Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.698
Filtrar
1.
Environ Int ; 185: 108556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461777

RESUMEN

Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA). Using a murine model, six-week-old male CD1 mice were exposed to 10 and 20 mg/kg/day of each chemical for 14 days as 14-day exposure and 1 and 5 mg/kg/day for 30 days as 30-day exposure. Results indicate that PFOA exposure induced significant hepatotoxicity, characterized by liver enlargement, and elevated serum biomarkers. In contrast, LiTFSI exposure showed lower hepatotoxicity, accompanied by mild liver injuries. Despite higher bioaccumulation of PFOA in serum, LiTFSI exhibited a similar range of liver concentrations compared to PFOA. Reduced Representative Bisulfite Sequencing (RRBS) analysis revealed distinct DNA methylation patterns between 14-day and 30-day exposure for the two compounds. Both LiTFSI and PFOA implicated liver inflammatory pathways and lipid metabolism. Transcriptional results showed that differentially methylated regions in both exposures are enriched with cancer/disease-related motifs. Furthermore, Peroxisome proliferator-activated receptor alpha (PPARα), a regulator of lipid metabolism, was upregulated in both exposures, with downstream genes indicating potential oxidative damages. Overall, LiTFSI exhibits distinct hepatotoxicity profiles, emphasizing the need for comprehensive assessment of emerging PFAS compounds.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fluorocarburos , Hidrocarburos Fluorados , Imidas , Masculino , Animales , Ratones , Litio/metabolismo , Litio/farmacología , Fluorocarburos/toxicidad , Caprilatos/toxicidad , Epigénesis Genética , Hígado , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
2.
Toxicon ; 241: 107664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460603

RESUMEN

OBJECTIVE: This study aimed to evaluate the protective effects of astaxanthin against lithium-induced nephrotoxicity, focusing on histopathological changes, oxidative stress modulation, and alteration in the expression of key proteins related to apoptosis and inflammation. METHODS: In this study, 56 male rats were utilized and divided into experimental groups subjected to lithium-induced nephrotoxicity, with and without astaxanthin treatment, over 14 and 28 days. The parameters assessed included oxidative stress markers (MDA, GSH, SOD), protein expression levels of BCL-2, BAX, TNF- α, PI3K, NF-κ B-p65, IL-1ß, and comprehensive histopathological examinations to evaluate the integrity of renal tissue. RESULTS: Lithium exposure led to significant renal damage, as evidenced by histological distortions in renal architecture, increased oxidative stress indicated by elevated MDA levels, and dysregulated expressions of apoptotic and inflammatory proteins. Notably, histopathological analysis revealed glomerular and tubular degeneration in lithium-treated groups. Astaxanthin treatment effectively mitigated these effects, demonstrating its efficacy in reducing lipid peroxidation, rebalancing apoptotic proteins, suppressing pro-inflammatory cytokines, and preserving renal histological structure. The concurrent use of lithium and astaxanthin showed a considerable amelioration of lithium-induced damage, suggesting astaxanthin's role in attenuating the nephrotoxic effects of lithium, both at a molecular and structural level. CONCLUSION: Astaxanthin demonstrates significant renoprotective effects against lithium-induced nephrotoxicity, suggesting its utility as an effective adjunctive therapy. Through its potent antioxidative, anti-inflammatory, and anti-apoptotic actions, astaxanthin effectively reduces renal damage associated with lithium treatment, underscoring its potential for enhancing renal health in patients receiving lithium therapy.


Asunto(s)
Antioxidantes , Enfermedades Renales , Humanos , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Litio/toxicidad , Litio/metabolismo , Ratas Wistar , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Riñón , Estrés Oxidativo , Apoptosis , Xantófilas
3.
Antimicrob Agents Chemother ; 68(3): e0075623, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259086

RESUMEN

Pneumocystis cyst life forms contain abundant ß-glucan carbohydrates, synthesized using ß-1,3 and ß-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for ß-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.


Asunto(s)
Pneumocystis carinii , Pneumocystis , Neumonía por Pneumocystis , beta-Glucanos , Humanos , Pneumocystis carinii/genética , Neumonía por Pneumocystis/tratamiento farmacológico , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/farmacología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Litio/metabolismo , Litio/farmacología , Pneumocystis/genética , beta-Glucanos/metabolismo , Fosfatos/farmacología , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacología
4.
J Mol Biol ; 436(4): 168443, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38211892

RESUMEN

Yeast plasma-membrane Na+/H+ antiporters (Nha/Sod) ensure the optimal intracellular level of alkali-metal cations and protons in cells. They are predicted to consist of 13 transmembrane segments (TMSs) and a large hydrophilic C-terminal cytoplasmic part with seven conserved domains. The substrate specificity, specifically the ability to recognize and transport K+ cations in addition to Na+ and Li+, differs among homologs. In this work, we reveal that the composition of the C-terminus impacts the ability of antiporters to transport particular cations. In the osmotolerant yeast Zygosaccharomyces rouxii, the Sod2-22 antiporter only efficiently exports Na+ and Li+, but not K+. The introduction of a negative charge or removal of a positive charge in one of the C-terminal conserved regions (C3) enabled ZrSod2-22 to transport K+. The same mutations rescued the low level of activity and purely Li+ specificity of ZrSod2-22 with the A179T mutation in TMS6, suggesting a possible interaction between this TMS and the C-terminus. The truncation or replacement of the C-terminal part of ZrSod2-22 with the C-terminus of a K+-transporting Nha/Sod antiporter (Saccharomyces cerevisiae Nha1 or Z. rouxii Nha1) also resulted in an antiporter with the capacity to export K+. In addition, in ScNha1, the replacement of three positively charged arginine residues 539-541 in the C3 region with alanine caused its inability to provide cells with tolerance to Li+. All our results demonstrate that the physiological functions of yeast Nha/Sod antiporters, either in salt tolerance or in K+ homeostasis, depend on the composition of their C-terminal parts.


Asunto(s)
Proteínas Fúngicas , Potasio , Intercambiadores de Sodio-Hidrógeno , Zygosaccharomyces , Litio/metabolismo , Protones , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Zygosaccharomyces/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Potasio/metabolismo
5.
Biofactors ; 50(2): 326-346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37706424

RESUMEN

The trace element lithium exerts a versatile bioactivity in humans, to some extend overlapping with in vivo findings in the model organism Drosophila melanogaster. A potentially essential function of lithium in reproduction has been suggested since the 1980s and multiple studies have since been published postulating a regulatory role of lithium in female gametogenesis. However, the impact of lithium on fruit fly egg production has not been at the center of attention to date. In the present study, we report that dietary lithium (0.1-5.0 mM LiCl) substantially improved life time egg production in D. melanogaster w1118 females, with a maximum increase of plus 45% when supplementing 1.0 mM LiCl. This phenomenon was not observed in the insulin receptor mutant InRE19, indicating a potential involvement of insulin-like signaling in the lithium-mediated fecundity boost. Analysis of the whole-body and ovarian transcriptome revealed that dietary lithium affects the mRNA levels of genes encoding proteins related to processes of follicular maturation. To the best of our knowledge, this is the first report on dietary lithium acting as an in vivo fecundity stimulant in D. melanogaster, further supporting the suggested benefit of the trace element in female reproduction.


Asunto(s)
Drosophila melanogaster , Oligoelementos , Humanos , Animales , Femenino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Litio/farmacología , Litio/metabolismo , Oligoelementos/metabolismo , Reproducción , Fertilidad , Insulina/metabolismo
6.
Metallomics ; 16(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142127

RESUMEN

The increasing use of lithium (Li) in new technologies raises the question of its impact on living microorganisms. In the present study, we aimed to identify putative Li targets and resistance mechanisms in the yeast model Saccharomyces cerevisiae using a deletomic approach based on the screening of a collection of 4733 knockout mutants under Li exposure. This screening highlighted 60 mutants resistant to Li and 124 mutants sensitive to Li. Through functional enrichment analyses, transport systems were identified as playing a central role in cell resistance to toxic concentrations of Li. In contrast, the AKT/protein kinase B family, signal transduction or cell communication were identified as potential toxic targets of Li. The majority of the mutants with a Li-sensitive phenotype were also sensitive to other alkali and alkaline earth metals, whereas the Li-resistance phenotype was mostly resistant to Na but poorly resistant to other metals. A comparison with the results of deletomics studies carried out in the presence of other metals highlighted Li-specific phenotypes. Three genes (NAM7, NMD2, UPF3) of the nonsense-mediated decay pathway were specifically involved in resistance to Li. In contrast, mutants with the NCA2, SPT20, GCN5, YOR376W, YPK3, and DCW1 genes deleted were specifically resistant to Li. These genes encode various functions from putative mannosidase to constitution of the Spt-Ada-Gcn5 acetyltransferase complex. This work provides a better understanding of potential specific resistance mechanisms and cellular targets of Li in yeast.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Litio/farmacología , Litio/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fenotipo , Transducción de Señal , ARN Helicasas/genética , ARN Helicasas/metabolismo
7.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686419

RESUMEN

Hydrogels have gained significant attention as biomaterials due to their remarkable properties resembling those of the extracellular matrix (ECM). In the present investigation, we successfully synthesized interpenetrating polymer network (IPN) hydrogels using gelatin methacryloyl (GelMA) and sodium alginate (SA), incorporating various concentrations of lithium chloride (LiCl; 0, 5, and 10 mM), aiming to develop a hydrogel scaffold for bone regeneration. Notably, the compressive modulus of the IPN hydrogels remained largely unaffected upon the inclusion of LiCl. However, the hydrogel with the high concentration of LiCl exhibited reduced fragmentation after compression testing. Intriguingly, we observed a significant improvement in cellular biocompatibility, primarily attributed to activation of the Wnt/ß-catenin signaling pathway induced by LiCl. Subsequently, we evaluated the efficacy of the newly developed IPN-Li hydrogels in a rat cranial defect model and found that they substantially enhanced bone regeneration. Nevertheless, it is important to note that the introduction of high concentrations of LiCl did not significantly promote osteogenesis. This outcome can be attributed to the excessive release of Li+ ions into the extracellular matrix, hindering the desired effect. Overall, the IPN-Li hydrogel developed in this study holds great promise as a biodegradable material for bone regeneration applications.


Asunto(s)
Litio , Vía de Señalización Wnt , Animales , Ratas , Alginatos/farmacología , Regeneración Ósea , Hidrogeles/farmacología , Litio/metabolismo , Litio/farmacología , Polímeros
8.
Aquat Toxicol ; 261: 106629, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37459717

RESUMEN

Lithium (Li) is present in many modern technologies, most notably in rechargeable batteries. Inefficient recycling strategies for electronic waste containing this element may result in its release into aquatic systems, which may induce harmful effects on wildlife. The present study evaluated the effect of Li contamination on the gastropod Tritia reticulata exposed to different concentrations of Li (100, 200, 500 and 1000 µg L-1) for 21 days. Biochemical analyses showed that this species was not significantly affected by this contaminant at the cellular level, as no significant differences were observed in terms of metabolism, oxidative stress, and neurotoxicity. Results further revealed that snails attempted to avoid Li accumulation by burying in the sediment at a faster rate when exposed to the highest concentrations (500 and 1000 µg L-1). More research is needed to fully assess the response of T. reticulata to Li contamination, such as investigating longer exposure periods or other endpoints.


Asunto(s)
Litio , Caracoles , Contaminantes Químicos del Agua , Animales , Litio/toxicidad , Litio/metabolismo , Estrés Oxidativo , Caracoles/fisiología , Contaminantes Químicos del Agua/toxicidad , Residuos Electrónicos
9.
J Histochem Cytochem ; 71(7): 357-375, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37439659

RESUMEN

Lithium (Li) induces severe polyuria and polydipsia in up to 40% of patients undergoing Li treatment. In rats, Li treatment induces a reversible cellular remodeling of the collecting duct (CD), decreasing the fraction of principal-to-intercalated cells. To investigate the potential role of adherens junction proteins, we performed immunohistochemistry on kidney cross-sections from rats treated with Li as well as rats undergoing recovery on a normal diet following 4 weeks of Li-treatment. We performed immunoelectron microscopy on cryosections to determine the ultrastructural localizations. Immunohistochemistry showed that E-cadherin and ß-catenin were present in both the lateral and basal plasma membrane domains of CD cells. Immunoelectron microscopy confirmed that ß-catenin was localized both to the lateral and the basal plasma membrane. The basal localization of both proteins was absent from a fraction of mainly principal cells after 10 and 15 days of Li-treatment. After 4 weeks of Li-treatment few to no cells were absent of E-cadherin and ß-catenin at the basal plasma membrane. After 12 and 19 days of recovery some cells exhibited an absence of basal localization of both proteins. Thus, the observed localizational changes of E-cadherin and ß-catenin appear before the cellular remodeling during both development and recovery from Li-NDI.


Asunto(s)
Túbulos Renales Colectores , beta Catenina , Ratas , Animales , beta Catenina/metabolismo , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/ultraestructura , Riñón/metabolismo , Cadherinas/metabolismo , Litio/efectos adversos , Litio/metabolismo , Membrana Celular/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1865(7): 184182, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37276926

RESUMEN

The ionophoric antibiotic salinomycin is in the phase of preclinical tests against several types of malignant tumors including breast cancer. Notwithstanding, the data on its ion selectivity, although being critical for its therapeutic activity, are rather scarce. In the present work, we studied the ability of salinomycin to exert cation/H+-exchange across artificial bilayer lipid membranes (BLM) by measuring electrical potential on planar BLM in the presence of a protonophore and fluorescence responses of the pH-sensitive dye pyranine entrapped in liposomes. The following order of ion selectivity was obtained by these two methods: K+ > Na+ > Rb+ > Cs+ > Li+. Measurements of the monovalent cation-induced quenching of fluorescence of thallium ions in methanol showed that salinomycin effectively binds potassium and calcium but poorly binds sodium and lithium ions. At high concentrations, salinomycin transports Ca2+ through membranes of liposomes and mitochondria, as measured by using the calcium-sensitive dye Fluo-5 N. The data obtained can be used in the mechanistic studies of the anti-tumor activity of salinomycin and its selective cytotoxicity towards cancer stem cells.


Asunto(s)
Antibacterianos , Liposomas , Antibacterianos/farmacología , Calcio , Membrana Dobles de Lípidos , Litio/metabolismo , Cationes , Sodio/metabolismo
11.
Environ Toxicol Pharmacol ; 101: 104197, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356678

RESUMEN

Lithium (Li) is now widely used in green energies/clean technologies; however, due to its inefficient recycling and treatment, it is an emerging contaminant in aquatic systems. Bivalves, such as clams, are considered good bioindicators of pollution, hence we evaluated the biochemical effects of Li in the clam Venerupis corrugata. Clams were exposed (14 days) to an increasing Li gradient (0, 200, 400, 800 µg/L). Bioconcentration capacity tended to decrease with increasing Li exposure possibly due to efforts to eliminate Li from the cells, to avert damage. No influences on the clams' metabolic capacity and protein content were observed. Antioxidant and detoxification defences were activated, especially at 400 and 800 µg/L of Li, avoiding lipid damage, while protein injuries were observed at higher concentrations. Furthermore, a loss of redox balance was observed. This study highlights the importance of preventing and regulating Li discharges into the environment, avoiding adverse consequences to aquatic ecosystems.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Litio/toxicidad , Litio/metabolismo , Estrés Oxidativo , Ecosistema , Biomarcadores/metabolismo , Bivalvos/metabolismo , Contaminantes Químicos del Agua/análisis
12.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047481

RESUMEN

A significant body of evidence shows that neuroinflammation is one of the key processes in the development of brain pathology in trauma, neurodegenerative disorders, and epilepsy. Various brain insults, including severe and prolonged seizure activity during status epilepticus (SE), trigger proinflammatory cytokine release. We investigated the expression of the proinflammatory cytokines interleukin-1ß (Il1b) and interleukin-6 (Il6), and anti-inflammatory fractalkine (Cx3cl1) in the hippocampus, entorhinal cortex, and neocortex of rats 24 h, 7 days, and 5 months after lithium-pilocarpine SE. We studied the relationship between cytokine expression and neuronal death in the hippocampus and evaluated the effect of modulation of endocannabinoid receptors on neuroinflammation and neurodegeneration after SE. The results of the present study showed that inhibition of endocannabinoid CB1 receptors with AM251 early after SE had a transient neuroprotective effect that was absent in the chronic period and did not affect the development of spontaneous seizures after SE. At the same time, AM251 reduced the expression of Il6 in the chronic period after SE. Higher Cx3cl1 levels were found in rats with more prominent hippocampal neurodegeneration.


Asunto(s)
Neocórtex , Estado Epiléptico , Ratas , Animales , Pilocarpina/toxicidad , Litio/farmacología , Litio/metabolismo , Citocinas/metabolismo , Endocannabinoides/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Estado Epiléptico/patología , Hipocampo/metabolismo , Neocórtex/metabolismo , Modelos Animales de Enfermedad
13.
Biochemistry (Mosc) ; 88(3): 353-363, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076282

RESUMEN

Status epilepticus (SE) triggers many not yet fully understood pathological changes in the nervous system that can lead to the development of epilepsy. In this work, we studied the effects of SE on the properties of excitatory glutamatergic transmission in the hippocampus in the lithium-pilocarpine model of temporal lobe epilepsy in rats. The studies were performed 1 day (acute phase), 3 and 7 days (latent phase), and 30 to 80 days (chronic phase) after SE. According to RT-qPCR data, expression of the genes coding for the AMPA receptor subunits GluA1 and GluA2 was downregulated in the latent phase, which may lead to the increased proportion of calcium-permeable AMPA receptors that play an essential role in the pathogenesis of many CNS diseases. The efficiency of excitatory synaptic neurotransmission in acute brain slices was decreased in all phases of the model, as determined by recording field responses in the CA1 region of the hippocampus in response to the stimulation of Schaffer collaterals by electric current of different strengths. However, the frequency of spontaneous excitatory postsynaptic potentials increased in the chronic phase, indicating an increased background activity of the glutamatergic system in epilepsy. This was also evidenced by a decrease in the threshold current causing hindlimb extension in the maximal electroshock seizure threshold test in rats with temporal lobe epilepsy compared to the control animals. The results suggest a series of functional changes in the properties of glutamatergic system associated with the epilepsy development and can be used to develop the antiepileptogenic therapy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Ratas , Animales , Pilocarpina/toxicidad , Pilocarpina/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Litio/farmacología , Litio/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Modelos Animales de Enfermedad
14.
Mol Psychiatry ; 28(7): 3033-3043, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36653674

RESUMEN

Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.


Asunto(s)
Trastorno Bipolar , Células Madre Pluripotentes Inducidas , Humanos , Litio/farmacología , Litio/uso terapéutico , Litio/metabolismo , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Células Madre Pluripotentes Inducidas/metabolismo , Compuestos de Litio/uso terapéutico , Neuronas/metabolismo
15.
Adv Healthc Mater ; 12(11): e2202390, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36623538

RESUMEN

The repair of damaged cartilage still remains a great challenge in clinic. It is demonstrated that bone marrow stromal cells (BMSCs)-chondrocytes communication is of great significance for cartilage repair. Moreover, BMSCs have been confirmed to enhance biological function of chondrocytes via exosome-mediated paracrine pathway. Lithium-containing scaffolds have been reported to effectively promote cartilage regeneration; however, whether lithium-containing biomaterial could facilitate cartilage regeneration through regulating BMSCs-derived exosomes has not been illustrated. In the study, the model lithium-substituted bioglass ceramic (Li-BGC) is selected and regulatory effects of BMSCs-derived exosomes after Li-BGC treatment (Li-BGC-Exo) are systemically evaluated. The data reveal that Li-BGC-Exo notably promotes chondrogenesis, which attributes to the upregulated exosomal miR-455-3p transfer, consequently leads to suppression of histone deacetylase 2 (HDAC2) and enhanced histone H3 acetylation in chondrocytes. Notably, BMSCs-derived exosomes after LiCl treatment (LiCl-Exo) exhibits the similar regulatory effect with Li-BGC-Exo, indicating that the pro-chondrogenesis capability of them is mainly owing to the lithium ions. Furthermore, the in vivo study proves that LiCl-Exo remarkably facilitates cartilage regeneration. The research may provide novel possibility for the intrinsic mechanism of chondrogenesis trigged by lithium-containing biomaterials, and suggests that application of lithium-containing scaffolds may be a promising strategy for cartilage regeneration.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , MicroARNs/metabolismo , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Histonas , Litio/farmacología , Litio/metabolismo , Acetilación , Cartílago , Condrocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Exosomas/metabolismo
16.
Anat Rec (Hoboken) ; 306(3): 537-551, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36370004

RESUMEN

Lithium carbonate (LC) is known to alter thyroid gland function. Pomegranate (PG) is a fruit with multiple antioxidant and antiapoptotic properties. Here, we studied the effect of PG on LC-induced morphological and functional alterations in the thyroid glands of rats. Rats were divided into four groups: control, lithium, lithium-PG, and PG. After 8 weeks, the rats were sacrificed, the levels of thyroid hormones and oxidative stress markers were estimated, and thyroid tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. Compared to the control group, the lithium group showed significant changes in thyroid hormone levels, greater expression of the oxidant marker malondialdehyde, and lower expression of the antioxidant marker superoxide dismutase (SOD). Most of these changes improved upon PG treatment. Histological evaluation of the thyroid in the lithium group showed disorganization and follicle involution. Additionally, the periodic acid Schiff staining intensity and SOD immunoreactivity declined significantly, whereas the collagen fiber content and Bax immunoreactivity increased. The follicular ultrastructure showed marked distortion. These changes were mitigated upon PG treatment. In conclusion, PG alleviated the morphological and functional changes in the thyroid glands induced by LC by modulating apoptosis and oxidative stress.


Asunto(s)
Antioxidantes , Granada (Fruta) , Ratas , Animales , Antioxidantes/farmacología , Glándula Tiroides/metabolismo , Granada (Fruta)/metabolismo , Litio/metabolismo , Litio/farmacología , Frutas/metabolismo , Ratas Wistar , Estrés Oxidativo , Apoptosis , Hormonas Tiroideas/metabolismo , Superóxido Dismutasa/metabolismo , Extractos Vegetales/farmacología
17.
Biol Psychiatry ; 93(1): 8-17, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36307327

RESUMEN

BACKGROUND: Bipolar disorder is a highly heritable neuropsychiatric condition affecting more than 1% of the human population. Lithium salts are commonly prescribed as a mood stabilizer for individuals with bipolar disorder. Lithium is clinically effective in approximately half of treated individuals, and their genetic backgrounds are known to influence treatment outcomes. While the mechanism of lithium's therapeutic action is unclear, it stimulates adult neural progenitor cell proliferation, similar to some antidepressant drugs. METHODS: To identify common genetic variants that modulate lithium-induced proliferation, we conducted an EdU incorporation assay in a library of 80 genotyped human neural progenitor cells treated with lithium. These data were used to perform a genome-wide association study to identify common genetic variants that influence lithium-induced neural progenitor cell proliferation. We manipulated the expression of a putatively causal gene using CRISPRi/a (clustered regularly interspaced short palindromic repeats interference/activation) constructs to experimentally verify lithium-induced proliferation effects. RESULTS: We identified a locus on chr3p21.1 associated with lithium-induced proliferation. This locus is also associated with bipolar disorder risk, schizophrenia risk, and interindividual differences in intelligence. We identified a single gene, GNL3, whose expression temporally increased in an allele-specific fashion following lithium treatment. Experimentally increasing the expression of GNL3 led to increased proliferation under baseline conditions, while experimentally decreasing GNL3 expression suppressed lithium-induced proliferation. CONCLUSIONS: Our experiments reveal that common genetic variation modulates lithium-induced neural progenitor proliferation and that GNL3 expression is necessary for the full proliferation-stimulating effects of lithium. These results suggest that performing genome-wide associations in genetically diverse human cell lines is a useful approach to discover context-specific pharmacogenomic effects.


Asunto(s)
Trastorno Bipolar , Litio , Adulto , Humanos , Litio/farmacología , Litio/metabolismo , Litio/uso terapéutico , Estudio de Asociación del Genoma Completo/métodos , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Variación Genética , Proliferación Celular , Proteínas Nucleares/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/uso terapéutico
18.
Shanghai Kou Qiang Yi Xue ; 32(5): 455-461, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38171512

RESUMEN

PURPOSE: To observe the regulatory effect of lithium-doped hydroxyapatite nanowires on bone metabolism in osteoporotic zebrafish induced by dexamethasone. METHODS: Pure hydroxyapatite nanowires(nHA) and hydroxyapatite nanowires doped with 10% lithium ions (Li-nHA) were prepared by using hydrothermal method, and then material characterization was performed. The juvenile zebrafish cultured for 3 days(3dpf) were selected and co-cultured with nHA and Li-nHA extracts up to 7dpf. A negative(0.1% DMSO) control group was set up and transgenic zebrafish Tg(ola.sp7:nlsGFP) was used to select the best concentration for promoting bone formation. The osteoporotic zebrafish were induced by dexamethasone and incubated with nHA and Li-nHA extracts. The wild-type zebrafish was stained with alizarin red and the osteogenic differentiation was observed in transgenic zebrafish. Real-time quantitative PCR was adopted to detect osteogenic maker genes, such as zinc finger transcription factor (SP7), alkaline phosphatase (ALP), osteoprotegerin (OPG), Runt related transcription factor 2(Runx2) and osteocalcin (OCN). Statistical analysis was performed with GraphPad Prism 9.3 software. RESULTS: nHA and Li-nHA promoted bone formation and up-regulated expression levels of ALP, OCN, Runx2, SP7 and OPG of osteoporotic zebrafish. Compared with nHA, Li-nHA significantly increased the mineralization specific staining area and cumulative optical density of zebrafish bone, and the expression of osteogenic maker genes was also significantly increased. CONCLUSIONS: Doping lithium ions in nano hydroxyapatite can enhance its osteoinductive properties, and Li-nHA can effectively improve bone formation of osteoporotic zebrafish.


Asunto(s)
Durapatita , Nanocables , Animales , Durapatita/metabolismo , Durapatita/farmacología , Osteogénesis , Pez Cebra/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Litio/metabolismo , Litio/farmacología , Células Cultivadas , Osteocalcina/metabolismo , Osteocalcina/farmacología , Dexametasona/farmacología , Iones/metabolismo , Iones/farmacología , Diferenciación Celular
19.
Sci Rep ; 12(1): 19145, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352003

RESUMEN

Lithium is rare in Earth's crust compared to the biologically relevant alkali metal cations sodium and potassium but can accumulate to toxic levels in some environments. We report the experimental validation of two distinct bacterial riboswitch classes that selectively activate gene expression in response to elevated Li+ concentrations. These RNAs commonly regulate the expression of nhaA genes coding for ion transporters that weakly discriminate between Na+ and Li+. Our findings demonstrated that the primary function of Li+ riboswitches and associated NhaA transporters is to prevent Li+ toxicity, particularly when bacteria are living at high pH. Additional riboswitch-associated genes revealed how some cells defend against the deleterious effects of Li+ in the biosphere, which might become more problematic as its industrial applications increase.


Asunto(s)
Riboswitch , Riboswitch/genética , Litio/farmacología , Litio/metabolismo , Genes Bacterianos , Bacterias/genética , Bacterias/metabolismo , Sodio/metabolismo , Cationes/metabolismo , Proteínas de Transporte de Membrana/metabolismo
20.
J Biol Chem ; 298(11): 102568, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209826

RESUMEN

Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) uncoupling in skeletal muscle and mitochondrial uncoupling via uncoupling protein 1 (UCP1) in brown/beige adipose tissue are two mechanisms implicated in energy expenditure. Here, we investigated the effects of glycogen synthase kinase 3 (GSK3) inhibition via lithium chloride (LiCl) treatment on SERCA uncoupling in skeletal muscle and UCP1 expression in adipose. C2C12 and 3T3-L1 cells treated with LiCl had increased SERCA uncoupling and UCP1 protein levels, respectively, ultimately raising cellular respiration; however, this was only observed when LiCl treatment occurred throughout differentiation. In vivo, LiCl treatment (10 mg/kg/day) increased food intake in chow-fed diet and high-fat diet (HFD; 60% kcal)-fed male mice without increasing body mass-a result attributed to elevated daily energy expenditure. In soleus muscle, we determined that LiCl treatment promoted SERCA uncoupling via increased expression of SERCA uncouplers, sarcolipin and/or neuronatin, under chow-fed and HFD-fed conditions. We attribute these effects to the GSK3 inhibition observed with LiCl treatment as partial muscle-specific GSK3 knockdown produced similar effects. In adipose, LiCl treatment inhibited GSK3 in inguinal white adipose tissue (iWAT) but not in brown adipose tissue under chow-fed conditions, which led to an increase in UCP1 in iWAT and a beiging-like effect with a multilocular phenotype. We did not observe this beiging-like effect and increase in UCP1 in mice fed a HFD, as LiCl could not overcome the ensuing overactivation of GSK3. Nonetheless, our study establishes novel regulatory links between GSK3 and SERCA uncoupling in muscle and GSK3 and UCP1 and beiging in iWAT.


Asunto(s)
Adenosina Trifosfatasas , Litio , Animales , Masculino , Ratones , Adenosina Trifosfatasas/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Suplementos Dietéticos , Estrés del Retículo Endoplásmico , Glucógeno Sintasa Quinasa 3/metabolismo , Litio/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...