Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 151(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149472

RESUMEN

Lissencephaly is a neurodevelopmental disorder characterized by a loss of brain surface convolutions caused by genetic variants that disrupt neuronal migration. However, the genetic origins of the disorder remain unidentified in nearly one-fifth of people with lissencephaly. Using whole-exome sequencing, we identified a de novo BAIAP2 variant, p.Arg29Trp, in an individual with lissencephaly with a posterior more severe than anterior (P>A) gradient, implicating BAIAP2 as a potential lissencephaly gene. Spatial transcriptome analysis in the developing mouse cortex revealed that Baiap2 is expressed in the cortical plate and intermediate zone in an anterior low to posterior high gradient. We next used in utero electroporation to explore the effects of the Baiap2 variant in the developing mouse cortex. We found that Baiap2 knockdown caused abnormalities in neuronal migration, morphogenesis and differentiation. Expression of the p.Arg29Trp variant failed to rescue the migration defect, suggesting a loss-of-function effect. Mechanistically, the variant interfered with the ability of BAIAP2 to localize to the cell membrane. These results suggest that the functions of BAIAP2 in the cytoskeleton, cell morphogenesis and migration are important for cortical development and for the pathogenesis of lissencephaly in humans.


Asunto(s)
Lisencefalia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Movimiento Celular/genética , Citoesqueleto/metabolismo , Lisencefalia/genética , Lisencefalia/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Development ; 150(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37590085

RESUMEN

Secondary lissencephaly evolved in mice due to effects on neurogenesis and the tangential distribution of neurons. Signaling pathways that help maintain lissencephaly are still poorly understood. We show that inactivating Twist1 in the primitive meninges causes cortical folding in mice. Cell proliferation in the meninges is reduced, causing loss of arachnoid fibroblasts that express Raldh2, an enzyme required for retinoic acid synthesis. Regionalized loss of Raldh2 in the dorsolateral meninges is first detected when folding begins. The ventricular zone expands and the forebrain lengthens at this time due to expansion of apical radial glia. As the cortex expands, regionalized differences in the levels of neurogenesis are coupled with changes to the tangential distribution of neurons. Consequentially, cortical growth at and adjacent to the midline accelerates with respect to more dorsolateral regions, resulting in cortical buckling and folding. Maternal retinoic acid supplementation suppresses cortical folding by normalizing forebrain length, neurogenesis and the tangential distribution of neurons. These results suggest that Twist1 and balanced retinoic acid signaling from the meninges are required to maintain normal levels of neurogenesis and lissencephaly in mice.


Asunto(s)
Lisencefalia , Tretinoina , Animales , Ratones , Corteza Cerebral/metabolismo , Lisencefalia/metabolismo , Meninges , Neurogénesis/genética , Neuronas/metabolismo , Tretinoina/metabolismo
3.
Mol Genet Genomics ; 296(1): 33-40, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32944789

RESUMEN

Joubert syndrome (JBTS), a rare genetic disorder resulted from primary cilium defects or basal-body dysfunction, is characterized by agenesis of cerebellar vermis and abnormal brain stem. Both genotypes and phenotypes of JBTS are highly heterogeneous. The identification of pathogenic gene variation is essential for making a definite diagnosis on JBTS. Here, we found that hypoplasia of cerebellar vermis occurred in three male members in a Chinese family. Then, we performed whole exome sequencing to identify a novel missense mutation c.599T > C (p. L200P) in the OFD1 gene which is the candidate gene of X-linked JBTS (JBST10). The following analysis showed that the variant was absent in the 1000 Genomes, ExAC and the 200 female controls; the position 200 Leucine residue was highly conserved across species; the missense variant was predicted to be deleterious using PolyPhen-2, PROVEAN, SIFT and Mutation Taster. The OFD1 expression was heavily lower in the proband and an induced male fetus compared with a healthy male with a wild-type OFD1 gene. The in vitro expression analysis of transiently transfecting c.599T or c.599C plasmids into HEK-293T cells confirmed that the missense mutation caused OFD1 reduction at the protein level. And further the mutated OFD1 decreased the level of Gli1 protein, a read-out of Sonic hedgehog (SHH) signaling essential for development of central neural system. A known pathogenic variant c.515T > C (p. L172P) showed the similar results. All of these observations suggested that the missense mutation causes the loss function of OFD1, resulting in SHH signaling impairs and brain development abnormality. In addition, the three patients have Dandy-Walker malformation, macrogyria and tetralogy of Fallot, respectively, the latter two of which are firstly found in JBTS10 patients. In conclusion, our findings expand the context of genotype and phenotype in the JBTS10 patients.


Asunto(s)
Anomalías Múltiples/genética , Cerebelo/anomalías , Síndrome de Dandy-Walker/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Lisencefalia/genética , Mutación Missense , Proteínas/genética , Retina/anomalías , Tetralogía de Fallot/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Secuencia de Aminoácidos , Tronco Encefálico/anomalías , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/metabolismo , Vermis Cerebeloso/anomalías , Vermis Cerebeloso/diagnóstico por imagen , Vermis Cerebeloso/metabolismo , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Cerebelo/patología , Preescolar , Síndrome de Dandy-Walker/diagnóstico por imagen , Síndrome de Dandy-Walker/metabolismo , Síndrome de Dandy-Walker/patología , Anomalías del Ojo/diagnóstico por imagen , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Familia , Femenino , Expresión Génica , Genotipo , Células HEK293 , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Humanos , Enfermedades Renales Quísticas/diagnóstico por imagen , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Lisencefalia/diagnóstico por imagen , Lisencefalia/metabolismo , Lisencefalia/patología , Masculino , Linaje , Fenotipo , Proteínas/metabolismo , Retina/diagnóstico por imagen , Retina/metabolismo , Retina/patología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factores Sexuales , Transducción de Señal , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/metabolismo , Tetralogía de Fallot/patología , Proteína con Dedos de Zinc GLI1/deficiencia , Proteína con Dedos de Zinc GLI1/genética
4.
Semin Cell Dev Biol ; 111: 15-22, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32741653

RESUMEN

Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Microcefalia/genética , Proteínas del Tejido Nervioso/genética , Organoides/metabolismo , Heterotopia Nodular Periventricular/genética , Diferenciación Celular , Corteza Cerebral/anomalías , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiopatología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Humanos , Lisencefalia/metabolismo , Lisencefalia/patología , Lisencefalia/fisiopatología , Megalencefalia/metabolismo , Megalencefalia/patología , Megalencefalia/fisiopatología , Microcefalia/metabolismo , Microcefalia/patología , Microcefalia/fisiopatología , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Organoides/patología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Heterotopia Nodular Periventricular/fisiopatología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Cultivo Primario de Células
5.
Hum Mol Genet ; 28(8): 1227-1243, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30517687

RESUMEN

The microtubule cytoskeleton supports diverse cellular morphogenesis and migration processes during brain development. Mutations in tubulin genes are associated with severe human brain malformations known as 'tubulinopathies'; however, it is not understood how molecular-level changes in microtubule subunits lead to brain malformations. In this study, we demonstrate that missense mutations affecting arginine at position 402 (R402) of TUBA1A α-tubulin selectively impair dynein motor activity and severely and dominantly disrupt cortical neuronal migration. TUBA1A is the most commonly affected tubulin gene in tubulinopathy patients, and mutations altering R402 account for 30% of all reported TUBA1A mutations. We show for the first time that ectopic expression of TUBA1A-R402C and TUBA1A-R402H patient alleles is sufficient to dominantly disrupt cortical neuronal migration in the developing mouse brain, strongly supporting a causal role in the pathology of brain malformation. To isolate the precise molecular impact of R402 mutations, we generated analogous R402C and R402H mutations in budding yeast α-tubulin, which exhibit a simplified microtubule cytoskeleton. We find that R402 mutant tubulins assemble into microtubules that support normal kinesin motor activity but fail to support the activity of dynein motors. Importantly, the level of dynein impairment scales with the expression level of the mutant in the cell, suggesting a 'poisoning' mechanism in which R402 mutant α-tubulin acts dominantly by populating microtubules with defective binding sites for dynein. Based on our results, we propose a new model for the molecular pathology of tubulinopathies that may also extend to other tubulin-related neuropathies.


Asunto(s)
Dineínas/fisiología , Lisencefalia/genética , Tubulina (Proteína)/genética , Animales , Encéfalo/metabolismo , Movimiento Celular/genética , Dineínas/genética , Lisencefalia/metabolismo , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Mutación , Mutación Missense , Neurogénesis , Neuronas/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Tubulina (Proteína)/fisiología
6.
Mol Psychiatry ; 23(7): 1674-1684, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28924182

RESUMEN

Lissencephaly comprises a spectrum of brain malformations due to impaired neuronal migration in the developing cerebral cortex. Classical lissencephaly is characterized by smooth cerebral surface and cortical thickening that result in seizures, severe neurological impairment and developmental delay. Mutations in the X-chromosomal gene DCX, encoding doublecortin, is the main cause of classical lissencephaly. Much of our knowledge about DCX-associated lissencephaly comes from post-mortem analyses of patient's brains, mainly since animal models with DCX mutations do not mimic the disease. In the absence of relevant animal models and patient brain specimens, we took advantage of induced pluripotent stem cell (iPSC) technology to model the disease. We established human iPSCs from two males with mutated DCX and classical lissencephaly including smooth brain and abnormal cortical morphology. The disease was recapitulated by differentiation of iPSC into neural cells followed by expression profiling and dissection of DCX-associated functions. Here we show that neural stem cells, with absent or reduced DCX protein expression, exhibit impaired migration, delayed differentiation and deficient neurite formation. Hence, the patient-derived iPSCs and neural stem cells provide a system to further unravel the functions of DCX in normal development and disease.


Asunto(s)
Lisencefalia/fisiopatología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Neuropéptidos/genética , Neuropéptidos/fisiología , Encéfalo/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Células Cultivadas , Corteza Cerebral/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Fibroblastos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Lactante , Recién Nacido , Lisencefalia/metabolismo , Masculino , Células-Madre Neurales/metabolismo , Neuritas/fisiología , Neurogénesis/genética , Neuronas/metabolismo , Neuropéptidos/metabolismo
7.
Genomics ; 106(4): 196-203, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26188257

RESUMEN

The human cerebral cortex is peculiar for a six-layered cellular-sheet structure with convolution, which is a consequence of neuronal migration. Dysfunctions of the pathways contributing to this mechanism typically lead to lissencephaly manifesting smooth brain surfaces. To investigate the unknown mechanism underlying neuronal migration disorders, we generated induced pluripotent stem (iPS) cells from two patients with lissencephaly. Whole gene expression study for iPS cells derived from a patient with a LIS1 deletion showed reduced expression of the coiled-coil-helix-coiled-coil-helix domain containing 2 gene (CHCHD2), which was also confirmed in iPS cells derived from a patient with a TUBA1A mutation. CHCHD2 expression was detected in neuronal cells differentiated from normal iPS cells in a time-dependent manner, as well as in the brain of a fetus at 26-28 week gestational age, suggesting development-dependent expression. Migrating neuronal cells showed CHCHD2 expression, suggesting its functional relevance to neuronal migration.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Lisencefalia/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN , Regulación hacia Abajo , Femenino , Eliminación de Gen , Humanos , Células Madre Pluripotentes Inducidas/patología , Lactante , Lisencefalia/genética , Lisencefalia/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Neuronas/patología , Tubulina (Proteína)/genética
8.
Curr Pediatr Rev ; 10(4): 282-91, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25403635

RESUMEN

The muscular dystrophies have been traditionally classified based mainly on clinical manifestation and mode of inheritance. Owing to the discoveries of causative genes, new terminologies derived from each gene, such as dystrophinopathy, α-dystroglycanopathy, sarcoglycanopathy and fukutinopathy, have also become common. Mutations of each gene may cause several clinical phenotypes. Some muscular dystrophies accompany central nervous system (CNS) lesions, especially in the congenital muscular dystrophies. Cobblestone lissencephaly (type II lissencephaly) is a well-known CNS malformation observed in severe forms of α-dystroglycanopathy. Moreover, CNS involvement has been reported in other muscular dystrophies, such as Duchenne muscular dystrophy. In this review, genes related to the muscular dystrophies associated with CNS lesions are briefly described along with the molecular characteristics of each gene and the pathomechanism of the CNS lesions. Understanding of both the clinicopathological characteristics of these CNS lesions and their molecular mechanisms is important for the diagnosis, care of patients, and development of new therapeutic strategies.


Asunto(s)
Enfermedades del Sistema Nervioso Central/complicaciones , Distrofias Musculares/complicaciones , Distrofias Musculares/genética , Enfermedades del Sistema Nervioso Central/metabolismo , Niño , Distrofina/genética , Glicosilación , Humanos , Lisencefalia/complicaciones , Lisencefalia/genética , Lisencefalia/metabolismo , Distrofias Musculares/congénito , Distrofias Musculares/metabolismo , Distrofia Muscular de Cinturas/complicaciones , Distrofia Muscular de Cinturas/genética , N-Acetilglucosaminiltransferasas/genética , Proteínas Nucleares/genética , Fenotipo
9.
Hum Mol Genet ; 23(2): 449-66, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24030547

RESUMEN

Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore-microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1-dynein complex. Overexpression of NDEL1-dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1-NDEL1-dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Proteínas Portadoras/metabolismo , Dineínas/metabolismo , Lisencefalia/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Huso Acromático/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Células Cultivadas , Centrosoma , Corteza Cerebral , Segregación Cromosómica , Células HEK293 , Humanos , Lisencefalia/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación , Neuronas/metabolismo , Estabilidad Proteica , Huso Acromático/genética
10.
Adv Exp Med Biol ; 800: 25-36, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24243098

RESUMEN

Proper lamination of the cerebral cortex is precisely orchestrated, especially when neurons migrate from their place of birth to their final destination. The consequences of failure or delay in neuronal migration cause a wide range of disorders, such as lissencephaly, schizophrenia, autism and mental retardation. Neuronal migration is a dynamic process, which requires dynamic remodeling of the cytoskeleton. In this context microtubules and microtubule-related proteins have been suggested to play important roles in the regulation of neuronal migration. Here, we will review the dynamic aspects of neuronal migration and brain development, describe the molecular and cellular mechanisms of neuronal migration and elaborate on neuronal migration diseases.


Asunto(s)
Trastorno Autístico/metabolismo , Movimiento Celular , Discapacidad Intelectual/metabolismo , Lisencefalia/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Animales , Trastorno Autístico/patología , Humanos , Discapacidad Intelectual/patología , Lisencefalia/patología , Microtúbulos/metabolismo , Microtúbulos/patología , Neuronas/patología , Esquizofrenia/patología
11.
Curr Opin Neurobiol ; 23(6): 951-6, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23973156

RESUMEN

LIS1, the first gene to be identified as involved in a neuronal migration disease, is a dosage-sensitive gene whose proper levels are required for multiple aspects of cortical development. Deletions in LIS1 result in a severe brain malformation, known as lissencephaly, whereas duplications delay brain development. LIS1 affects the proliferation of progenitors, spindle orientation and interkinetic nuclear movement in the ventricular zone, as well as nucleokinesis and migration of neurons. LIS1 regulatory interaction with the minus end directed molecular motor cytoplasmic dynein is the key for understanding its complex cellular functions. LIS1-dynein interaction decreases the average velocity of the molecular motor in vitro, shows more complex effects in vivo, and may be of importance in high-load transport especially in neurons.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Encéfalo/anomalías , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Animales , Encéfalo/metabolismo , Movimiento Celular/genética , Humanos , Lisencefalia/genética , Lisencefalia/metabolismo , Lisencefalia/patología , Ratones , Proteínas Asociadas a Microtúbulos/genética
12.
Wiley Interdiscip Rev Dev Biol ; 2(2): 229-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23495356

RESUMEN

During neocortical development, the extensive migratory movements of neurons from their place of birth to their final location are essential for the coordinated wiring of synaptic circuits and proper neurological function. Failure or delay in neuronal migration causes severe abnormalities in cortical layering, which consequently results in human lissencephaly ('smooth brain'), a neuronal migration disorder. The brains of lissencephaly patients have less-convoluted gyri in the cerebral cortex with impaired cortical lamination of neurons. Since microtubule (MT) and actin-associated proteins play important functions in regulating the dynamics of MT and actin cytoskeletons during neuronal migration, genetic mutations or deletions of crucial genes involved in cytoskeletal processes lead to lissencephaly in human and neuronal migration defects in mouse. During neuronal migration, MT organization and transport are controlled by platelet-activating factor acetylhydrolase isoform 1b regulatory subunit 1 (PAFAH1B1, formerly known as LIS1, Lissencephaly-1), doublecortin (DCX), YWHAE, and tubulin. Actin stress fibers are modulated by PAFAH1B1 (LIS1), DCX, RELN, and VLDLR (very low-density lipoprotein receptor)/LRP8 (low-density lipoprotein-related receptor 8, formerly known as APOER2). There are several important levels of crosstalk between these two cytoskeletal systems to establish accurate cortical patterning in development. The recent understanding of the protein networks that govern neuronal migration by regulating cytoskeletal dynamics, from human and mouse genetics as well as molecular and cellular analyses, provides new insights on neuronal migration disorders and may help us devise novel therapeutic strategies for such brain malformations.


Asunto(s)
Citoesqueleto/patología , Lisencefalia/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/patología , Malformaciones del Sistema Nervioso/patología , Neuronas/metabolismo , Animales , Movimiento Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteína Doblecortina , Humanos , Lisencefalia/genética , Lisencefalia/patología , Malformaciones del Desarrollo Cortical del Grupo II/genética , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Malformaciones del Sistema Nervioso/genética , Neuronas/patología , Proteína Reelina
13.
Protein Cell ; 3(4): 262-70, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22528753

RESUMEN

The process of cortical expansion in the central nervous system is a key step of mammalian brain development to ensure its physiological function. Radial glial (RG) cells are a glial cell type contributing to this progress as intermediate neural progenitor cells responsible for an increase in the number of cortical neurons. In this review, we discuss the current understanding of RG cells during neurogenesis and provide further information on the mechanisms of neurodevelopmental diseases and stem cell-related brain tumorigenesis. Knowledge of neuronal stem cell and relative diseases will bridge benchmark research through translational studies to clinical therapeutic treatments of these diseases.


Asunto(s)
Neuroglía/citología , Biomarcadores de Tumor/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Glioma/metabolismo , Glioma/patología , Glioma/terapia , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisencefalia/metabolismo , Lisencefalia/patología , Microcefalia/metabolismo , Microcefalia/patología , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Neurogénesis/efectos de los fármacos , Neuroglía/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
14.
Cereb Cortex ; 21(3): 588-96, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20624841

RESUMEN

To investigate layer-specific molecule expression in human developing neocortices, we performed immunohistochemistry of the layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and CTIP2), using frontal neocortices of the dorsolateral precentral gyri of 16 normal controls, aged 19 gestational weeks to 1 year old, lissencephalies of 3 Miller-Dieker syndrome (MDS) cases, 2 X-linked lissencephaly with abnormal genitalia (XLAG) cases, and 4 Fukuyama-type congenital muscular dystrophy (FCMD) cases. In the fetal period, we observed SATB2+ cells in layers II-IV, CUTL1+ cells in layers II-V, FOXP1+ cells in layer V, OTX1+ cells in layers II or V, and CTIP2+ and TBR1+ cells in layers V and VI. SATB2+ and CUTL1+ cells appeared until 3 months of age, but the other markers disappeared after birth. Neocortices of MDS and XLAG infants revealed SATB2+, CUTL1+, FOXP1+, and TBR1+ cells diffusely located in the upper layers. In fetal FCMD neocortex, neurons labeled with the layer-specific markers located over the glia limitans. The present study provided new knowledge indicating that the expression pattern of these markers in the developing human neocortex was similar to those in mice. Various lissencephalies revealed abnormal layer formation by random migration.


Asunto(s)
Biomarcadores/análisis , Lisencefalia/patología , Neocórtex/citología , Proteína Doblecortina , Feto , Humanos , Inmunohistoquímica , Lactante , Recién Nacido , Lisencefalia/metabolismo , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo
15.
Semin Cell Dev Biol ; 22(1): 89-96, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21034843

RESUMEN

Lissencephaly is a severe brain developmental disease in human infants, which is usually caused by mutations in either of two genes, LIS1 and DCX. These genes encode proteins interacting with both the microtubule and the actin systems. Here, we review the implications of data on Dictyostelium LIS1 for the elucidation of LIS1 function in higher cells and emphasize the role of LIS1 and nuclear envelope proteins in nuclear positioning, which is also important for coordinated cell migration during neocortical development. Furthermore, for the first time we characterize Dictyostelium DCX, the only bona fide orthologue of human DCX outside the animal kingdom. We show that DCX functionally interacts with LIS1 and that both proteins have a cytoskeleton-independent function in chemotactic signaling during development. Dictyostelium LIS1 is also required for proper attachment of the centrosome to the nucleus and, thus, nuclear positioning, where the association of these two organelles has turned out to be crucial. It involves not only dynein and dynein-associated proteins such as LIS1 but also SUN proteins of the nuclear envelope. Analyses of Dictyostelium SUN1 mutants have underscored the importance of these proteins for the linkage of centrosomes and nuclei and for the maintenance of chromatin integrity. Taken together, we show that Dictyostelium amoebae, which provide a well-established model to study the basic aspects of chemotaxis, cell migration and development, are well suited for the investigation of the molecular and cell biological basis of developmental diseases such as lissencephaly.


Asunto(s)
Dictyostelium/metabolismo , Lisencefalia/metabolismo , Proteínas Protozoarias/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Lisencefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Unión Proteica , Proteínas Protozoarias/genética
16.
Semin Cell Dev Biol ; 21(8): 823-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20688183

RESUMEN

Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. The two most common genes mutated in patients with lissencephaly are LIS1 and DCX. LIS1 was the first gene cloned that was important for neuronal migration in any organism, and heterozygous mutations or deletions of LIS1 are found in the majority of patients with lissencephaly, while DCX mutations were found in males with X-linked lissencephaly. In this review, we will discuss how an understanding of the molecular and cellular pathways disrupted in model organisms with Lis1 and Dcx mutations or knock-down not only provide insights into the normal processes of neuronal migration, including neurogenesis, but they also may lead to potential novel therapeutic strategies for these severe cortical malformations.


Asunto(s)
Modelos Animales de Enfermedad , Lisencefalia/genética , Lisencefalia/terapia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/metabolismo , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/terapia , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Lisencefalia/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis , Neuropéptidos/metabolismo , Ratas
17.
Int J Biochem Cell Biol ; 42(9): 1401-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20541031

RESUMEN

Haploinsufficiency is a state of genetic disease, which is caused by hemizygous mutations of functional alleles. Lissencephaly is a typical example of haploinsufficiency disorders characterized by a smooth cerebral surface, thick cortex and dilated lateral ventricules associated with mental retardation and seizures due to defective neuronal migration. LIS1 was the first gene cloned in an organism, which was deleted or mutated in patients with lissencephaly in a heterozygous fashion. Series of studies uncovered that LIS1 is an essential regulator of cytoplasmic dynein. In particular, we reported that LIS1 is essential for dynein transport to the plus-end of microtubules by kinesin, which is essential for maintaining proper distribution of cytoplasmic dynein within the cell. Fortuitously, we found that a substantial fraction of LIS1 is degraded by the cystein protease, calpain after reaching the plus-end of microtubules. We further demonstrated that inhibition of calpain-mediated LIS1 degradation increased LIS1 level at the cortex of the cell, resulting in therapeutic benefit using genetic mouse models with reduced levels of LIS1. Our work might provide a potential therapeutic approach for the treatment of a fraction of haploinsufficiency disorders through augmenting reduced proteins by the targeting inhibition of degradation machinery.


Asunto(s)
Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/terapia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Dineínas/genética , Dineínas/metabolismo , Enfermedades Genéticas Congénitas/genética , Humanos , Lisencefalia/genética , Lisencefalia/metabolismo , Lisencefalia/terapia , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
18.
Cell ; 141(2): 304-14, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403325

RESUMEN

Cytoplasmic dynein is responsible for many aspects of cellular and subcellular movement. LIS1, NudE, and NudEL are dynein interactors initially implicated in brain developmental disease but now known to be required in cell migration, nuclear, centrosomal, and microtubule transport, mitosis, and growth cone motility. Identification of a specific role for these proteins in cytoplasmic dynein motor regulation has remained elusive. We find that NudE stably recruits LIS1 to the dynein holoenzyme molecule, where LIS1 interacts with the motor domain during the prepowerstroke state of the dynein crossbridge cycle. NudE abrogates dynein force production, whereas LIS1 alone or with NudE induces a persistent-force dynein state that improves ensemble function of multiple dyneins for transport under high-load conditions. These results likely explain the requirement for LIS1 and NudE in the transport of nuclei, centrosomes, chromosomes, and the microtubule cytoskeleton as well as the particular sensitivity of migrating neurons to reduced LIS1 expression.


Asunto(s)
Proteínas Portadoras/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Algoritmos , Animales , Bovinos , Chlorocebus aethiops , Humanos , Cinesinas/metabolismo , Lisencefalia/metabolismo , Ratas , Proteínas Recombinantes/metabolismo
19.
Hum Mol Genet ; 18(19): 3708-24, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19605412

RESUMEN

ARX (the aristaless-related homeobox gene) is a transcription factor that participates in the development of GABAergic and cholinergic neurons in the forebrain. Many ARX mutations have been identified in X-linked lissencephaly and mental retardation with epilepsy, and thus ARX is considered to be a causal gene for the two syndromes although the neurobiological functions of each mutation remain unclear. We attempted to elucidate the causal relationships between individual ARX mutations and disease phenotypes by generating a series of mutant mice. We generated three types of mice with knocked-in ARX mutations associated with X-linked lissencephaly (P353R) and mental retardation [P353L and 333ins(GCG)7]. Mice with the P355R mutation (equivalent to the human 353 position) that died after birth were significantly different in Arx transcript/protein amounts, GABAergic and cholinergic neuronal development, brain morphology and lifespan from mice with P355L and 330ins(GCG)7 but considerably similar to Arx-deficient mice with truncated ARX mutation in lissencephaly. Mice with the 330ins(GCG)7 mutation showed severe seizures and impaired learning performance, whereas mice with the P355L mutation exhibited mild seizures and only slightly impaired learning performance. Both types of mutant mice exhibited the mutation-specific lesser presence of GABAergic and cholinergic neurons in the striatum, medial septum and ventral forebrain nuclei when compared with wild-type mice. Present findings that reveal a causal relationship between ARX mutations and the pleiotropic phenotype in mice, suggest that the ARX-related syndrome, including lissencephaly or mental retardation, is caused by only the concerned ARX mutations without the involvement of other genetic factors.


Asunto(s)
Epilepsia/genética , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Lisencefalia/genética , Mutación , Factores de Transcripción/genética , Animales , Modelos Animales de Enfermedad , Proteína Doblecortina , Epilepsia/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Discapacidad Intelectual/metabolismo , Lisencefalia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Factores de Transcripción/metabolismo
20.
J Neurosci ; 28(48): 13008-13, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19036994

RESUMEN

Abnormal neuronal migration is manifested in brain malformations such as lissencephaly. The impairment in coordinated cell motility likely reflects a faulty mechanism of cell polarization or coupling between polarization and movement. Here we report on the relationship between the polarity kinase MARK2/Par-1 and its substrate, the well-known lissencephaly-associated gene doublecortin (DCX), during cortical radial migration. We have previously shown using in utero electroporation that reduced MARK2 levels resulted in multipolar neurons stalled at the intermediate zone border, similar to the phenotype observed in the case of DCX silencing. However, whereas reduced MARK2 stabilized microtubules, we show here that knock-down of DCX increased microtubule dynamics. This led to the hypothesis that simultaneous reduction may alleviate the phenotype. Coreduction of MARK2 and DCX resulted in a partial restoration of the normal neuronal migration phenotype in vivo. The kinetic behavior of the centrosomes reflected the different molecular mechanisms activated when either protein was reduced. In the case of reducing MARK2 processive motility of the centrosome was hindered, whereas when DCX was reduced, centrosomes moved quickly but bidirectionally. Our results stress the necessity for successful coupling between the polarity pathway and cytoplasmic dynein-dependent activities for proper neuronal migration.


Asunto(s)
Proteínas de Ciclo Celular/genética , Corteza Cerebral/anomalías , Proteínas Asociadas a Microtúbulos/genética , Neurogénesis/genética , Neuronas/metabolismo , Neuropéptidos/genética , Proteínas Serina-Treonina Quinasas/genética , Células Madre/metabolismo , Animales , Movimiento Celular/genética , Polaridad Celular/fisiología , Células Cultivadas , Centrosoma/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Regulación hacia Abajo/genética , Dineínas/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Lisencefalia/genética , Lisencefalia/metabolismo , Lisencefalia/fisiopatología , Ratones , Microtúbulos/metabolismo , Fenotipo , Transporte de Proteínas/fisiología , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA