Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.384
Filtrar
1.
Sci Rep ; 14(1): 10573, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719983

RESUMEN

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.


Asunto(s)
Esclerosis Múltiple , Receptores del Ácido Lisofosfatídico , Remielinización , Animales , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Remielinización/efectos de los fármacos , Humanos , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Diferenciación Celular/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Lisofosfolípidos/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
2.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593468

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Asunto(s)
Proliferación Celular , Mucosa Intestinal , Receptores del Ácido Lisofosfatídico , Regeneración , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Ratones , Regeneración/efectos de la radiación , Proteínas Señalizadoras YAP/metabolismo , Proliferación Celular/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/metabolismo , Organoides/metabolismo , Organoides/efectos de la radiación , Ratones Noqueados , Apoptosis/efectos de la radiación , Lisofosfolípidos/metabolismo , Intestino Delgado/efectos de la radiación , Intestino Delgado/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
3.
Biochem Biophys Res Commun ; 715: 149982, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38676998

RESUMEN

The tumor microenvironment is an extremely complex composed of cancer cells and various non-cancer cells, including lymphatic endothelial cells. Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) activate a variety of malignant properties in human malignancies. In the present study, we examined the roles of LPA receptor-mediated signaling in biological responses of lymphatic endothelial SVEC4-10 cells induced by hypoxia. Lpar1, Lpar2 and Lpar3 expressions were decreased in SVEC4-10 cells cultured at hypoxic conditions (1 % O2). LPA had no impact on the cell growth activity of SVEC4-10 cells in 21 % O2 culture conditions. Conversely, the cell growth activity of SVEC4-10 cells in 1 % O2 culture conditions was reduced by LPA. The cell motile activity of SVEC4-10 cells was elevated by 1 % O2 culture conditions. GRI-977143 (LPA2 agonist) and (2S)-OMPT (LPA3 agonist) stimulated SVEC4-10 cell motility as well as AM966 (LPA1 antagonist). In tube formation assay, the tube formation of SVEC4-10 cells in 1 % O2 culture conditions was markedly increased, in comparison with 21 % O2. GRI-977143 and (2S)-OMPT elevated the tube formation of SVEC4-10 cells. Furthermore, the tube formation of SVEC4-10 cells was increased by AM966. These results suggest that LPA receptor-mediated signaling contributes to the modulation of hypoxic-induced biological functions of lymphatic endothelial cells.


Asunto(s)
Hipoxia de la Célula , Movimiento Celular , Células Endoteliales , Lisofosfolípidos , Receptores del Ácido Lisofosfatídico , Transducción de Señal , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Lisofosfolípidos/metabolismo , Línea Celular , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ratones
4.
Pathol Res Pract ; 257: 155293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615508

RESUMEN

Lysophosphatidic acid (LPA) binds to its specific G protein-coupled LPA receptors (LPA1 to LPA6), resulting in the activation of various cellular functions. LPA receptor-mediated signaling facilitates tumor progression in human malignancies. In the present study, we investigated whether LPA receptor-mediated signaling contributes to cellular responses to X-ray irradiation in osteosarcoma MG-63 cells. After X-ray irradiation (2, 4 and 8 Gy), LPAR2 and LPAR3 expression levels in MG-63 cells were significantly elevated in a dose-dependent manner, but no change of LPAR1 expression level was observed. The cell growth activities of MG-63 cells irradiated with X-rays (2, 4 and 8 Gy) were reduced by LPA. Conversely, LPA3 agonist (2 S)-OMPT enhanced the cell growth activities of X-ray irradiated MG-63 cells. The cell movement of MG-63 cells exposed to X-ray irradiation (8 Gy) was inhibited by (2 S)OMPT. In cell survival assay, (2 S)-OMPT suppressed the cell survival to cisplatin (CDDP) of MG-63 cells irradiated with X-rays (8 Gy). The cell survival to CDDP of X-ray irradiated cells was elevated by LPA3 knockdown. Moreover, we evaluated the effects of LPA2 on the cell survival to CDDP of MG-63 cells exposed to X-ray irradiation (8 Gy). The cell survival to CDDP of X-ray irradiated cells was increased by LPA2 agonist GRI-977143 and reduced by LPA2 knockdown. These results suggest that LPA receptor-signaling participates in the modulation of cellular functions induced by X-ray irradiation in osteosarcoma cells.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Receptores del Ácido Lisofosfatídico , Humanos , Receptores del Ácido Lisofosfatídico/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/radioterapia , Línea Celular Tumoral , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Rayos X , Lisofosfolípidos/farmacología , Lisofosfolípidos/metabolismo
5.
PLoS One ; 19(4): e0287444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630705

RESUMEN

The tight control of proliferating keratinocytes is vital to the successful function of the skin. Differentiation of dividing cells is necessary to form a skin barrier. The same dividing cells are necessary to heal wounds and when malignant form tumors. RIPK4, a serine-threonine kinase, plays critical roles in these processes. Its loss of function was associated with pathological keratinocyte proliferation and development of squamous cell carcinoma (SCC) in humans and mice. The current study extends previous findings in the importance of RIPK4 in keratinocyte proliferation. A serum-derived phospholipid, lysophosphatidic acid (LPA), was identified as an important biologic inhibitor of RIPK4. LPA functions by inhibiting the transcription of RIPK4 mRNA. LPA treatment led to increased keratinocyte proliferation, and this was compromised in cells with reduced RIPK4 expression. The current study may help to explain the mechanism by which RIPK4 was downregulated during SCC progression and provide insights on RIPK4 functions. It may also allow for targeting of RIPK4 through a natural component of serum.


Asunto(s)
Carcinoma de Células Escamosas , Lisofosfolípidos , Proteínas Serina-Treonina Quinasas , Humanos , Animales , Ratones , ARN Mensajero/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Queratinocitos/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular
6.
Int J Biol Macromol ; 267(Pt 1): 131323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574912

RESUMEN

Sphingolipids serve as essential components of biomembrane and possess significant bioactive properties. Sphingosine-1-phophate (S1P) plays a key role in plant resistance to stress, but its specific impact on plant growth and development remains to be fully elucidated. Cotton fiber cells are an ideal material for investigating the growth and maturation of plant cells. In this study, we examined the content and composition of sphingosine (Sph) and S1P throughout the progression of fiber cell development. The content of S1P elevated gradually during fiber elongation but declined during the transition stage. Exogenous application of S1P promoted fiber elongation while using of FTY720 (an antagonist of S1P), and DMS (an inhibitor of LCBK) hindered fiber elongation. Cotton Long Chain Base Kinase 1 (GhLCBK1) was notably expressed during the fiber elongation stage, containing all conserved domains of LCBK protein and localized in the endoplasmic reticulum. Overexpression GhLCBK1 increased the S1P content and promoted fiber elongation while retarded secondary cell wall (SCW) deposition. Conversely, downregulation of GhLCBK1 reduced the S1P levels, and suppressed fiber elongation, and accelerated SCW deposition. Transcriptome analysis revealed that upregulating GhLCBK1 or applying S1P induced the expression of GhEXPANSIN and auxin related genes. Furthermore, the levels of IAA were elevated and reduced in the fibers when up-regulating or down-regulating GhLCBK1, respectively. Our investigation demonstrated that GhLCBK1 and its product S1P facilitated the elongation of fiber cells by affecting auxin biosynthesis. This study contributes novel insights into the intricate regulatory pathways involved in fiber cell elongation, identifying GhLCBK1 as a potential target gene and laying the groundwork for enhancing fiber quality via genetic manipulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Ácidos Indolacéticos , Lisofosfolípidos , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lisofosfolípidos/metabolismo , Fibra de Algodón , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos
7.
Chem Rev ; 124(9): 5470-5504, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607675

RESUMEN

Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.


Asunto(s)
Lisofosfolípidos , Transducción de Señal , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/química , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades del Sistema Nervioso/metabolismo
8.
Cells ; 13(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38607068

RESUMEN

Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.


Asunto(s)
Neoplasias , Humanos , Transducción de Señal/fisiología , Movimiento Celular , Lisofosfolípidos/metabolismo
9.
Pharmacol Res ; 203: 107172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583685

RESUMEN

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Asunto(s)
Acuaporinas , Enfermedad de Crohn , Lisofosfolípidos , Macrófagos , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/metabolismo , Animales , Humanos , Acuaporinas/metabolismo , Acuaporinas/genética , Acuaporinas/antagonistas & inhibidores , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lisofosfolípidos/metabolismo , Ratones , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/farmacología , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Citocinas/metabolismo
10.
Bioorg Med Chem ; 104: 117697, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599005

RESUMEN

Sphingosine-1-phosphate and its receptors (S1PRs) are involved in several diseases such as auto immunity, inflammation and cardiovascular disorders. The S1P analogue fingolimod (Gilenya®) is currently in use for the treatment of relapsing multiple sclerosis. S1PRs are also promising targets for clinical molecular imaging in vivo. The organ distribution of individual S1PRs can be potentially achieved by using S1PR subtype-specific (radiolabeled) chemical probes. Here, we report our efforts on synthesis and in vivo potency determination of new ligands for the S1P receptor 3 (S1P3) based on the S1P3 antagonist TY-52156 and in validation of a potential imaging tracer in vivo using Positron Emission Tomography (PET) after 18F-labelling. A p-fluorophenyl derivative exhibited excellent S1P3 antagonist activity in vitro, good serum stability, and medium lipophilicity. In vivo biodistribution experiments using 18F-PET exhibited significant uptake in the myocardium suggesting potential applications in cardiac imaging.


Asunto(s)
Clorhidrato de Fingolimod , Tomografía de Emisión de Positrones , Receptores de Esfingosina-1-Fosfato , Clorhidrato de Fingolimod/farmacología , Lisofosfolípidos , Tomografía de Emisión de Positrones/métodos , Receptores de Lisoesfingolípidos/metabolismo , Distribución Tisular
11.
Cell Physiol Biochem ; 58(2): 156-171, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38639213

RESUMEN

BACKGROUND/AIMS: The physiological phenotype of individuals can influence and shape real-life phenomena in that it can contribute to the development of specific characteristics that can affect the immune response to specific stimuli. In this study we aimed to understand whether the sphingosine/sphingosine-1-phoshate (S1P) axis can modulate the immunotype of circulating cells. METHODS: To pursue this goal, we performed bioinformatic analyses of public datasets. RESULTS: The transcriptomic profile of healthy subjects of GSE192829 dataset identified two clusters with different transcriptional repertoire. Cluster 1 expressed higher levels of enzymes for S1P formation than cluster 0 which was characterized by enzymes that lead to ceramide formation, which represent the opposite metabolic direction. Inference analysis showed that cluster 1 was higher populated by monocytes, CD4+ T and B cells than cluster 0. Of particular interest was the phenotype of the monocytes in cluster 1 which showed an immunosuppressive nature compared to those in cluster 0. The role of S1P signature in healthy PBMCs was confirmed with other dataset analyses, supporting that circulating monocytes positive to the ceramidase, unlike the negative ones, had an immunosuppressive phenotype characterized by hub immunosuppressive markers (i.e. TYROBP, FCER1G, SYK, SIRPA, CSF1R, AIF1, FCGR2A, CLEC7A, LYN, PLCG2, LILRs, HCK, GAB2). This hub genes well discriminated the immunotype of healthy subjects. CONCLUSION: In conclusion this study highlights that S1P-associated hub markers can be useful to discriminate subjects with pronounced immunosuppression.


Asunto(s)
Monocitos , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/metabolismo , Monocitos/metabolismo , Lisofosfolípidos/metabolismo , Inmunosupresores , Fenotipo
12.
Science ; 384(6691): 66-73, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574138

RESUMEN

Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.


Asunto(s)
Asma , Bronquios , Broncoconstricción , Animales , Humanos , Ratones , Asma/patología , Asma/fisiopatología , Broncoconstricción/efectos de los fármacos , Inflamación/patología , Transducción de Señal , Canales Iónicos/antagonistas & inhibidores , Lisofosfolípidos/antagonistas & inhibidores , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inhibidores , Bronquios/patología , Bronquios/fisiopatología
13.
ACS Appl Mater Interfaces ; 16(17): 21623-21632, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38594642

RESUMEN

Giant lipid vesicles composed of a lipid bilayer form complex membrane structures and enzyme network reactions that can be used to construct well-defined artificial cell models based on microfluidic technologies and synthetic biology. As a different approach to cell-mimicking systems, we formed an asymmetric lipid-amphiphilic protein (oleosin) vesicle containing a lipid and an oleosin monolayer in the outer and inner leaflets, respectively. These asymmetric vesicles enabled the reconstitution and function of ß-barrel types of membrane proteins (OmpG) and the fission of vesicles stimulated by lysophospholipids. These applications combine the advantages of the high stability of lipids and oleosin leaflets in asymmetric lipid-oleosin vesicles. In this study, to evaluate the versatility of this asymmetric lipid-oleosin vesicle, the molecular transport of the mechanosensitive channel of large conductance (MscL) with an α-helix was evaluated by changing the tension of the asymmetric vesicle membrane with lysophospholipid. A nanopore of MscL assembled as a pentamer of MscLs transports small molecules of less than 10 kDa by sensing physical stress at the lipid bilayer. The amount and maximum size of the small molecules transported via MscL in the asymmetric lipid-oleosin vesicles were compared to those in the lipid vesicles. We revealed the existence of the C- and N-terminal regions (cytoplasmic side) of MscL on the inner leaflet of the asymmetric lipid-oleosin vesicles using an insertion direction assay. Furthermore, the change in the tension of the lipid-oleosin membrane activated the proteins in these vesicles, inducing their transportation through MscL nanopores. Therefore, asymmetric lipid-oleosin vesicles containing MscL can be used as substrates to study the external environment response of complex artificial cell models.


Asunto(s)
Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Canales Iónicos/química , Canales Iónicos/metabolismo , Lisofosfolípidos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
15.
Sci Rep ; 14(1): 6089, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480746

RESUMEN

Coronary artery disease (CAD) often leads to adverse events resulting in significant disease burdens. Underlying risk factors often remain inapparent prior to disease incidence and the cardiovascular (CV) risk is not exclusively explained by traditional risk factors. Platelets inherently promote atheroprogression and enhanced platelet functions and distinct platelet lipid species are associated with disease severity in patients with CAD. Lipidomics data were acquired using mass spectrometry and processed alongside clinical data applying machine learning to model estimates of an increased CV risk in a consecutive CAD cohort (n = 595). By training machine learning models on CV risk measurements, stratification of CAD patients resulted in a phenotyping of risk groups. We found that distinct platelet lipids are associated with an increased CV or bleeding risk and independently predict adverse events. Notably, the addition of platelet lipids to conventional risk factors resulted in an increased diagnostic accuracy of patients with adverse CV events. Thus, patients with aberrant platelet lipid signatures and platelet functions are at elevated risk to develop adverse CV events. Machine learning combining platelet lipidome data and common clinical parameters demonstrated an increased diagnostic value in patients with CAD and might improve early risk discrimination and classification for CV events.


Asunto(s)
Carnitina/análogos & derivados , Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Hemorragia , Factores de Riesgo , Aprendizaje Automático , Lisofosfolípidos , Lípidos
16.
J Phys Chem B ; 128(11): 2675-2683, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38466655

RESUMEN

Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by the spike glycoprotein and can take place via either the plasma membrane or the endocytic pathway. The fusion domain (FD), which is found within the spike glycoprotein, is primarily responsible for the initiation of fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low pH akin to the environment of the endocytic pathway has already been established; however, the impact of the target cell's lipid composition on the FD has yet to be explored. Here, we have shown that the SARS-CoV-2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, on the basis of lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) and endosomal membrane (BMP: bis(monoacylglycero)phosphate) was established, with a large preference demonstrated for the latter. When comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids, little deviation was evident while the charge was maintained. However, it was discovered that BMP had a subtle, negative impact on lipid packing in comparison to that of POPS. Furthermore, an inverse relationship between lipid packing and the fusogenecity of the SARS-CoV-2 FD was witnessed. In conclusion, the SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal compartment, predominately due to the presence of BMP and its impact on lipid packing.


Asunto(s)
COVID-19 , Fusión de Membrana , Monoglicéridos , Humanos , SARS-CoV-2/metabolismo , Lisofosfolípidos/metabolismo , Glicoproteínas
17.
Biomolecules ; 14(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38540716

RESUMEN

The severity of COVID-19 is linked to an imbalanced immune response. The dysregulated metabolism of small molecules and bioactive lipids has also been associated with disease severity. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyze over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). This is the third publication in a series, and it reports the results of comprehensive lipidome profiling using targeted LC-MS/MS. We identified 1076 lipid features across 25 subclasses, including glycerophospholipids, sterols, glycerolipids, and sphingolipids, among which 531 lipid features were dramatically changed in the plasma of intensive care unit (ICU) patients compared to patients in the ward. Patients in the ICU showed 1.3-57-fold increases in ceramides, (lyso-)glycerophospholipids, diglycerides, triglycerides, and plasmagen phosphoethanolamines, and 1.3-2-fold lower levels of a cyclic lysophosphatidic acid, sphingosine-1-phosphates, sphingomyelins, arachidonic acid-containing phospholipids, lactosylceramide, and cholesterol esters compared to patients in the ward. Specifically, phosphatidylinositols (PIs) showed strong fatty acid saturation-dependent behavior, with saturated fatty acid (SFA)- and monosaturated fatty acid (MUFA)-derived PI decreasing and polystaturated (PUFA)-derived PI increasing. We also found ~4000 significant Spearman correlations between lipids and multiple clinical markers of immune response with |R| ≥ 0.35 and FDR corrected Q < 0.05. Except for lysophosphatidic acid, lysophospholipids were positively associated with the CD4 fraction of T cells, and the cytokines IL-8 and IL-18. In contrast, sphingosine-1-phosphates were negatively correlated with innate immune markers such as CRP and IL-6. Further indications of metabolic changes in moderate COVID-19 disease were demonstrated in recovering ward patients compared to those at the start of hospitalization, where 99 lipid species were altered (6 increased by 30-62%; 93 decreased by 1.3-2.8-fold). Overall, these findings support and expand on early reports that dysregulated lipid metabolism is involved in COVID-19.


Asunto(s)
COVID-19 , Esfingosina/análogos & derivados , Humanos , Lipidómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ácidos Grasos/metabolismo , Glicerofosfolípidos , Lisofosfolípidos , Biomarcadores , Gravedad del Paciente , Fosfatos
18.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542186

RESUMEN

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Asunto(s)
Cannabinoides , Marihuana Medicinal , Humanos , Endocannabinoides , Hidrolasas Diéster Fosfóricas/metabolismo , Lisofosfolípidos/metabolismo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico
19.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542328

RESUMEN

In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.


Asunto(s)
Neoplasias de la Mama , Esfingosina/análogos & derivados , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Lisofosfolípidos , Transducción de Señal , Microambiente Tumoral
20.
Clin Exp Rheumatol ; 42(3): 658-665, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436267

RESUMEN

OBJECTIVES: Several therapeutic agents have been developed and used for the clinical treatment of systemic lupus erythematosus (SLE). In cases where SLE is accompanied by severe organ failures, such as neuropsychiatric lupus erythematosus (NPSLE) and acute onset of lupus nephritis, the use of potent immunosuppressive drugs, such as cyclophosphamide, is necessary. However, potent immunosuppressive drugs are known to increase infection risks. Thus, the development of therapeutic agents with novel mechanisms is urgently required. Previously, we reported that treatment with lysophosphatidic acid (LPA) prevents depression-like behaviours by suppressing microglial activation in MRL/lpr mice. In this study, we examined whether the treatment with LPA improves glomerulonephritis by affecting systemic immunity in MRL/lpr mice. METHODS: Eighteen-week-old MRL/lpr mice were treated with a vehicle or LPA for 3 weeks. After treatment, the glomerular inflammation and damage parameters were compared between the 2 groups. Moreover, we examined the effects of LPA on immune cells by flow cytometry using isolated splenocytes. RESULTS: LPA treatment in MRL/lpr mice significantly reduced the daily urinary albumin content and suppressed the CD68-positive cells and Periodic acid-Schiff (PAS)-positive areas in the glomeruli. The treatment also suppressed plasma anti-dsDNA antibodies and inflammatory cytokines in MRL/lpr mice. Although LPA did not significantly affect the total number of splenocytes, the treatment significantly reduced CD11b+Ly6G-Ly6C- cells (mature macrophages), as well as CD11b+Ly6G-Ly6C-CD68+ cells (activated mature macrophages). CONCLUSIONS: These results suggest that LPA may improve glomerulonephritis by suppressing macrophage activation in MRL/lpr mice.


Asunto(s)
Glomerulonefritis , Lupus Eritematoso Sistémico , Nefritis Lúpica , Lisofosfolípidos , Animales , Ratones , Modelos Animales de Enfermedad , Activación de Macrófagos , Ratones Endogámicos MRL lpr , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/prevención & control , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/prevención & control , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...