feedstocks as growth and production substrates is required. RESULTS: In this work we investigated sugar beet pulp (SBP) and molasses, the main residues of sugar beet processing, as sustainable substrates for the growth and lipid accumulation by the oleaginous yeast Lipomyces starkeyi. We observed that in hydrolysed SBP the yeast cultures reached a limited biomass, cellular lipid content, lipid production and yield (2.5 g/L, 19.2%, 0.5 g/L and 0.08 g/g, respectively). To increase the initial sugar availability, cells were grown in SBP blended with molasses. Under batch cultivation, the cellular lipid content was more than doubled (47.2%) in the presence of 6% molasses. Under pulsed-feeding cultivation, final biomass, cellular lipid content, lipid production and lipid yield were further improved, reaching respectively 20.5 g/L, 49.2%, 9.7 g/L and 0.178 g/g. Finally, we observed that SBP can be used instead of ammonium sulphate to fulfil yeasts nitrogen requirement in molasses-based media for microbial oil production. CONCLUSIONS: This study demonstrates for the first time that SBP and molasses can be blended to create a feedstock for the sustainable production of lipids by L. starkeyi. The data obtained pave the way to further improve lipid production by designing a fed-batch process in bioreactor.


Asunto(s)
Beta vulgaris/metabolismo , Biocombustibles , Lípidos/biosíntesis , Lipomyces/metabolismo , Biomasa , Reactores Biológicos , Medios de Cultivo/química , Hidrólisis , Lipomyces/crecimiento & desarrollo , Melaza
8.
Appl Microbiol Biotechnol ; 104(14): 6141-6148, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32458138

RESUMEN

The oleaginous yeast Lipomyces starkeyi is an excellent sustainable lipid producer, which can convert industrial wastes into lipids and accumulate triacylglycerols (TAG) by > 70% of its dry cell weight. Recent studies using omics technologies applied in L. starkeyi have aided in obtaining greater understanding of the important mechanisms of lipid metabolism in L. starkeyi. Therefore, the development of genetic engineering tools for L. starkeyi has led to accelerated efforts for a highly efficient production of lipids.This review focuses on the aspects of TAG and fatty acid synthesis pathways in L. starkeyi. We also present a quite effective strategy to obtain L. starkeyi mutants accumulating a larger amount of lipids and having a higher lipid production rate than the wild-type strain. The analysis of these mutants exhibiting high lipid production has led to the identification of important genes for achieving highly effective lipid production and thus advanced improvement in lipid production. Herein, our aim was to provide useful information to advance the development of L. starkeyi as a cost-effective TAG feedstock.Key Points•Oleaginous yeast Lipomyces starkeyi is an excellent sustainable lipid producer.•Efficient isolation of lipid-enriched L. starkeyi mutants depends on the low density of lipids.•Increased acyl-CoA synthesis pathway is important for improving lipid productivity.


Asunto(s)
Metabolismo de los Lípidos , Lipomyces/metabolismo , Vías Biosintéticas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Expresión Génica , Ingeniería Genética , Metabolismo de los Lípidos/genética , Lipomyces/enzimología , Lipomyces/genética , Mutación , Triglicéridos/metabolismo
9.
FEMS Yeast Res ; 20(3)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32310262

RESUMEN

Processed lignocellulosic biomass is a source of mixed sugars that can be used for microbial fermentation into fuels or higher value products, like chemicals. Previously, the yeast Saccharomyces cerevisiae was engineered to utilize its cellodextrins through the heterologous expression of sugar transporters together with an intracellular expressed ß-glucosidase. In this study, we screened a selection of eight (putative) cellodextrin transporters from different yeast and fungal hosts in order to extend the catalogue of available cellobiose transporters for cellobiose fermentation in S. cerevisiae. We confirmed that several in silico predicted cellodextrin transporters from Aspergillus niger were capable of transporting cellobiose with low affinity. In addition, we found a novel cellobiose transporter from the yeast Lipomyces starkeyi, encoded by the gene Ls120451. This transporter allowed efficient growth on cellobiose, while it also grew on glucose and lactose, but not cellotriose nor cellotetraose. We characterized the transporter more in-depth together with the transporter CdtG from Penicillium oxalicum. CdtG showed to be slightly more efficient in cellobiose consumption than Ls120451 at concentrations below 1.0 g/L. Ls120451 was more efficient in cellobiose consumption at higher concentrations and strains expressing this transporter grew slightly slower, but produced up to 30% more ethanol than CdtG.


Asunto(s)
Celobiosa/metabolismo , Fermentación , Lipomyces/genética , Proteínas de Transporte de Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Biomasa , Celulosa/análogos & derivados , Celulosa/metabolismo , Dextrinas/metabolismo , Etanol/metabolismo , Lipomyces/crecimiento & desarrollo , Lipomyces/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Penicillium/genética
10.
J Microbiol Methods ; 169: 105816, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31881286

RESUMEN

Microbial lipids produced by oleaginous microorganisms as raw materials for the production of oleochemicals and biodiesel are sustainable while avoiding competition with food products. The oleaginous yeast Lipomyces starkeyi is an excellent lipid producer with a great industrial potential that is suitable as a valuable host to improve lipid production through genetic engineering modifications. However, genetic tools, including effective transformation methods, for L. starkeyi are insufficient for improvement of lipid production and analysis of lipid production mechanisms. We previously developed a polyethylene glycol (PEG)-mediated spheroplast transformation method that significantly improved the homologous recombination efficiency of L. starkeyi strain ∆lslig4. Although other transformation methods, including lithium acetate (LiAc)-mediated transformation and Agrobacterium tumefaciens-mediated transformation, have been reported, a more efficient and convenient transformation method for L. starkeyi is desired. In this study, we developed a novel electroporation transformation method that was first applied for integration of drug-resistance gene markers into the genome of L. starkeyi strain ∆lslig4 at the 18S ribosomal DNA locus of a multiple-copy gene, which yielded approximately 60 transformants/µg of DNA. Optimization of five parameters (i.e., cell growth phase, cell density, osmotic stabilizers, pretreatment agents, and electric conditions) enhanced the efficiency of transformation to approximately 1.5 × 104 transformants/µg of DNA. As compared with those of LiAc-mediated transformation and PEG-mediated spheroplast transformation, the efficiency of the proposed transformation method was increased by about 111- and 7-fold, respectively. Additionally, the transformation efficiency of our proposed electroporation method targeting a single-copy gene locus yielded 273 transformants/µg of DNA. To our knowledge, this is the first report of a successful electroporation method to accelerate analysis of lipid production by L. starkeyi.


Asunto(s)
Electroporación/métodos , Lipomyces/genética , Transformación Genética/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Genoma Fúngico/genética , Lípidos/biosíntesis , Lipomyces/metabolismo
11.
Appl Biochem Biotechnol ; 190(2): 745-757, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31485895

RESUMEN

It is inevitably for cellobiose to be co-generated during enzymatic hydrolysis of cellulose, especially when the cellulase is lack of ß-glucosidase activity. In the present study, cellobiose was found superior to glucose for cell growth by L. starkeyi, regardless of the sugar concentrations. Glucose was assimilated preferentially when cellobiose and glucose were co-fermented. Deficiency of ß-glucosidase was observed to be beneficial for the simultaneous saccharification and lipid production (SSLP). High lipid titer and cellulose conversion of 9.1 g/L and 92.4%, respectively, were achieved when cellulase with low ß-glucosidase activity was supplemented. The SSLP achieved higher lipid titer of 9.5 g/L when a pre-hydrolysis process was introduced. The glucosidase generated by L. starkeyi was primarily cell-bound, which contributed significantly to the cellobiose utilization and the high lipid production. These results provided a novel scheme for enhanced lipid production from lignocellulosic biomass with reduced enzyme usage, which is believed to facilitate the design of a more cost-effective lignocellulose-to-lipid route.


Asunto(s)
Lípidos/biosíntesis , Lipomyces/metabolismo , beta-Glucosidasa/deficiencia , Biomasa , Celobiosa/metabolismo , Fermentación , Glucosa/metabolismo , Hidrólisis , Lipomyces/crecimiento & desarrollo , beta-Glucosidasa/metabolismo
12.
Appl Microbiol Biotechnol ; 103(15): 6297-6308, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31165226

RESUMEN

The oleaginous yeast Lipomyces starkeyi is an attractive organism for the industrial production of lipids; however, the amount of lipid produced by wild-type L. starkeyi is insufficient. The study aims to obtain L. starkeyi mutants that rapidly accumulate large amounts of triacylglycerol (TAG). Mutagenized yeast cells at the early stages of cultivation were subjected to Percoll density gradient centrifugation; cells with increased production of TAG were expected to be enriched in the resultant upper fraction because of their lower density. Among 120 candidates from the upper fractions, five mutants were isolated that accumulated higher amounts of TAG. Moreover, when omitting cells with mucoid colony morphology, 11 objective mutants from 11 candidates from the upper fraction were effectively (100%) isolated. Of total 16 mutants obtained, detailed characterization of five mutants was performed to reveal that five mutants achieved about 1.5-2.0 times TAG concentration (4.7-6.0 g/L) as compared with the wild-type strain (3.6 g/L) at day 5. Among these five mutants, strain E15 was the best for industrial use because only strain E15 showed significantly higher TAG concentration as well as significantly higher degree of lipid to glucose and biomass to glucose yields than the wild-type strain. Thus, Percoll density gradient centrifugation is an effective method to isolate mutant cells that rapidly accumulate large amounts of TAG. It is expected that by repeating this procedure as part of a yeast-breeding program, L. starkeyi mutants suitable for industrial lipid production can be easily and effectively obtained.


Asunto(s)
Lipomyces/genética , Lipomyces/metabolismo , Redes y Vías Metabólicas/genética , Mutación , Triglicéridos/metabolismo , Microbiología Industrial/métodos , Lipomyces/aislamiento & purificación , Ingeniería Metabólica/métodos , Mutagénesis
13.
J Oleo Sci ; 68(3): 245-249, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30760675

RESUMEN

In this study, waste peach (WP) liquid culture conditions for the maintenance of high triacylglycerol (TG)-accumulation ability in Lipomyces wild-type strain, obtained from WP plate medium were investigated. As the concentration of WP juice was high, the medium viscosity became high, and TG accumulation ability was suppressed. In a 5-L jar fermenter, the negative influence of viscosity on TG-accumulation ability was significantly improved by an agitation speed of 150 rpm (0.4 vvm). Where a bench scale pilot plant (90-L jar fermenter) was operated at 40 rpm, TG-accumulation ability reached 6.8 mg/108cells. This ability was 85% of that obtained with WP plate medium.


Asunto(s)
Medios de Cultivo/metabolismo , Jugos de Frutas y Vegetales/microbiología , Lipomyces/metabolismo , Prunus persica/microbiología , Triglicéridos/biosíntesis , Reactores Biológicos , Medios de Cultivo/química , Fermentación , Eliminación de Residuos/métodos , Viscosidad
14.
J Biosci Bioeng ; 127(6): 726-731, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30642786

RESUMEN

The ability of oleaginous yeast Lipomyces starkeyi to efficiently produce lipids when cultivated on sap extracted from felled oil palm trunk (OPT) as a novel inexpensive renewable carbon source was evaluated. OPT sap was found to contain approximately 98 g/L glucose and 32 g/L fructose. Batch fermentations were performed using three different OPT sap medium conditions: regular sap, enriched sap, and enriched sap at pH 5.0. Under all sap medium conditions, the cell biomass and lipid production achieved were approximately 30 g/L and 60% (w/w), respectively. L. starkeyi tolerated acidified medium (initial pH ≈ 3) and produced considerable amounts of ethanol as well as xylitol as by-products. The fatty acid profile of L. starkeyi was remarkably similar to that of palm oil, one of the most common vegetable oil feedstock used in biodiesel production with oleic acid as the major fatty acid followed by palmitic, stearic and linoleic acids.


Asunto(s)
Biomasa , Lípidos/biosíntesis , Lipomyces/metabolismo , Magnoliopsida/química , Fermentación , Concentración de Iones de Hidrógeno
15.
Curr Genet ; 65(1): 269-282, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30121731

RESUMEN

The objective of this study was to disrupt the non-homologous end-joining (NHEJ) pathway gene (Lsku70Δ) and evaluate the effects of selected gene deletions related to glycogen synthesis (LsGSY1) and lipid degradation (LsMFE1, LsPEX10, and LsTGL4) on lipid production in the oleaginous yeast Lipomyces starkeyi. Disruption of the NHEJ pathway to reduce the rate of non-homologous recombination is a common approach used to overcome low-efficiency targeted deletion or insertion in various organisms. Here, the homologue of the LsKU70 gene was identified and disrupted in L. starkeyi NRRL Y-11558. The LsGSY1, LsMFE1, LsPEX10, LsTGL4, and LsURA3 genes were then replaced with a resistance marker in the Lsku70Δ strain and several site-specific insertions were assessed for targeted over-expression of selected genes. The targeted disruption efficiency of five selected genes (LsGSY1, LsMFE1, LsPEX10, LsTGL4, and LsURA3) was increased from 0 to 10% in the parent to 50-100% of transformants screened in the Lsku70Δ strain with 0.8-1.4 kb homologous flanking sequences, while the efficiency of site-specific gene insertion with the ß-glucuronidase reporter gene was 100% in the locus near the 3'-end coding (LsKU70) and non-coding (LsGSY1, LsMFE1, and LsPEX10) regions. Disruption of LsKU70 in isolation and in conjunction with LsGSY1, LsMFE1, LsPEX10, or LsTGL4 did not affect lipid production in L. starkeyi. Furthermore, ß-glucuronidase reporter gene activity was similar in strains containing site-specific targeted insertions. Therefore, over-expression of genes related to lipid synthesis at targeted loci can be further examined for improvement of total lipid production in L. starkeyi.


Asunto(s)
Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Autoantígeno Ku/genética , Lipomyces/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN por Unión de Extremidades/genética , Proteínas Fúngicas/metabolismo , Rayos gamma , Autoantígeno Ku/metabolismo , Lípidos/biosíntesis , Lipomyces/clasificación , Lipomyces/metabolismo , Mutagénesis Sitio-Dirigida , Rayos Ultravioleta
16.
J Gen Appl Microbiol ; 65(2): 80-87, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464113

RESUMEN

The yeast Lipomyces accumulates triacylglycerols (TAGs) as intracellular fat globules, and these TAGs can be used as source materials for biodiesel production. In this study, we aimed to use this yeast to produce lipids from renewable resources. Using plate culture and micrograph methods, strains with a high lipid-accumulation ability were screened from 15,408 types of systems combining renewable resources, strains, and culture temperatures. The lipid-accumulation ability of the strains was estimated from the fat globule volume, which was calculated using a micrograph. The reliability of this method was examined, and strains with a high lipid-accumulation ability were identified for each renewable resource. Seventy-seven Lipomyces strains (7 deposit, 68 wild-type, 2 mutants) with a high lipid-accumulation ability were selected. A few strains possessed the ability to accumulate large amounts of TAGs from more than four different renewable resources. We found that strains with a high lipid-accumulation ability could efficiently convert consumed carbon sources into TAGs, which could be easily recovered from the fat globules of these strains through physical disruption.


Asunto(s)
Biocombustibles/microbiología , Conservación de los Recursos Energéticos/métodos , Metabolismo de los Lípidos/genética , Lipomyces/genética , Biocombustibles/análisis , Carbono/metabolismo , Medios de Cultivo , Microbiología Industrial , Gotas Lipídicas/metabolismo , Lipomyces/metabolismo , Reproducibilidad de los Resultados , Triglicéridos/metabolismo
17.
Bioresour Technol ; 273: 608-617, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30481660

RESUMEN

The use of non-food feedstocks to produce renewable microbial resources can limit our dependence on fossil fuels and lower CO2 emissions. Since microalgae display a virtuous CO2 and O2 exchange with heterotrophs, the microalga Chlamydomonas reinhardtii was combined with the oleaginous yeast Lipomyces starkeyi, known for their production of oil, base material for biodiesel. The coupled growth was shown to be synergistic for biomass and lipid production. The species were truly symbiotic since synergistic growth occurred even when the alga cannot use the organic carbon in the feedstock and in absence of air, thus depending entirely on CO2-O2 exchange. Since addition of acetate as the algal carbon source lowered the performance of the consortium, the microbial system design should take into account algal mixotrophy. The mixed biomass was found be suitable for biodiesel production, and whereas lipid production increased in the consortium, yields should be improved in future studies.


Asunto(s)
Lipomyces/metabolismo , Microalgas/metabolismo , Aceites/metabolismo , Biocombustibles , Biomasa
18.
Sci Rep ; 8(1): 15945, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374026

RESUMEN

This study investigates the replacement of vegetable oil (VO) in aquaculture feed for Arctic char (Salvelinus alpinus) with oil produced by the oleaginous yeast Lipomyces starkeyi grown in lignocellulose (wheat straw) hydrolysate. VO is extensively used to partially replace fish oil in aquaculture feed, which can be seen as non-sustainable. VO itself is becoming a limited resource. Plant oils are used in many different applications, including food, feed and biodiesel. Its replacement in non-food applications is desirable. For this purpose, yeast cells containing 43% lipids per g dry weight were mechanically disrupted and incorporated into the fish feed. There were no significant differences in this pilot study, regarding weight and length gain, feed conversion ratio, specific growth rate, condition factor and hepatosomatic index between the control and the yeast oil fed group. Fatty and amino acid composition of diet from both groups was comparable. Our results in fish demonstrate that it is possible to replace VO by yeast oil produced from lignocellulose, which may broaden the range of raw materials for food production and add value to residual products of agriculture and forestry.


Asunto(s)
Alimentación Animal/análisis , Lipomyces/metabolismo , Trucha/crecimiento & desarrollo , Aminoácidos/análisis , Animales , Ácidos Grasos/análisis , Ácidos Grasos/química , Lignina/metabolismo , Lipomyces/crecimiento & desarrollo , Proyectos Piloto , Triticum/metabolismo , Trucha/metabolismo
19.
Appl Microbiol Biotechnol ; 102(20): 8817-8826, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30206660

RESUMEN

Fatty acid desaturases play vital roles in the synthesis of unsaturated fatty acids. In this study, Δ12 and Δ12/Δ15 fatty acid desaturases of the oleaginous yeast Lipomyces starkeyi, termed LsFad2 and LsFad3, respectively, were identified and characterized. Saccharomyces cerevisiae expressing LsFAD2 converted oleic acid (C18:1) to linoleic acid (C18:2), while a strain of LsFAD3-expressing S. cerevisiae converted oleic acid to linoleic acid, and linoleic acid to α-linolenic acid (C18:3), indicating that LsFad2 and LsFad3 were Δ12 and bifunctional Δ12/Δ15 fatty acid desaturases, respectively. The overexpression of LsFAD2 in L. starkeyi caused an accumulation of linoleic acid and a reduction in oleic acid levels. In contrast, overexpression of LsFAD3 induced the production of α-linolenic acid. Deletion of LsFAD2 and LsFAD3 induced the accumulation of oleic acid and linoleic acid, respectively. Our findings are significant for the commercial production of polyunsaturated fatty acids, such as ω-3 polyunsaturated fatty acids, in L. starkeyi.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Proteínas Fúngicas/metabolismo , Lipomyces/enzimología , Secuencia de Aminoácidos , Clonación Molecular , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/biosíntesis , Proteínas Fúngicas/genética , Eliminación de Gen , Expresión Génica , Lipomyces/química , Lipomyces/genética , Lipomyces/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
20.
World J Microbiol Biotechnol ; 34(10): 147, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30209671

RESUMEN

Oils and oleochemicals produced by microbial cells offer an attractive alternative to petroleum and food-crop derived oils for the production of transport fuel and oleochemicals. An emerging candidate for industrial single cell oil production is the oleaginous yeast Lipomyces starkeyi. This yeast is capable of accumulating storage lipids to concentrations greater than 60% of the dry cell weight. From the perspective of industrial biotechnology L. starkeyi is an excellent chassis for single-cell oil and oleochemical production as it can use a wide variety of carbon and nitrogen sources as feedstock. The strain has been used to produce lipids from hexose and pentose sugars derived from cellulosic hydrolysates as well as crude glycerol and even sewage sludge. L. starkeyi also produces glucanhydrolases that have a variety of industrial applications and displays potential to be employed for bioremediation. Despite its excellent properties for biotechnology applications, adoption of L. starkeyi as an industrial chassis has been hindered by the difficulty of genetically manipulating the strain. This review will highlight the industrial potential of L. starkeyi as a chassis for the production of lipids, oleochemicals and other biochemicals. Additionally, we consider progress and challenges in engineering this organism for industrial applications.


Asunto(s)
Biotecnología , Microbiología Industrial , Lípidos/biosíntesis , Lipomyces/metabolismo , Biodegradación Ambiental , Carbono/metabolismo , Alcoholes Grasos/metabolismo , Fermentación , Ingeniería Genética , Glicerol/metabolismo , Hexosas/metabolismo , Lipomyces/genética , Nitrógeno/metabolismo , Pentosas/metabolismo , Aguas del Alcantarillado , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...