Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Curr Biol ; 34(8): 1739-1749.e7, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38599209

RESUMEN

Prophages, viral sequences integrated into bacterial genomes, can be beneficial and costly. Despite the risk of prophage activation and subsequent bacterial death, active prophages are present in most bacterial genomes. However, our understanding of the selective forces that maintain prophages in bacterial populations is limited. Combining experimental evolution with stochastic modeling, we show that prophage maintenance and loss are primarily determined by environmental conditions that alter the net fitness effect of a prophage on its bacterial host. When prophages are too costly, they are rapidly lost through environment-specific sequences of selective sweeps. Conflicting selection pressures that select against the prophage but for a prophage-encoded accessory gene can maintain prophages. The dynamics of prophage maintenance additionally depend on the sociality of this accessory gene. Prophage-encoded genes that exclusively benefit the lysogen maintain prophages at higher frequencies compared with genes that benefit the entire population. That is because the latter can protect phage-free "cheaters," reducing the benefit of maintaining the prophage. Our simulations suggest that environmental variation plays a larger role than mutation rates in determining prophage maintenance. These findings highlight the complexity of selection pressures that act on mobile genetic elements and challenge our understanding of the role of environmental factors relative to random chance events in shaping the evolutionary trajectory of bacterial populations. By shedding light on the key factors that shape microbial populations in the face of environmental changes, our study significantly advances our understanding of the complex dynamics of microbial evolution and diversification.


Asunto(s)
Profagos , Profagos/genética , Profagos/fisiología , Selección Genética , Mutación , Ambiente , Lisogenia/genética , Evolución Molecular
2.
Environ Microbiol ; 26(4): e16630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38643972

RESUMEN

Horizontal gene transfer (HGT) is a fundamental process in prokaryotic evolution, contributing significantly to diversification and adaptation. HGT is typically facilitated by mobile genetic elements (MGEs), such as conjugative plasmids and phages, which often impose fitness costs on their hosts. However, a considerable number of bacterial genes are involved in defence mechanisms that limit the propagation of MGEs, suggesting they may actively restrict HGT. In our study, we investigated whether defence systems limit HGT by examining the relationship between the HGT rate and the presence of 73 defence systems across 12 bacterial species. We discovered that only six defence systems, three of which were different CRISPR-Cas subtypes, were associated with a reduced gene gain rate at the species evolution scale. Hosts of these defence systems tend to have a smaller pangenome size and fewer phage-related genes compared to genomes without these systems. This suggests that these defence mechanisms inhibit HGT by limiting prophage integration. We hypothesize that the restriction of HGT by defence systems is species-specific and depends on various ecological and genetic factors, including the burden of MGEs and the fitness effect of HGT in bacterial populations.


Asunto(s)
Bacterias , Transferencia de Gen Horizontal , Transferencia de Gen Horizontal/genética , Bacterias/clasificación , Bacterias/genética , Secuencias Repetitivas Esparcidas/genética , Sistemas CRISPR-Cas/genética , Lisogenia/genética , Especificidad de la Especie , Evolución Molecular
3.
Sci Rep ; 14(1): 2685, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302537

RESUMEN

The ea22 gene resides in a relatively uncharacterized region of the lambda bacteriophage genome between the exo and xis genes and is among the earliest genes transcribed upon infection. In lambda and Shiga toxin-producing phages found in enterohemorrhagic E. coli (EHEC) associated with food poisoning, Ea22 favors a lysogenic over lytic developmental state. The Ea22 protein may be considered in terms of three domains: a short amino-terminal domain, a coiled-coiled domain, and a carboxy-terminal domain (CTD). While the full-length protein is tetrameric, the CTD is dimeric when expressed individually. Here, we report the NMR solution structure of the Ea22 CTD that is described by a mixed alpha-beta fold with a dimer interface reinforced by salt bridges. A conserved mobile loop may serve as a ligand for an unknown host protein that works with Ea22 to promote bacterial survival and the formation of new lysogens. From sequence and structural comparisons, the CTD distinguishes lambda Ea22 from homologs encoded by Shiga toxin-producing bacteriophages.


Asunto(s)
Bacteriófagos , Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Humanos , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Lisogenia/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli Enterohemorrágica/genética , Toxina Shiga/genética , Infecciones por Escherichia coli/microbiología
4.
mBio ; 15(2): e0326023, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38236026

RESUMEN

Bacteriophages are large and diverse components of the biosphere, and many phages are temperate. Upon infection, temperate phages can establish lysogeny in which a prophage is typically integrated into the bacterial chromosome. Here, we describe the phenomenon of tRNA-dependent lysogeny, a previously unrecognized behavior of some temperate phages. tRNA-dependent lysogeny is characterized by two unusual features. First, a phage-encoded tyrosine family integrase mediates site-specific recombination between a phage attP site and a bacterial attB site overlapping a host tRNA gene. However, attP and attB share only a short (~10 bp) common core such that a functional tRNA is not reconstructed upon integration. Second, the phage encodes a tRNA of the same isotype as the disrupted but essential host tRNA, complementing its loss, and consequently is required for the survival of lysogenic progeny. As expected, an integrase-defective phage mutant forms turbid plaques, and bacterial progeny are immune to superinfection, but they lack stability, and the prophage is rapidly lost. In contrast, a tRNA-defective phage mutant forms clear plaques and more closely resembles a repressor mutant, and lysogens are recovered only at very low frequency through the use of secondary attachment sites elsewhere in the host genome. Integration-proficient plasmids derived from these phages must also carry a cognate phage tRNA gene for efficient integration, and these may be useful tools for mycobacterial genetics. We show that tRNA-dependent lysogeny is used by phages within multiple different groups of related viruses and may be prevalent elsewhere in the broader phage community.IMPORTANCEBacteriophages are the most numerous biological entities in the biosphere, and a substantial proportion of phages are temperate, forming stable lysogens in which a prophage copy of the genome integrates into the bacterial chromosome. Many phages encode a variety of tRNA genes whose roles are poorly understood, although it has been proposed that they enhance translational efficiencies in lytic growth or that they counteract host defenses that degrade host tRNAs. Here, we show that phage-encoded tRNAs play key roles in the establishment of lysogeny of some temperate phages. They do so by compensating for the loss of tRNA function when phages integrate at an attB site overlapping a tRNA gene but fail to reconstruct the tRNA at the attachment junction. In this system of tRNA-dependent lysogeny, the phage-encoded tRNA is required for lysogeny, and deletion of the phage tRNA gives rise to a clear plaque phenotype and obligate lytic growth.


Asunto(s)
Bacteriófagos , Lisogenia , Lisogenia/genética , Bacteriófagos/genética , Profagos/genética , Integrasas/genética , Plásmidos
5.
Nat Commun ; 14(1): 7666, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996432

RESUMEN

Bacteriophages are abundant in soils. However, the majority are uncharacterized, and their hosts are unknown. Here, we apply high-throughput chromosome conformation capture (Hi-C) to directly capture phage-host relationships. Some hosts have high centralities in bacterial community co-occurrence networks, suggesting phage infections have an important impact on the soil bacterial community interactions. We observe increased average viral copies per host (VPH) and decreased viral transcriptional activity following a two-week soil-drying incubation, indicating an increase in lysogenic infections. Soil drying also alters the observed phage host range. A significant negative correlation between VPH and host abundance prior to drying indicates more lytic infections result in more host death and inversely influence host abundance. This study provides empirical evidence of phage-mediated bacterial population dynamics in soil by directly capturing specific phage-host interactions.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Metagenoma , Suelo , Bacterias/genética , Lisogenia/genética
6.
Nucleic Acids Res ; 51(17): 9452-9474, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37602373

RESUMEN

Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPß prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPß c2 mutant, we demonstrate that the lytic cycle of SPß c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPß genome. MrpR functions as a master repressor of SPß that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPß c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPß.


Asunto(s)
Fagos de Bacillus , Bacteriófagos , Proteínas Virales , Fagos de Bacillus/genética , Bacillus subtilis/genética , Lisogenia/genética , Profagos/genética , Recombinasas/genética , Proteínas Virales/metabolismo
7.
Nature ; 620(7974): 625-633, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37495698

RESUMEN

Most bacteria in the biosphere are predicted to be polylysogens harbouring multiple prophages1-5. In studied systems, prophage induction from lysogeny to lysis is near-universally driven by DNA-damaging agents6. Thus, how co-residing prophages compete for cell resources if they respond to an identical trigger is unknown. Here we discover regulatory modules that control prophage induction independently of the DNA-damage cue. The modules bear little resemblance at the sequence level but share a regulatory logic by having a transcription factor that activates the expression of a neighbouring gene that encodes a small protein. The small protein inactivates the master repressor of lysis, which leads to induction. Polylysogens that harbour two prophages exposed to DNA damage release mixed populations of phages. Single-cell analyses reveal that this blend is a consequence of discrete subsets of cells producing one, the other or both phages. By contrast, induction through the DNA-damage-independent module results in cells producing only the phage sensitive to that specific cue. Thus, in the polylysogens tested, the stimulus used to induce lysis determines phage productivity. Considering the lack of potent DNA-damaging agents in natural habitats, additional phage-encoded sensory pathways to lysis likely have fundamental roles in phage-host biology and inter-prophage competition.


Asunto(s)
Bacterias , Bacteriófagos , Lisogenia , Profagos , Proteínas Virales , Bacteriófagos/genética , Bacteriófagos/metabolismo , Lisogenia/genética , Profagos/genética , Profagos/metabolismo , Proteínas Virales/metabolismo , Activación Viral/genética , Bacterias/virología , Daño del ADN , ADN Viral/genética , ADN Viral/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Interacciones Huésped-Patógeno
8.
Nucleic Acids Res ; 51(7): 3270-3287, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36864746

RESUMEN

Many prokaryotic viruses are temperate and their reactivation is tightly regulated. However, except for a few bacterial model systems, the regulatory circuits underlying the exit from lysogeny are poorly understood, especially in archaea. Here, we report a three-gene module which regulates the switch between lysogeny and replicative cycle in a haloarchaeal virus SNJ2 (family Pleolipoviridae). The SNJ2 orf4 encodes a winged helix-turn-helix DNA binding protein which maintains lysogeny through repressing the expression of the viral integrase gene intSNJ2. To switch to the induced state, two other SNJ2-encoded proteins, Orf7 and Orf8, are required. Orf8 is a homolog of cellular AAA+ ATPase Orc1/Cdc6, which is activated upon mitomycin C-induced DNA damage, possibly through posttranslational modification. Activated Orf8 initiates the expression of Orf7 which, in turn, antagonizes the function of Orf4, leading to the transcription of intSNJ2, thereby switching SNJ2 to the induced state. Comparative genomics analysis revealed that the SNJ2-like Orc1/Cdc6-centered three-gene module is common in haloarchaeal genomes, always present in the context of integrated proviruses. Collectively, our results uncover the first DNA damage signaling pathway encoded by a temperate archaeal virus and reveal an unexpected role of the widely distributed virus-encoded Orc1/Cdc6 homologs.


Asunto(s)
Lisogenia , Virus , Lisogenia/genética , Virus/genética , Provirus/genética , Virus ADN/genética , ADN Viral/genética , Daño del ADN , Transducción de Señal/genética
9.
Environ Microbiol ; 25(7): 1250-1264, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36807729

RESUMEN

Caulobacter phage CbK has been extensively studied as a model system in virology and bacteriology. Lysogeny-related genes have been found in each CbK-like isolate, suggesting a life strategy of both lytic and lysogenic cycles. However, whether CbK-related phages can enter lysogeny is still undetermined. This study identified new CbK-like sequences and expanded the collection of CbK-related phages. A common ancestry with a temperate lifestyle was predicted for the group, however, which subsequently evolved into two clades of different genome sizes and host associations. Through the examination of phage recombinase genes, alignment of attachment sites on the phage and bacterial genomes (attP-attB pairing), and the experimental validation, different lifestyles were found among the different members. A majority of clade II members retain a lysogenic lifestyle, whereas all clade I members have evolved into an obligate lytic lifestyle via a loss of the gene encoding Cre-like recombinase and the coupled attP fragment. We postulated that the loss of lysogeny may be a by-product of the increase in phage genome size, and vice versa. Clade I is likely to overcome the costs through maintaining more auxiliary metabolic genes (AMGs), particularly for those involved in protein metabolism, to strengthen host takeover and further benefit virion production.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Lisogenia/genética , Recombinasas/genética
10.
Commun Biol ; 5(1): 1286, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434275

RESUMEN

Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.


Asunto(s)
Bacillus thuringiensis , Bacteriófagos , Animales , Humanos , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacteriófagos/genética , Serogrupo , Lisogenia/genética , ADN/metabolismo
11.
ACS Synth Biol ; 11(11): 3829-3835, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36326101

RESUMEN

Enterobacterial phage λ is a temperate phage that infects Escherichia coli and has a lytic-lysogenic life cycle. CI, a λ repressor, regulates the expression of lytic transcripts and acts as a major genetic switch that determines the lysogenic state. To manipulate the genome of phage λ, the CRISPR-Cas9 genome editing system was constructed in lysogenic E. coli MG1655 cells. For instance, we successfully changed cI857 to cIWT in the phage genome through Cas9-mediated single-nucleotide editing. A lytic phage was prepared by introducing an amber mutation in the middle of the cI gene, but it could not lyse lysogenic MG1655 cells. We prepared a phage expressing cI antisense mRNA by reverse substitution of the cI gene. Lysis of λ cI857 lysogenic cells occurred by the infection of the λ cIantisense. These results suggest an effective lysogenic cell control method by a synthetic phage expressing antisense mRNA of the genetic switch gene. It is expected to be applied as a tool to control harmful lysogenic microorganisms.


Asunto(s)
Bacteriófago lambda , Escherichia coli , Bacteriófago lambda/genética , Escherichia coli/genética , Lisogenia/genética , ARN Mensajero/genética
12.
Methods Mol Biol ; 2479: 1-9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583728

RESUMEN

We present a scarless recombineering-based method for introducing multiple point mutations into the genome of a temperate phage. The method uses the λ Red recombineering system to promote exogenous ssDNA oligos to anneal on the prophage lagging strand during host genome replication. DNA repair is suppressed by inducing the expression of a dominant-negative mutant protein of the methyl-directed mismatch repair system. Screening for recombinant cells without a selection marker is feasible due to its high recombination frequency, estimated as more than 40% after six cycles. The method enables scarless editing of the genome of a bacteriophage in 4-5 days.


Asunto(s)
Bacteriófago lambda , ADN de Cadena Simple , Bacteriófago lambda/genética , ADN de Cadena Simple/genética , Ingeniería Genética/métodos , Lisogenia/genética , Mutación Puntual , Profagos/genética
13.
Methods Mol Biol ; 2479: 11-19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583729

RESUMEN

We present a recombineering-based method for editing the genome of a temperate phage. The method uses the lambda Red recombination system to edit the genome of a lysogenized host with a prophage compatible with bacteriophage lambda. Linear DNA is used as the recombination substrate and antibiotic resistance is used as the basis for selection of recombinants. The method enables the genetic manipulation of a prophage in 3-5 days.


Asunto(s)
Escherichia coli , Recombinación Genética , Bacteriófago lambda/genética , Escherichia coli/genética , Lisogenia/genética , Profagos/genética
14.
Environ Microbiol ; 24(4): 2098-2118, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35293111

RESUMEN

The Bacillus phage SPß has been known for about 50 years, but only a few strains are available. We isolated four new wild-type strains of the SPbeta species. Phage vB_BsuS-Goe14 introduces its prophage into the spoVK locus, previously not observed to be used by SPß-like phages. Sequence data revealed the genome replication strategy and the genome packaging mode of SPß-like phages. We extracted 55 SPß-like prophages from public Bacillus genomes, thereby discovering three more integration loci and one additional type of integrase. The identified prophages resemble four new species clusters and three species orphans in the genus Spbetavirus. The determined core proteome of all SPß-like prophages consists of 38 proteins. The integration cassette proved to be not conserved, even though, present in all strains. It consists of distinct integrases. Analysis of SPß transcriptomes revealed three conserved genes, yopQ, yopR, and yokI, to be transcribed from a dormant prophage. While yopQ and yokI could be deleted from the prophage without activating the prophage, damaging of yopR led to a clear-plaque phenotype. Under the applied laboratory conditions, the yokI mutant showed an elevated virion release implying the YokI protein being a component of the arbitrium system.


Asunto(s)
Fagos de Bacillus , Siphoviridae , Fagos de Bacillus/genética , Fagos de Bacillus/metabolismo , Integrasas/genética , Lisogenia/genética , Profagos/genética , Integración Viral
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4436-4439, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892204

RESUMEN

Gene regulatory networks (GRNs) describe how gene expression is controlled by interactions among DNA and proteins. The decision network controlling prophage induction in phage lambda has served as a paradigm for studying decision control of cellular fate, which has broad implications for understanding phenomena such as embryo development, tissue regeneration, and tumorigenesis. The phage-lambda GRN dictates whether the phage enters the lytic mode or the lysogenic mode. In this work, we study the evolutionary origin of this GRN and explore the initial architecture of the proto-GRN, from which the modern GRN is evolved. Specifically, we examined the model of proto-GRN of phage-lambda containing one operator, from which the modern GRN with three operators evolved. We constructed 9 network architectures of the proto-GRNs by different combinations of the three operators OR3, OR2, OR1 and the three different genomic locations. We quantified the full stochastic behavior of each of these networks through exact computation of their steady-state probability landscapes using the Accurate Chemical Master Equation(ACME) algorithm. We further analyzed changes in the copy numbers of the two key proteins CI and Cro during prophage induction upon UV irradiation at different dosages. By examining the dynamic changes of the protein copy numbers upon different UV irradiations, our results show that the network in which OR1 located at the second site is the most probable architecture for the ancestral phage-lambda network. Our work can be extended for further analysis of the evolutionary trajectories of this cellular fate decision network.


Asunto(s)
Bacteriófago lambda , Lisogenia , Bacteriófago lambda/genética , Redes Reguladoras de Genes , Lisogenia/genética
16.
mBio ; 12(5): e0101321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34517752

RESUMEN

Phage P1 is a temperate phage which makes the lytic or lysogenic decision upon infecting bacteria. During the lytic cycle, progeny phages are produced and the cell lyses, and in the lysogenic cycle, P1 DNA exists as a low-copy-number plasmid and replicates autonomously. Previous studies at the bulk level showed that P1 lysogenization was independent of multiplicity of infection (MOI; the number of phages infecting a cell), whereas lysogenization probability of the paradigmatic phage λ increases with MOI. However, the mechanism underlying the P1 behavior is unclear. In this work, using a fluorescent reporter system, we demonstrated this P1 MOI-independent lysogenic response at the single-cell level. We further observed that the activity of the major repressor of lytic functions (C1) is a determining factor for the final cell fate. Specifically, the repression activity of P1, which arises from a combination of C1, the anti-repressor Coi, and the corepressor Lxc, remains constant for different MOI, which results in the MOI-independent lysogenic response. Additionally, by increasing the distance between phages that infect a single cell, we were able to engineer a λ-like, MOI-dependent lysogenization upon P1 infection. This suggests that the large separation of coinfecting phages attenuates the effective communication between them, allowing them to make decisions independently of each other. Our work establishes a highly quantitative framework to describe P1 lysogeny establishment. This system plays an important role in disseminating antibiotic resistance by P1-like plasmids and provides an alternative to the lifestyle of phage λ. IMPORTANCE Phage P1 has been shown potentially to play an important role in disseminating antibiotic resistance among bacteria during lysogenization, as evidenced by the prevalence of P1 phage-like elements in animal and human pathogens. In contrast to phage λ, a cell fate decision-making paradigm, P1 lysogenization was shown to be independent of MOI. In this work, we built a simple genetic model to elucidate this MOI independency based on the gene-regulatory circuitry of P1. We also proposed that the effective communication between coinfecting phages contributes to the lysis-lysogeny decision-making of P1 and highlighted the significance of spatial organization in the process of cell fate determination in a single-cell environment. Finally, our work provides new insights into different strategies acquired by viruses to interact with their bacterial hosts in different scenarios for their optimal survival.


Asunto(s)
Bacterias/virología , Bacteriófago P1/genética , Bacteriófago P1/metabolismo , Regulación Viral de la Expresión Génica , Lisogenia/genética , Interacciones Microbianas , Proteínas Reguladoras y Accesorias Virales/genética , Bacteriófago P1/química , Lisogenia/fisiología , Proteínas Reguladoras y Accesorias Virales/metabolismo
17.
Nat Commun ; 12(1): 4642, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330907

RESUMEN

The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.


Asunto(s)
Archaea/genética , Virus de Archaea/genética , Genoma Viral/genética , Metagenoma/genética , Metagenómica/métodos , Archaea/clasificación , Archaea/virología , Virus de Archaea/metabolismo , Virus de Archaea/fisiología , Biopelículas/crecimiento & desarrollo , Ecosistema , Genómica/métodos , Interacciones Huésped-Patógeno/genética , Lisogenia/genética , Microscopía Fluorescente , Filogenia , ARN Ribosómico 16S/genética , Especificidad de la Especie , Activación Viral/genética
18.
Microb Genom ; 7(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34227930

RESUMEN

SAR11 bacteria dominate ocean surface bacterioplankton communities, and play an important role in marine carbon and nutrient cycling. The biology and ecology of SAR11 are impacted by SAR11 phages (pelagiphages) that are highly diverse and abundant in the ocean. Among the currently known pelagiphages, HTVC010P represents an extremely abundant but under-studied phage group in the ocean. In this study, we have isolated seven new HTVC010P-type pelagiphages, and recovered 77 nearly full-length HTVC010P-type metagenomic viral genomes from marine metagenomes. Comparative genomic and phylogenomic analyses showed that HTVC010P-type pelagiphages display genome synteny and can be clustered into two major subgroups, with subgroup I consisting of strictly lytic phages and subgroup II mostly consisting of phages with potential lysogenic life cycles. All but one member of the subgroup II contain an integrase gene. Site-specific integration of subgroup II HTVC010P-type pelagiphage was either verified experimentally or identified by in silico genomic sequence analyses, which revealed that various SAR11 tRNA genes can serve as the integration sites of HTVC010P-type pelagiphages. Moreover, HTVC010P-type pelagiphage integration was confirmed by the detection of several Global Ocean Survey (GOS) fragments that contain hybrid phage-host integration sites. Metagenomic recruitment analysis revealed that these HTVC010P-type phages were globally distributed and most lytic subgroup I members exhibited higher relative abundance. Altogether, this study significantly expands our knowledge about the genetic diversity, life strategies and ecology of HTVC010P-type pelagiphages.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/genética , Genoma Viral/genética , Hyphomicrobiaceae/virología , Variación Genética/genética , Hyphomicrobiaceae/genética , Lisogenia/genética , Océanos y Mares
19.
Cell Rep ; 35(8): 109172, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038739

RESUMEN

There is renewed interest in bacterial viruses (phages) as alternatives to antibiotics. All phage treatments to date have used virulent phages rather than temperate ones, as these can integrate into the genome of the bacterial host and lie dormant. However, temperate phages are abundant and easier to isolate. To make use of these entities, we leverage stressors known to awaken these dormant, integrated phages. Co-administration of the temperate phage HK97 with sub-inhibitory concentrations of the antibiotic ciprofloxacin results in bacterial eradication (≥8 log reduction) in vitro. This synergy is mechanistically distinct from phage-antibiotic-synergy described for virulent phages. Instead, the antibiotic specifically selects against bacteria in which the phage has integrated. As the interaction between temperate phages and stressors such as ciprofloxacin are known to be widespread, this approach may be broadly applicable and enable the use of temperate phages to combat bacterial infections.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacteriófagos/genética , Lisogenia/genética , Antibacterianos/farmacología , Humanos
20.
BMC Genomics ; 22(1): 366, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011288

RESUMEN

BACKGROUND: A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. RESULTS: We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis-lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. CONCLUSIONS: This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes.


Asunto(s)
Bacteriófagos , Escherichia coli Shiga-Toxigénica , Bacteriófagos/genética , Lisogenia/genética , Toxina Shiga/genética , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...