Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Int J Biol Macromol ; 256(Pt 2): 128547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38048926

RESUMEN

Staphylococcus aureus readily forms biofilms on tissue and indwelling catheter surfaces. These biofilms are resistant to antibiotics. Consequently, effective prevention and treatment strategies against staphylococcal biofilms are actively being pursued over the past two decades. One of the proposed strategies involve the incorporation of antibiotics and antiseptics into catheters, however, a persistent concern regarding the possible emergence of antimicrobial resistance is associated with these medical devices. In this study, we developed two types of silicone catheters: one with Lysostaphin (Lst) adsorbed onto the surface, and the other with Lst functionalized on the surface. To confirm the presence of Lst protein on the catheter surface, we conducted FTIR-ATR and SEM-EDS analysis. Both catheters exhibited hemocompatibility, biocompatibility, and demonstrated antimicrobial and biofilm prevention activities against both methicillin-sensitive and resistant strains of S. aureus. Furthermore, the silicone catheters that were surface-functionalized with Lst showed substantially better and more persistent anti-biofilm effects when compared to the catheters where Lst was surface-adsorbed, both under in vitro static and flow conditions, as well as in vivo in BALB/c mice. These results indicate that surface-functionalized Lst catheters have the potential to serve as a promising new medical device for preventing S. aureus biofilm infections in humans.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Catéteres , Lisostafina/farmacología , Silicio/farmacología , Siliconas , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/tratamiento farmacológico
2.
BMC Microbiol ; 23(1): 311, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884887

RESUMEN

BACKGROUND: The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS: Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS: Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Lisostafina/farmacología , Lisostafina/metabolismo , Escherichia coli/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Staphylococcus , Biopelículas , Pruebas de Sensibilidad Microbiana
3.
Biochem Biophys Res Commun ; 668: 111-117, 2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37245291

RESUMEN

Lysostaphin endopeptidase cleaves pentaglycine cross-bridges found in staphylococcal cell-wall peptidoglycans and proves very effective in combatting methicillin-resistant Staphylococcus aureus. Here, we revealed the functional importance of two loop residues, Tyr270 in loop 1 and Asn372 in loop 4, which are highly conserved among the M23 endopeptidase family and are found close to the Zn2+-coordinating active site. Detailed analyses of the binding groove architecture together with protein-ligand docking showed that these two loop residues potentially interact with the docked ligand-pentaglycine. Ala-substituted mutants (Y270A and N372A) were generated and over-expressed in Escherichia coli as a soluble form at levels comparable to the wild type. A drastic decrease in staphylolytic activity against S. aureus was observed for both mutants, suggesting an essential role of the two loop residues in lysostaphin function. Further substitutions with an uncharged polar Gln side-chain revealed that only the Y270Q mutation caused a dramatic reduction in bioactivity. In silico predicting the effect of binding site mutations revealed that all mutations displayed a large ΔΔGbind value, signifying requirements of the two loop residues for efficient binding to pentaglycine. Additionally, MD simulations revealed that Y270A and Y270Q mutations induced large flexibility of the loop 1 region, showing markedly increased RMSF values. Further structural analysis suggested that Tyr270 conceivably participated in the oxyanion stabilization of the enzyme catalysis. Altogether, our present study disclosed that two highly conserved loop residues, loop 1-Tyr270 and loop 4-Asn372, located near the lysostaphin active site are crucially involved in staphylolytic activity toward binding and catalysis of pentaglycine cross-links.


Asunto(s)
Lisostafina , Staphylococcus aureus Resistente a Meticilina , Lisostafina/química , Lisostafina/metabolismo , Lisostafina/farmacología , Staphylococcus aureus , Dominio Catalítico , Ligandos , Endopeptidasas/genética , Endopeptidasas/metabolismo , Catálisis
4.
Biotechnol Bioeng ; 120(6): 1694-1701, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36810983

RESUMEN

We describe a facile strategy to identify sites for the incorporation of noncanonical amino acids into lysostaphin-an enzyme that degrades the cell wall of Staphylococcus aureus-while retaining stapholytic activity. We used this strategy to generate active variants of lysostaphin incorporating para-azidophenylalanine. The incorporation of this "reactive handle" enabled the orthogonal site-specific modification of the enzyme variants with polyethylene glycol (PEG) using copper-free click cycloaddition. PEGylated lysostaphin variants could retain their stapholytic activity, with the extent of retention depending on the site of modification and the PEG molecular weight. The site-specific modification of lysostaphin could be useful not only for PEGylation to improve biocompatibility but also for the incorporation of the enzyme into hydrogels and other biomaterials and for studies of protein structure and dynamics. Moreover, the approach described herein could be readily applied to identify suitable sites for the incorporation of reactive handles into other proteins of interest.


Asunto(s)
Lisostafina , Infecciones Estafilocócicas , Humanos , Lisostafina/farmacología , Aminoácidos/química , Proteínas , Staphylococcus aureus/metabolismo
5.
mSphere ; 8(1): e0057622, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36598227

RESUMEN

Innate immune molecules, including antimicrobial peptides (for example, defensins) and lysozyme, function to delay or prevent bacterial infections. These molecules are commonly found on mucosal and skin surfaces. Staphylococcus aureus is a common pathogen and causes millions of infections annually. It is well known that innate immune molecules, such as defensins and lysozyme, either poorly inhibit or do not inhibit the growth of S. aureus. Our current studies show that the α-defensin human neutrophil α-defensin-1 (HNP-1) and lysozyme inhibit exotoxin production, both hemolysins and superantigens, which are required for S. aureus infection. HNP-1 inhibited exotoxin production at concentrations as low as 0.001 µg/mL. Lysozyme inhibited exotoxin production at 0.05 to 0.5 µg/mL. Both HNP-1 and lysozyme functioned through at least one two-component system (SrrA/B). The ß-defensin human ß-defensin 1 (HBD-1) inhibited hemolysin but not superantigen production. The cation chelator S100A8/A9 (calprotectin), compared to EDTA, was tested for the ability to inhibit exotoxin production. EDTA at high concentrations inhibited exotoxin production; these were the same concentrations that interfered with staphylococcal growth. S100A8/A9 at the highest concentration tested (10 µg/mL) had no effect on S. aureus growth but enhanced exotoxin production. Lower concentrations had no effect on growth or exotoxin production. Lysostaphin is regularly used to lyse S. aureus. The lytic concentrations of lysostaphin were the only concentrations that also inhibited growth and exotoxin production. Our studies demonstrate that a major activity of innate defensin peptides and lysozyme is inhibition of staphylococcal exotoxin production but not inhibition of growth. IMPORTANCE Staphylococcus aureus causes large numbers of both relatively benign and serious human infections, which are mediated in large part by the organisms' secreted exotoxins. Since 1921, it has been known that lysozyme and, as shown later in the 1900s, other innate immune peptides, including human neutrophil α-defensin-1 (HNP-1) and human ß-defensin 1 (HBD-1), are either not antistaphylococcal or are only weakly inhibitory to growth. Our study confirms those findings but, importantly, shows that at subgrowth inhibitory concentrations, these positively charged innate immune peptides inhibit exotoxin production, including both hemolysins and the superantigen toxic shock syndrome toxin-1. The data show that the principal activity of innate immune peptides in the host is likely to be inhibition of exotoxin production required for staphylococcal mucosal or skin colonization rather than growth inhibition.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Exotoxinas , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Humanos , alfa-Defensinas/farmacología , beta-Defensinas/farmacología , Ácido Edético/farmacología , Exotoxinas/metabolismo , Proteínas Hemolisinas/farmacología , Lisostafina/farmacología , Muramidasa/farmacología , Staphylococcus , Staphylococcus aureus/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología
6.
J Agric Food Chem ; 70(37): 11441-11457, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36082619

RESUMEN

Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.


Asunto(s)
Lisostafina , Staphylococcus aureus , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacteriólisis , Lisostafina/química , Lisostafina/metabolismo , Lisostafina/farmacología , Peptidoglicano/química , Peptidoglicano/metabolismo , Staphylococcus aureus/metabolismo , Zinc/metabolismo
7.
Appl Microbiol Biotechnol ; 106(19-20): 6519-6534, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36112205

RESUMEN

Peptidoglycan-degrading enzymes are a group of proteins intensively studied as novel antibacterials, with some of them having reached pre-clinical and clinical stages of research. Many peptidoglycan-degrading enzymes have modular organization and consist of a catalytic and a cell wall binding domain. This property has been exploited in enzyme engineering efforts, and many new peptidoglycan-degrading enzymes were generated through domain exchange. However, rational combination of domains from different enzymes is still challenging since relative contribution of every domain to the cumulative bacteriolytic activity is not yet clearly understood. In this work, we investigated the influence of ionic strength and pH on the catalytic efficiency and cell binding of peptidoglycan-degrading enzyme lysostaphin and how this influence is reflected in the lysostaphin bacteriolytic activity. Contrary to generally accepted view, lysostaphin domains are not completely independent and their combination within one protein leads to increased bacteriolytic activity with increasing NaCl concentration, despite both catalysis and cell binding being inhibited by NaCl. This effect is likely mediated by changes in conformation of bacterial cell wall peptidoglycan rather than the physical inter-domain interaction. KEY POINTS: • NaCl enhances bacteriolytic activity of lysostaphin but not of its catalytic domain. • Catalytic activity and cell binding of lysostaphin are inhibited by NaCl. • Peptidoglycan conformation likely affects lysostaphin bacteriolytic activity.


Asunto(s)
Lisostafina , Cloruro de Sodio , Catálisis , Pared Celular/metabolismo , Concentración de Iones de Hidrógeno , Lisostafina/farmacología , Peptidoglicano/metabolismo , Cloruro de Sodio/metabolismo , Staphylococcus aureus
8.
Appl Microbiol Biotechnol ; 106(13-16): 5023-5033, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35790549

RESUMEN

Mature lysostaphin (mLst) is a glycineglycine endopeptidase, capable of specifically cleaving penta-glycine crosslinker in the peptidoglycan of Staphylococcus aureus cell wall. It is a very effective therapeutic enzyme to kill the multidrug-resistant S. aureus often encountered in hospital acquired infections. Fusing cellulose binding domain (CBD) to mLst significantly reduced the insoluble expression of mLst in E. coli. Employing mLst-cleavable peptides as fusion linkers leaded to an effective self-cleavage expression that CBD and mLst could be completely cleaved off from the fusions during the expression process. The presence of residue linker fragment at N-terminus of the cleaved-off mLst strongly inhibited the cell lytic activity of the recovered recombinant mLst, and only ~ 50% of the wild-type mLst activity could be retained. Intact CBD-Lst fusions were obtained when uncleavable peptide linkers were employed. With CBD at N-terminus of mLst, the intact fusion completely lost its cell lytic activity but the dipeptidase activity still remained. In contrast, approximately 10% cell lytic activity of mLst still could be maintained for the fusion with CBD at C-terminus of mLst. KEY POINTS: • CBD fusion enhanced soluble expression of recombinant lysostaphin. • In vivo self-cleavage of fusion linkers by the expressed lysostaphin fusions. • Self-cleaved lysostaphin fusions retain most of dipeptidase but lose 50% cell lytic activity.


Asunto(s)
Dipeptidasas , Staphylococcus aureus Resistente a Meticilina , Celulosa , Escherichia coli/genética , Escherichia coli/metabolismo , Lisostafina/farmacología , Tipificación de Secuencias Multilocus , Peptidoglicano/metabolismo
9.
Bioconjug Chem ; 33(5): 767-772, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35499914

RESUMEN

Bacterial cell walls represent one of the most prominent targets of antibacterial agents. These agents include natural products (e.g., vancomycin) and proteins stemming from the innate immune system (e.g., peptidoglycan-recognition proteins and lysostaphin). Among bacterial pathogens that infect humans, Staphylococcus aureus (S. aureus) continues to impose a tremendous healthcare burden across the globe. S. aureus has evolved countermeasures that can directly restrict the accessibility of innate immune proteins, effectively protecting itself from threats that target key cell well components. We recently described a novel assay that directly reports on the accessibility of molecules to the peptidoglycan layer within the bacterial cell wall of S. aureus. The assay relies on site-specific chemical remodeling of the peptidoglycan with a biorthogonal handle. Here, we disclose the application of our assay to a screen of a nonredundant transposon mutant library for susceptibility of the peptidoglycan layer with the goal of identifying genes that contribute to the control of cell surface accessibility. We discovered several genes that resulted in higher accessibility levels to the peptidoglycan layer and showed that these genes modulate sensitivity to lysostaphin. These results indicate that this assay platform can be leveraged to gain further insight into the biology of bacterial cell surfaces.


Asunto(s)
Lisostafina , Staphylococcus aureus , Antibacterianos/metabolismo , Antibacterianos/farmacología , Pared Celular/química , Humanos , Lisostafina/química , Lisostafina/metabolismo , Lisostafina/farmacología , Peptidoglicano/química , Vancomicina/metabolismo
10.
ACS Nano ; 15(10): 16625-16641, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34582183

RESUMEN

Multifunctional antimicrobial strategies are urgently needed to treat methicillin-resistant Staphylococcus aureus (MRSA) caused pneumonia due to its increasing resistance, enhanced virulence, and high pathogenicity. Here, we report that lysostaphin, a bacteriolytic enzyme, encapsulated within poly(lactic-co-glycolic acid) microspheres (LyIR@MS) specially treats planktonic MRSA bacteria, mature biofilms, and related pneumonia. Optimized LyIR@MS with suitable diameters could deliver a sufficient amount of lysostaphin to the lung without a decrease in survival rate after intravenous injection. Furthermore, the degradable properties of the carrier make it safe for targeted release of lysostaphin to eliminate MRSA, repressing the expression of virulence genes and improving the sensitivity of biofilms to host neutrophils. In the MRSA pneumonia mouse model, treatment or prophylaxis with LyIR@MS significantly improved survival rate and relieved inflammatory injury without introducing adverse events. These findings suggest the clinical translational potential of LyIR@MS for the treatment of MRSA-infected lung diseases.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Pulmón , Lisostafina/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Microesferas , Infecciones Estafilocócicas/tratamiento farmacológico
11.
Int J Biol Macromol ; 183: 852-860, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33932416

RESUMEN

Growing antibiotic resistance of bacteria is a burning problem of human and veterinary medicine. Expansion and introduction of novel microbicidal therapeutics is highly desirable. However, antibiotic treatment disturbs the balance of physiological microbiota by changing its qualitative and/or quantitative composition, resulting in a number of adverse effects that include secondary infections. Although such dysbiosis may be reversed by the treatment with probiotics, a more attractive alternative is the use of antibiotics that target only pathogens, while sparing the commensals. Here, we describe lysostaphin LSp222, an enzyme produced naturally by Staphylococcus pseudintermedius 222. LSp222 is highly effective against S. aureus, including its multi-drug resistant strains. Importantly, the inhibitory concentration for S. epidermidis, the predominant commensal in healthy human skin, is at least two orders of magnitude higher compared to S. aureus. Such significant therapeutic window makes LSp222 a microbiota-friendly antibacterial agent with a potential application in the treatment of S. aureus-driven skin infections.


Asunto(s)
Lisostafina/farmacología , Microbiota/efectos de los fármacos , Piel/microbiología , Staphylococcus/enzimología , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Piel/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-33468459

RESUMEN

Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.


Asunto(s)
Lisostafina , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cinética , Lisostafina/metabolismo , Lisostafina/farmacología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Electricidad Estática
13.
Protein Expr Purif ; 177: 105753, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950627

RESUMEN

Staphylococcus aureus (S. aureus), which has developed multidrug resistance, leads to many healthcare-associated infections resulting in significant medical and economic losses. Therefore, the development of new efficient strategies to deal with these bacteria has been gaining importance. Lysostaphin is a peptidoglycan hydrolase that has considerable potential as a bacteriocin. However, there have been few reported optimization and scale-up studies of the lysostaphin bioproduction process. Our preliminary results have revealed that the composition of auto-induction media at 30 °C increases the produced lysostaphin around 10-fold in shake flasks. In this study, achieving higher yields for recombinant lysostaphin in E. coli at a laboratory scale has been the aim, through the use of auto-induction media. Optimized medium composition and fermentation parameters were transferred to a laboratory-scale bioreactor. The tested conditions improved protein yields up to 184 mg/L in a 3 L stirred bioreactor and the productivity was improved 2-fold in comparison to previously published reports. Furthermore, this study also showed that lysostaphin is an effective bacteriocin on both commercially available and isolated S. aureus strains. These results will contribute to future larger-scale production of lysostaphin via the proposed fermentation conditions.


Asunto(s)
Antibacterianos/biosíntesis , Lisostafina/biosíntesis , Staphylococcus aureus/efectos de los fármacos , Staphylococcus/metabolismo , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Reactores Biológicos , Clonación Molecular , Medios de Cultivo/química , Medios de Cultivo/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Glicerol/metabolismo , Glicerol/farmacología , Lisostafina/genética , Lisostafina/aislamiento & purificación , Lisostafina/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus/genética , Staphylococcus aureus/crecimiento & desarrollo
14.
Artículo en Inglés | MEDLINE | ID: mdl-33318001

RESUMEN

There is an urgent need for novel agents to treat drug-resistant bacterial infections, such as multidrug-resistant Staphylococcus aureus (MRSA). Desirable properties for new antibiotics include high potency, narrow species selectivity, low propensity to elicit new resistance phenotypes, and synergy with standard-of-care (SOC) chemotherapies. Here, we describe analysis of the antibacterial potential exhibited by F12, an innovative anti-MRSA lysin that has been genetically engineered to evade detrimental antidrug immune responses in human patients. F12 possesses high potency and rapid onset of action, it has narrow selectivity against pathogenic staphylococci, and it manifests synergy with numerous SOC antibiotics. Additionally, resistance to F12 and ß-lactam antibiotics appears mutually exclusive, and, importantly, we provide evidence that F12 resensitizes normally resistant MRSA strains to ß-lactams both in vitro and in vivo These results suggest that combinations of F12 and SOC antibiotics are a promising new approach to treating refractory S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sinergismo Farmacológico , Humanos , Lisostafina/farmacología , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , beta-Lactamas/farmacología
15.
J Appl Microbiol ; 131(3): 1072-1082, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33382154

RESUMEN

Staphylococcus aureus, an opportunistic pathogen, causes diverse community and nosocomial-acquired human infections, including folliculitis, impetigo, sepsis, septic arthritis, endocarditis, osteomyelitis, implant-associated biofilm infections and contagious mastitis in cattle. In recent days, both methicillin-sensitive and methicillin-resistant S. aureus infections have increased. Highly effective anti-staphylococcal agents are urgently required. Lysostaphin is a 27 kDa zinc metallo antimicrobial lytic enzyme that is produced by Staphylococcus simulans biovar staphylolyticus and was first discovered in the 1960s. Lysostaphin is highly active against S. aureus strains irrespective of their drug-resistant patterns with a minimum inhibitory concentration of ranges between 0·001 and 0·064 µg ml-1 . Lysostaphin has activity against both dividing and non-dividing S. aureus cells; and can seep through the extracellular matrix to kill the biofilm embedded S. aureus. In spite of having excellent anti-staphylococcal activity, its clinical application is hindered because of its immunogenicity and reduced bio-availability. Extensive research with lysostaphin lead to the development of several engineered lysostaphin derivatives with reduced immunogenicity and increased serum half-life. Therapeutic efficacy of both native and engineered lysostaphin derivatives was studied by several research groups. This review provides an overview of the therapeutic applications of native and engineered lysostaphin derivatives developed to eradicate S. aureus infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bovinos , Femenino , Lisostafina/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus , Staphylococcus aureus
16.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266291

RESUMEN

Gaining an insight into the mechanism underlying antimicrobial-resistance development in Staphylococcus aureus is crucial for identifying effective antimicrobials. We isolated S. aureus sequence type 72 from a patient in whom the S. aureus infection was highly resistant to various antibiotics and lysostaphin, but no known resistance mechanisms could explain the mechanism of lysostaphin resistance. Genome-sequencing followed by subtractive and functional genomics revealed that serine hydroxymethyltransferase (glyA or shmT gene) plays a key role in lysostaphin resistance. Serine hydroxymethyltransferase (SHMT) is indispensable for the one-carbon metabolism of serine/glycine interconversion and is linked to folate metabolism. Functional studies revealed the involvement of SHMT in lysostaphin resistance, as ΔshmT was susceptible to the lysostaphin, while complementation of the knockout expressing shmT restored resistance against lysostaphin. In addition, the ΔshmT showed reduced virulence under in vitro (mammalian cell lines infection) and in vivo (wax-worm infection) models. The SHMT inhibitor, serine hydroxymethyltransferase inhibitor 1 (SHIN1), protected the 50% of the wax-worm infected with wild type S. aureus. These results suggest SHMT is relevant to the extreme susceptibility to lysostaphin and the host immune system. Thus, the current study established that SHMT plays a key role in lysostaphin resistance development and in determining the virulence potential of multiple drug-resistant S. aureus.


Asunto(s)
Antiinfecciosos Locales/farmacología , Farmacorresistencia Bacteriana , Glicina Hidroximetiltransferasa/genética , Lisostafina/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Animales , Genoma Bacteriano , Genómica/métodos , Redes y Vías Metabólicas , Fenotipo , Staphylococcus aureus/ultraestructura , Virulencia/genética , Factores de Virulencia/genética
17.
Sci Adv ; 6(36)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917596

RESUMEN

There is a critical need for novel therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant pathogens, and lysins are among the vanguard of innovative antibiotics under development. Unfortunately, lysins' own microbial origins can elicit detrimental antidrug antibodies (ADAs) that undermine efficacy and threaten patient safety. To create an enhanced anti-MRSA lysin, a novel variant of lysostaphin was engineered by T cell epitope deletion. This "deimmunized" lysostaphin dampened human T cell activation, mitigated ADA responses in human HLA transgenic mice, and enabled safe and efficacious repeated dosing during a 6-week longitudinal infection study. Furthermore, the deimmunized lysostaphin evaded established anti-wild-type immunity, thereby providing significant anti-MRSA protection for animals that were immune experienced to the wild-type enzyme. Last, the enzyme synergized with daptomycin to clear a stringent model of MRSA endocarditis. By mitigating T cell-driven antidrug immunity, deimmunized lysostaphin may enable safe, repeated dosing to treat refractory MRSA infections.


Asunto(s)
Lisostafina , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Lisostafina/farmacología , Lisostafina/uso terapéutico , Ratones , Ratones Transgénicos
18.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32690637

RESUMEN

Staphylococcus aureus is a leading cause of bacterial pneumonia, and we have shown previously that type I interferon (IFN) contributes to the pathogenesis of this disease. In this study, we screened 75 S. aureus strains for their ability to induce type I and III IFN. Both cytokine pathways were differentially stimulated by various S. aureus strains independently of their isolation sites or methicillin resistance profiles. These induction patterns persisted over time, and type I and III IFN generation differentially correlated with tumor necrosis factor alpha production. Investigation of one isolate, strain 126, showed a significant defect in type I IFN induction that persisted over several time points. The lack of induction was not due to differential phagocytosis, subcellular location, or changes in endosomal acidification. A correlation between reduced type I IFN induction levels and decreased autolysis and lysostaphin sensitivity was found between strains. Strain 126 had a decreased rate of autolysis and increased resistance to lysostaphin degradation and host cell-mediated killing. This strain displayed decreased virulence in a murine model of acute pneumonia compared to USA300 (current epidemic strain and commonly used in research) and had reduced capacity to induce multiple cytokines. We observed this isolate to be a vancomycin-intermediate S. aureus (VISA) strain, and reduced Ifnb was observed with a defined mutation in walK that induces a VISA phenotype. Overall, this study demonstrates the heterogeneity of IFN induction by S. aureus and uncovered an interesting property of a VISA strain in its inability to induce type I IFN production.


Asunto(s)
Citocinas/inmunología , Interferón Tipo I/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Antibacterianos/farmacología , Carga Bacteriana , Proteínas Bacterianas/genética , Células Cultivadas , Farmacorresistencia Bacteriana/genética , Lisostafina/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Mutación , Neumonía Estafilocócica/inmunología , Neumonía Estafilocócica/microbiología , Transducción de Señal , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Vancomicina/farmacología , Virulencia
19.
Biomolecules ; 10(3)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178236

RESUMEN

Staphylococcus aureus is a Gram-positive pathogen that is capable of infecting almost every organ in the human body. Alarmingly, the rapid emergence of methicillin-resistant S.aureus strains (MRSA) jeopardizes the available treatment options. Herein, we propose sustainable, low-cost production of recombinant lysostaphin (rLST), which is a native bacteriocin destroying the staphylococcal cell wall through its endopeptidase activity. We combined the use of E. coli BL21(DE3)/pET15b, factorial design, and simple Ni-NTA affinity chromatography to optimize rLST production. The enzyme yield was up to 50 mg/L culture, surpassing reported systems. Our rLST demonstrated superlative biofilm combating ability by inhibiting staphylococcal biofilms formation and detachment of already formed biofilms, compared to vancomycin and linezolid. Furthermore, we aimed at developing a novel rLST topical formula targeting staphylococcal skin infections. The phase inversion composition (PIC) method fulfilled this aim with its simple preparatory steps and affordable components. LST nano-emulgel (LNEG) was able to extend active LST release up to 8 h and cure skin infections in a murine skin model. We are introducing a rapid, convenient rLST production platform with an outcome of pure, active rLST incorporated into an effective LNEG formula with scaling-up potential to satisfy the needs of both research and therapeutic purposes.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Lisostafina , Staphylococcus aureus Resistente a Meticilina/fisiología , Antibacterianos/química , Antibacterianos/farmacología , Emulsiones , Lisostafina/química , Lisostafina/farmacología
20.
ACS Synth Biol ; 9(3): 475-485, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32105449

RESUMEN

Engineered living materials have the potential for wide-ranging applications such as biosensing and treatment of diseases. Programmable cells provide the functional basis for living materials; however, their release into the environment raises numerous biosafety concerns. Current designs that limit the release of genetically engineered cells typically involve the fabrication of multilayer hybrid materials with submicrometer porous matrices. Nevertheless the stringent physical barriers limit the diffusion of macromolecules and therefore the repertoire of molecules available for actuation in response to communication signals between cells and their environment. Here, we engineer a novel living material entitled "Platform for Adhesin-mediated Trapping of Cells in Hydrogels" (PATCH). This technology is based on engineered E. coli that displays an adhesion protein derived from an Antarctic bacterium with a high affinity for glucose. The adhesin stably anchors E. coli in dextran-based hydrogels with large pore diameters (10-100 µm) and reduces the leakage of bacteria into the environment by up to 100-fold. As an application of PATCH, we engineered E. coli to secrete the bacteriocin lysostaphin which specifically kills Staphyloccocus aureus with low probability of raising antibiotic resistance. We demonstrated that living materials containing this lysostaphin-secreting E. coli inhibit the growth of S. aureus, including the strain resistant to methicillin (MRSA). Our tunable platform allows stable integration of programmable cells in dextran-based hydrogels without compromising free diffusion of macromolecules and could have potential applications in biotechnology and biomedicine.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Materiales Biocompatibles/farmacología , Escherichia coli/genética , Ingeniería Genética/métodos , Lisostafina/farmacología , Adhesinas Bacterianas/genética , Antibacterianos/metabolismo , Antibacterianos/farmacología , Materiales Biocompatibles/metabolismo , Membrana Celular/metabolismo , Dextranos/química , Escherichia coli/metabolismo , Hidrogeles/química , Hidrogeles/metabolismo , Lisostafina/genética , Lisostafina/metabolismo , Marinomonas/genética , Ensayo de Materiales , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...