Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.073
Filtrar
1.
Food Res Int ; 186: 114397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729739

RESUMEN

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Asunto(s)
Glucosa , Lisina , Reacción de Maillard , Odorantes , Oxidación-Reducción , Aceite de Sésamo , Aceite de Sésamo/química , Glucosa/química , Odorantes/análisis , Lisina/química , Fenoles/química , Benzodioxoles
2.
Pak J Pharm Sci ; 37(1(Special)): 245-255, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747276

RESUMEN

Aripiprazole (ARI), an antipsychotic having low solubility and stability. To overcome this, formation of binary and ternary using inclusion complexes of Methyl-ß-cyclodextrin (MßCD) /Hydroxy propyl beta cyclodextrin (HPßCD) and L-Arginine (ARG)/ Lysine (LYS) are analyzed by dissolution testing and phase stability study along with their complexation efficacy and solubility constants made by physical mixing. Inclusion complexes with ARG were better than LYS and prepared by solvent evaporation and lyophilization method as well. They are characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (AT-FTIR), X-ray powder diffractometry (XRD), Differential Scanning Calorimetry (DSC), Scanning electron microscopy (SEM) and Thermal gravimetric analysis (TGA). The bond shifting in AT-FTIR confirmed the molecular interactions between host and guest molecules. The SEM images also confirmed a complete change of drug morphology in case of ternary inclusion complexes prepared by lyophilization method for both the polymers. ARI: MßCD: ARG when used in the specific molar ratio of 1:1:0.27 by prepared by lyophilization method has 18 times best solubility while ARI:HPßCD:ARG was 7 times best solubility than pure drug making MßCD a better choice than HPßCD. Change in the molar ratio will cause loss of stability or solubility. Solvent evaporation gave significant level of solubility but less stability.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina , Arginina , Aripiprazol , Rastreo Diferencial de Calorimetría , Lisina , Solubilidad , beta-Ciclodextrinas , Aripiprazol/química , Arginina/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química , Lisina/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Liofilización , Antipsicóticos/química , Estabilidad de Medicamentos , Microscopía Electrónica de Rastreo , Composición de Medicamentos , Química Farmacéutica/métodos
3.
Chirality ; 36(5): e23670, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716587

RESUMEN

Metal clusters have drawn considerable research attention over the years due to their fascinating optical properties. Owing to their appealing photophysical characteristics, these materials have drawn attention as potential candidates for various application in diverse fields, including disease detection, biosensing, chemical sensing, and the fabrication of light-harvesting materials. Presently, there is an increasing research focus on the use of clusters in biomedical research, both as biodetection platform and as bioimaging agents. Of special interest are chiral clusters, which can selectively interact with chiral biomolecules owing to their optical activity. Herein, we showcase the use of a pair of chiroptically active copper clusters for the enantioselective detection of lysine, an amino acid of vast biological relevance. Two techniques are concurrently employed for the detection of lysine at varying concentrations. Circular dichroism serves as a potent tool for detecting lysine at low concentrations, whereas luminescence is effectively employed as a detection method for high analyte concentrations. The combined electronic impact of clusters and lysine resulted in the emergence of an enhanced enantioselective Cotton effect at specific wavelength.


Asunto(s)
Cobre , Lisina , Lisina/química , Lisina/análisis , Cobre/química , Cobre/análisis , Estereoisomerismo , Dicroismo Circular/métodos
4.
Mol Cell ; 84(9): 1802-1810.e4, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701741

RESUMEN

Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.


Asunto(s)
Amidas , Lisina , Ácidos Fosfóricos , Polifosfatos , Lisina/metabolismo , Lisina/química , Polifosfatos/química , Polifosfatos/metabolismo , Fosforilación , Humanos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Proteínas/genética
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732083

RESUMEN

Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.


Asunto(s)
Dicroismo Circular , ADN , Lisina , Péptidos , Fenantridinas , Fenantridinas/química , Lisina/química , Péptidos/química , ADN/química , ADN/metabolismo , ARN/química , Conformación de Ácido Nucleico
6.
Biomacromolecules ; 25(5): 2838-2851, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38567844

RESUMEN

A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.


Asunto(s)
Arginina , Lisina , Lisina/química , Arginina/química , Concentración de Iones de Hidrógeno , Urea/química
7.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569988

RESUMEN

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Asunto(s)
Aspartato Quinasa , Brugia Malayi , Simulación de Dinámica Molecular , Wolbachia , Brugia Malayi/enzimología , Brugia Malayi/microbiología , Regulación Alostérica , Animales , Aspartato Quinasa/metabolismo , Aspartato Quinasa/genética , Aspartato Quinasa/química , Simbiosis , Adenosina Trifosfato/metabolismo , Lisina/química , Lisina/metabolismo
8.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607253

RESUMEN

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Asunto(s)
Oxidación-Reducción , Transaldolasa , Espectroscopía de Absorción de Rayos X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/química , Procesamiento Proteico-Postraduccional , Soluciones , Azufre/química , Azufre/metabolismo , Transaldolasa/metabolismo , Transaldolasa/química
9.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613960

RESUMEN

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Asunto(s)
Acuicultura , Chlorella , Glucosa , Microalgas , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucosa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradación Ambiental , Redes y Vías Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
10.
J Am Chem Soc ; 146(15): 10621-10631, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38584362

RESUMEN

Lysine dimethylation (Kme2) is a crucial post-translational modification (PTM) that regulates biological processes and is implicated in diseases. There is significant interest in globally identifying these methylation marks. Unfortunately, this remains challenging due to the lack of robust technologies for selectively labeling Kme2. To address this, we present a chemical method named tertiary amine coupling by oxidation (TACO). This method selectively modifies Kme2 to aldehydes using Selectfluor and a base. The resulting aldehydes from Kme2 were then functionalized using reductive amination, thiolamine, and oxime chemistry. We successfully demonstrated the versatility of TACO in selectively labeling Kme2 peptides and proteins in complex cell lysate mixtures with varying payloads, including affinity tags and fluorophores. We further showed the application of TACO chemistry for the identification of Kme2 sites at a single-molecule level by fluorosequencing. We discovered novel 30 Kme2 sites, in addition to previously known 5 Kme2 sites, by proteomics analysis of TACO-modified nuclear extracts. Our work establishes a unique strategy for covalently modifying Kme2, facilitating the global identification of low-abundance Kme2-PTMs and their sites within complex cell lysate mixtures.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Lisina/química , Proteínas/química , Aminas , Aldehídos
11.
Pestic Biochem Physiol ; 201: 105901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685232

RESUMEN

Plant diseases caused by Pseudomonas syringae are essentially controlled in the field with the use of copper-based products and antibiotics, raising environmental and safety concerns. Antimicrobial peptides (AMPs) derived from fungi may represent a sustainable alternative to those chemicals. Trichogin GA IV, a non-ribosomal, 11-residue long AMP naturally produced by the fungus Trichoderma longibrachiatum has the ability to insert into phospholipidic membranes and form water-filled pores, thereby perturbing membrane integrity and permeability. In previous studies, peptide analogs modified at the level of specific residues were designed to be water-soluble and active against plant pathogens. Here, we studied the role of glycine-to-lysine substitutions and of the presence of a C-terminal leucine amide on bioactivity against Pseudomonas syringae bacteria. P. syringae diseases affect a wide range of crops worldwide, including tomato and kiwifruit. Our results show that trichogin GA IV analogs containing two or three Gly-to-Lys substitutions are highly effective in vitro against P. syringae pv. tomato (Pst), displaying minimal inhibitory and minimal bactericidal concentrations in the low micromolar range. The same analogs are also able to inhibit in vitro the kiwifruit pathogen P. syringae pv. actinidiae (Psa) biovar 3. When sprayed on tomato plants 24 h before Pst inoculation, only tri-lysine containing analogs were able to significantly reduce bacterial titers and symptom development in infected plants. Our results point to a positive correlation between the number of lysine substitutions and the antibacterial activity. This correlation was supported by microscopy analyses performed with mono-, di- and tri-Lys containing analogs that showed a different degree of interaction with Pst cells and ultrastructural changes that culminated in cell lysis.


Asunto(s)
Antibacterianos , Lisina , Pseudomonas syringae , Pseudomonas syringae/efectos de los fármacos , Lisina/química , Lisina/farmacología , Antibacterianos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Peptaiboles/farmacología , Peptaiboles/química , Pruebas de Sensibilidad Microbiana , Oligopéptidos/farmacología , Oligopéptidos/química , Solanum lycopersicum/microbiología
12.
J Am Chem Soc ; 146(17): 11726-11739, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636166

RESUMEN

Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.


Asunto(s)
Dominio Catalítico , Lisina , Protones , Hidroxilación , Lisina/metabolismo , Lisina/química , Transporte de Electrón , Tirosina/química , Tirosina/metabolismo , Simulación de Dinámica Molecular , Estereoisomerismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Humanos , Hierro/química , Hierro/metabolismo
13.
J Am Soc Mass Spectrom ; 35(5): 982-991, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38597281

RESUMEN

The structural characterization and differentiation of four types of oligoubiquitin conjugates [linear (Met1)-, Lys11-, Lys48-, Lys63-linked di-, tri-, and tetraubiquitin chains] using ion mobility mass spectrometry are reported. A comparison of collision cross sections for the same linkage of di-, tri-, and tetraubiquitin chains shows differences in conformational elongation for higher charge states due to the interplay of linkage-derived structure and Coulombic repulsion. For di- and triubiquitin chains, this elongation results in a single narrow feature representing an elongated conformation type for multiple higher charge state species. In contrast, higher charge state tetraubiquitin species do not form a single conformer type as readily. A comparison of different linkages in tetraubiquitin chains reveals greater similarity in conformation type at lower charge states; with increasing charge state, the four linkage types diverge in the relative proportions of elongated conformer types with Met1- ≥ Lys11- > Lys63- > Lys48-linkage. These differences in conformational trends could be discussed with respect to biological functions of linkage-specific polyubiquitinated proteins.


Asunto(s)
Espectrometría de Movilidad Iónica , Ubiquitina , Espectrometría de Movilidad Iónica/métodos , Ubiquitina/química , Conformación Proteica , Espectrometría de Masas/métodos , Modelos Moleculares , Lisina/química
14.
J Mech Behav Biomed Mater ; 153: 106493, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484428

RESUMEN

Elastomeric biocomposites based on poly(glycerol adipate urethane) and hydroxyapatite were fabricated for tissue regeneration. The poly(glycerol adipate urethane) (PGAU) elastomeric composite matrices were obtained by chemical crosslinking of the poly(glycerol adipate) prepolymer (pPGA) with diisocyanate derivative of L-lysine. Two series of composites varying in the amount of L-lysine diisocyanate ethyl ester (LDI) used as a crosslinking agent were manufactured. As a ceramic filler both unmodified and L-lysine surface-modified hydroxyapatite (HAP) particles were used. The novelty of our research consists in the manufactured elastomeric materials and characterization of their linear viscoelastic (LVE) properties. The LVE properties of the composites were investigated by means of dynamic thermomechanical analysis. Frequency sweep and amplitude sweep measurements were performed in shear mode. The influence of the crosslinking agent (LDI) amount, HAP content and surface modification of HAP on the LVE properties of the composites was determined based on the analysis of the master curves of storage (G') and loss (G″) moduli and of tanδ of the composites. Depending on the amount of LDI, HAP and surface modification, the materials differ in the values of rubber elasticity plateau modulus (G0) and G' and G″ determined at selected shear frequencies and at the glassy state. G0 ranges from 278 kPa to 3.98 MPa, G' in the glassy state is within the range of 219 MPa-459 MPa. The G0 values of the PGAU-based composites are within the stiffness range of soft tissue. In view of the choice of HAP as the ceramic component and the G0 values, elastomeric composites have the potential to be used as filling materials in small bone defects (due to their mechanical similarity to osteoid) as well as materials for cartilage tissue regeneration.


Asunto(s)
Glicerol , Uretano , Glicerol/química , Lisina/química , Ensayo de Materiales , Elasticidad , Durapatita/química , Adipatos , Ésteres
15.
Nat Metab ; 6(3): 550-566, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448615

RESUMEN

The post-translational modification lysine succinylation is implicated in the regulation of various metabolic pathways. However, its biological relevance remains uncertain due to methodological difficulties in determining high-impact succinylation sites. Here, using stable isotope labelling and data-independent acquisition mass spectrometry, we quantified lysine succinylation stoichiometries in mouse livers. Despite the low overall stoichiometry of lysine succinylation, several high-stoichiometry sites were identified, especially upon deletion of the desuccinylase SIRT5. In particular, multiple high-stoichiometry lysine sites identified in argininosuccinate synthase (ASS1), a key enzyme in the urea cycle, are regulated by SIRT5. Mutation of the high-stoichiometry lysine in ASS1 to succinyl-mimetic glutamic acid significantly decreased its enzymatic activity. Metabolomics profiling confirms that SIRT5 deficiency decreases urea cycle activity in liver. Importantly, SIRT5 deficiency compromises ammonia tolerance, which can be reversed by the overexpression of wild-type, but not succinyl-mimetic, ASS1. Therefore, lysine succinylation is functionally important in ammonia metabolism.


Asunto(s)
Lisina , Sirtuinas , Ratones , Animales , Lisina/química , Lisina/metabolismo , Amoníaco , Sirtuinas/metabolismo , Ratones Noqueados , Urea
16.
Org Biomol Chem ; 22(13): 2670-2676, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38483440

RESUMEN

Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as N(6)-(1-carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation in vivo proves challenging due to the intricate nature of glycation reactions. In vitro, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.


Asunto(s)
Productos Finales de Glicación Avanzada , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Productos Finales de Glicación Avanzada/química , Lisina/química , Piruvaldehído/metabolismo , Aminoácidos
17.
Bioconjug Chem ; 35(3): 286-299, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451202

RESUMEN

Chemoselective protein modification plays extremely important roles in various biological, medical, and pharmaceutical investigations. Mimicking the mechanism of the chemoselective reaction between natural azaphilones and primary amines, this work successfully simplified the azaphilone scaffold into much simpler 3-acyl-4-pyranones. Examinations confirmed that these slim-size mimics perfectly kept the unique reactivity for selective conjugation with the primary amines including lysine residues of peptides and proteins. The newly developed pyranone tool presents remarkably increased aqueous solubility and compatible second-order rate constant by comparison with the original azaphilone. Additional advantages also include the ease of biorthogonal combinative use with a copper-catalyzed azide-alkyne Click reaction, which was conveniently applied to decorate lysozyme with neutral-, positive- and negative-charged functionalities in parallel. Moderate-degree modification of lysozyme with positively charged quaternary ammoniums was revealed to increase the enzymatic activities.


Asunto(s)
Lisina , Muramidasa , Lisina/química , Indicadores y Reactivos , Péptidos/química , Aminas , Azidas/química , Química Clic , Alquinos/química
18.
J Am Chem Soc ; 146(10): 6544-6556, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426740

RESUMEN

Pyrrolysine, the 22nd amino acid encoded by the natural genetic code, is essential for methanogenic archaea to catabolize methylamines into methane. The structure of pyrrolysine consists of a methylated pyrroline carboxylate that is linked to the ε-amino group of the l-lysine via an amide bond. The biosynthesis of pyrrolysine requires three enzymes: PylB, PylC, and PylD. PylB is a radical S-adenosyl-l-methionine (SAM) enzyme and catalyzes the first biosynthetic step, the isomerization of l-lysine into methylornithine. PylC catalyzes an ATP-dependent ligation of methylornithine and a second l-lysine to form l-lysine-Nε-methylornithine. The last biosynthetic step is catalyzed by PylD via oxidation of the PylC product to form pyrrolysine. While enzymatic reactions of PylC and PylD have been well characterized by X-ray crystallography and in vitro studies, mechanistic understanding of PylB is still relatively limited. Here, we report the first in vitro activity of PylB to form methylornithine via the isomerization of l-lysine. We also identify a lysyl C4 radical intermediate that is trapped, with its electronic structure and geometric structure well characterized by EPR and ENDOR spectroscopy. In addition, we demonstrate that SAM functions as a catalytic cofactor in PylB catalysis rather than canonically as a cosubstrate. This work provides detailed mechanistic evidence for elucidating the carbon backbone rearrangement reaction catalyzed by PylB during the biosynthesis of pyrrolysine.


Asunto(s)
Lisina , Lisina/análogos & derivados , S-Adenosilmetionina , Lisina/química , Código Genético , Amidas/metabolismo
19.
BMC Biotechnol ; 24(1): 12, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454400

RESUMEN

OBJECTIVE: The objective of this study was to establish a methodology for determining carboxymethyl lysine (CML) and carboxyethyl lysine (CEL) concentrations in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The test results were also used for clinical aging research. METHODS: Human plasma samples were incubated with aqueous perfluorovaleric acid (NFPA), succeeded by precipitation utilizing trichloroacetic acid, hydrolysis facilitated by hydrochloric acid, nitrogen drying, and ultimate re-dissolution utilizing NFPA, followed by filtration. Cotinine-D3 was added as an internal standard. The separation was performed on an Agela Venusil ASB C18 column (50 mm × 4.6 mm, 5 µm) with a 5 mmol/L NFPA and acetonitrile/water of 60:40 (v/v) containing 0.15% formic acid. The multiple reaction monitoring mode was used for detecting CML, CEL, and cotinine-D3, with ion pairs m/z 205.2 > 84.1 (for quantitative) and m/z 205.2 > m/z 130.0 for CML, m/z 219.1 > 84.1 (for quantitative) and m/z 219.1 > m/z 130.1 for CEL, and m/z 180.1 > 80.1 for cotinine-D3, respectively. RESULTS: The separation of CML and CEL was accomplished within a total analysis time of 6 minutes. The retention times of CML, CEL, and cotinine-D3 were 3.43 minutes, 3.46 minutes, and 4.50 minutes, respectively. The assay exhibited linearity in the concentration range of 0.025-1.500 µmol/L, with a lower limit of quantification of 0.025 µmol/L for both compounds. The relative standard deviations of intra-day and inter-day were both below 9%, and the relative errors were both within the range of ±4%. The average recoveries were 94.24% for CML and 97.89% for CEL. CONCLUSION: The results indicate that the developed methodology is fast, highly sensitive, highly specific, reproducible, and suitable for the rapid detection of CML and CEL in clinical human plasma samples. The outcomes of the clinical research project on aging underscored the important indicative significance of these two indicators for research on human aging.


Asunto(s)
Lisina , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Lisina/análisis , Lisina/química , Cotinina , Gerociencia , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/química , Cromatografía Líquida de Alta Presión
20.
Angew Chem Int Ed Engl ; 63(16): e202318893, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38376389

RESUMEN

α-Ketoaldehydes play versatile roles in the ubiquitous natural processes of protein glycation. However, leveraging the reactivity of α-ketoaldehydes for biomedical applications has been challenging. Previously, the reactivity of α-ketoaldehydes with guanidine has been harnessed to design probes for labeling Arg residues on proteins in an aqueous medium. Herein, a highly effective, broadly applicable, and operationally simple protocol for stapling native peptides by crosslinking two amino groups through diverse imidazolium linkers with various α-ketoaldehyde reagents is described. The use of hexafluoroisopropanol as a solvent facilitates rapid and clean reactions under mild conditions and enables unique selectivity for Lys over Arg. The naturally occurring GOLD/MOLD linkers have been expanded to encompass a wide range of modified glyoxal-lysine dimer (OLD) linkers. In a proof-of-concept trial, these modular stapling reactions enabled a convenient two-round strategy to streamline the structure-activity relationship (SAR) study of the wasp venom peptide anoplin, leading to enhanced biological activities.


Asunto(s)
Glioxal , Lisina , Glioxal/química , Lisina/química , Aminas , Aldehídos , Péptidos , Reactivos de Enlaces Cruzados/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...