Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.490
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2322617121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771873

RESUMEN

Optimal decision-making balances exploration for new information against exploitation of known rewards, a process mediated by the locus coeruleus and its norepinephrine projections. We predicted that an exploitation-bias that emerges in older adulthood would be associated with lower microstructural integrity of the locus coeruleus. Leveraging in vivo histological methods from quantitative MRI-magnetic transfer saturation-we provide evidence that older age is associated with lower locus coeruleus integrity. Critically, we demonstrate that an exploitation bias in older adulthood, assessed with a foraging task, is sensitive and specific to lower locus coeruleus integrity. Because the locus coeruleus is uniquely vulnerable to Alzheimer's disease pathology, our findings suggest that aging, and a presymptomatic trajectory of Alzheimer's related decline, may fundamentally alter decision-making abilities in later life.


Asunto(s)
Envejecimiento , Toma de Decisiones , Locus Coeruleus , Imagen por Resonancia Magnética , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/fisiología , Humanos , Toma de Decisiones/fisiología , Anciano , Masculino , Femenino , Envejecimiento/fisiología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Recompensa
2.
Alzheimers Res Ther ; 16(1): 97, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702802

RESUMEN

BACKGROUND: The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS: Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS: We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS: The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.


Asunto(s)
Enfermedad de Alzheimer , Núcleo Basal de Meynert , Demencia Frontotemporal , Locus Coeruleus , Imagen por Resonancia Magnética , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/patología , Masculino , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Femenino , Anciano , Imagen por Resonancia Magnética/métodos , Núcleo Basal de Meynert/diagnóstico por imagen , Núcleo Basal de Meynert/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Amnesia/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos
3.
Elife ; 122024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592773

RESUMEN

Locus coeruleus (LC) projections to the hippocampus play a critical role in learning and memory. However, the precise timing of LC-hippocampus communication during learning and which LC-derived neurotransmitters are important for memory formation in the hippocampus are currently unknown. Although the LC is typically thought to modulate neural activity via the release of norepinephrine, several recent studies have suggested that it may also release dopamine into the hippocampus and other cortical regions. In some cases, it appears that dopamine release from LC into the hippocampus may be more important for memory than norepinephrine. Here, we extend these data by characterizing the phasic responses of the LC and its projections to the dorsal hippocampus during trace fear conditioning in mice. We find that the LC and its projections to the hippocampus respond to task-relevant stimuli and that amplifying these responses with optogenetic stimulation can enhance long-term memory formation. We also demonstrate that LC activity increases both norepinephrine and dopamine content in the dorsal hippocampus and that the timing of hippocampal dopamine release during trace fear conditioning is similar to the timing of LC activity. Finally, we show that hippocampal dopamine is important for trace fear memory formation, while norepinephrine is not.


Our brains are more likely to remember activities or incidents that stand out from typical day-to-day experiences. For instance, if your phone is stolen on the way to work, you will have a stronger memory of this experience compared to other uneventful commutes. These are known as salient events and can be emotional, surprising, or even just out of the ordinary. During salient events, an area of the brain known as the hippocampus receives chemicals called neuromodulators from other parts of the brain. These neuromodulators enhance the formation of the memory by modifying how neurons connect together in the hippocampus. One of the regions that signals to the hippocampus ­ called the locus coeruleus ­ was thought to enhance memory by releasing the neuromodulator norepinephrine. Recent studies indicate that the locus coeruleus also releases a second neuromodulator called dopamine. However, it remained unclear what causes the locus coeruleus to release dopamine, and what effect this neuromodulator has on the hippocampus. To investigate these questions, Wilmot et al. recorded and manipulated the activity of the locus coeruleus in the brains of mice experiencing salient, fearful events. The mice were exposed to a sound and, a few seconds later, a shock to the foot to illicit the formation of an aversive salient memory. If the next day, the mice responded to just the sound as if they were expecting a shock, this indicated they had remembered the aversive experience. Wilmot et al. observed that neurons in the locus coeruleus were active during the salient event, resulting in increased dopamine in the hippocampus. When the activity of these neurons was forcefully increased during relatively non-salient events, such as a quiet tone and a very mild shock, the animals still showed strong memory formation. Finally, blocking the action of dopamine in the hippocampus substantially affected memory formation, whereas blocking the action of norepinephrine did not have the same effect. These findings suggest that the locus coeruleus enhances the memory of salient events by increasing the levels of dopamine in the hippocampus not norepinephrine, as was previously thought. Developing a better understanding of how the locus coeruleus regulates memory may lead to improved treatments for various neurological disorders, like Alzheimer's disease, which are associated with neuromodulators taking on different roles in the hippocampus.


Asunto(s)
Dopamina , Locus Coeruleus , Animales , Ratones , Miedo , Hipocampo , Norepinefrina
4.
J Alzheimers Dis ; 99(1): 105-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607758

RESUMEN

 Tau accumulation in and neurodegeneration of locus coeruleus (LC) neurons is observed in Alzheimer's disease (AD). We investigated whether tangle and neuronal density in the rostral and caudal LC is characterized by an asymmetric pattern in 77 autopsy cases of the Rush Memory and Aging Project. We found left-right equivalence for tangle density across individuals with and without AD pathology. However, neuronal density, particularly in the caudal-rostral axis of the LC, is asymmetric among individuals with AD pathology. Asymmetry in LC neuronal density may signal advanced disease progression and should be considered in AD neuroimaging studies of LC neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Humanos , Locus Coeruleus/patología , Enfermedad de Alzheimer/patología , Femenino , Masculino , Anciano de 80 o más Años , Anciano , Neuronas/patología , Neuronas/metabolismo , Ovillos Neurofibrilares/patología , Proteínas tau/metabolismo , Recuento de Células
5.
Nat Aging ; 4(5): 625-637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664576

RESUMEN

Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Locus Coeruleus , Tomografía de Emisión de Positrones , Proteínas tau , Locus Coeruleus/metabolismo , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Cognición/fisiología , Masculino , Femenino , Anciano , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Lóbulo Temporal/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/patología
6.
J Alzheimers Dis ; 99(2): 705-714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669549

RESUMEN

Background: Recent interest has surged in the locus coeruleus (LC) for its early involvement in Alzheimer's disease (AD), notably concerning the apolipoprotein ɛ4 allele (APOE4). Objective: This study aimed to discern LC functional connectivity (FC) variations in preclinical AD subjects, dissecting the roles of APOE4 carrier status and amyloid-ß (Aß) deposition. Methods: A cohort of 112 cognitively intact individuals, all Aß-positive, split into 70 APOE4 noncarriers and 42 carriers, underwent functional MRI scans, neuropsychological assessments, and APOE genotyping. The research utilized seed to voxel analysis for illustrating LC rsFC discrepancies between APOE4 statuses and employed a general linear model to examine the interactive influence of APOE4 carrier status and Aß deposition on LC FC values. Results: The investigation revealed no significant differences in sex, age, or SUVR between APOE4 carriers and noncarriers. It found diminished LC FC with the occipital cortex in APOE4 carriers and identified a significant interaction between APOE4 carrier status and temporal lobe SUVR in LC FC with the occipital cortex. This interaction suggested a proportional increase in LC FC for APOE4 carriers. Additional notable interactions were observed affecting LC FC with various brain regions, indicating a proportional decrease in LC FC for APOE4 carriers. Conclusions: These findings confirm that APOE4 carrier status significantly influences LC FC in preclinical AD, showcasing an intricate relationship with regional Aß deposition. This underscores the critical role of genetic and pathological factors in early AD pathophysiology, offering insights into potential biomarkers for early detection and intervention strategies.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Locus Coeruleus , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Femenino , Masculino , Apolipoproteína E4/genética , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Anciano , Pruebas Neuropsicológicas , Persona de Mediana Edad , Péptidos beta-Amiloides/metabolismo , Estudios de Cohortes , Heterocigoto
7.
Nat Neurosci ; 27(5): 927-939, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570661

RESUMEN

An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.


Asunto(s)
Astrocitos , Señalización del Calcio , Hipocampo , Locus Coeruleus , Animales , Locus Coeruleus/fisiología , Locus Coeruleus/citología , Astrocitos/fisiología , Ratones , Hipocampo/fisiología , Hipocampo/citología , Masculino , Señalización del Calcio/fisiología , Femenino , Optogenética , Ratones Transgénicos , Neuronas/fisiología , Ratones Endogámicos C57BL , Calcio/metabolismo
8.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669335

RESUMEN

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Asunto(s)
Analgésicos Opioides , Locus Coeruleus , Bulbo Raquídeo , Dolor , Sustancia Gris Periacueductal , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos Opioides/farmacología , Masculino , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos
9.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38649278

RESUMEN

Attending to salient sensory attributes of food, such as tastes that are new, displeasing, or unexpected, allows the procurement of nutrients without food poisoning. Exposure to new tastes is known to increase norepinephrine (NE) release in taste processing forebrain areas, yet the central source for this release is unknown. Locus ceruleus norepinephrine neurons (LC-NE) emerge as a candidate in signaling salient information about taste, as other salient sensory stimuli (e.g., visual, auditory, somatosensation) are known to activate LC neurons. To determine if LC neurons are sensitive to features of taste novelty, we used fiber photometry to record LC-NE activity in water-restricted mice that voluntarily licked either novel or familiar substances of differential palatability (saccharine, citric acid). We observed that LC-NE activity was suppressed during lick bursts and transiently activated upon the termination of licking and that these dynamics were independent of the familiarity of the substance consumed. We next recorded LC dynamics during brief and unexpected consumption of tastants and found no increase in LC-NE activity, despite their responsiveness to visual and auditory stimuli, revealing selectivity in LC's responses to salient sensory information. Our findings suggest that LC activity during licking is not influenced by taste novelty, implicating a possible role for non-LC noradrenergic nuclei in signaling critical information about taste.


Asunto(s)
Locus Coeruleus , Ratones Endogámicos C57BL , Norepinefrina , Gusto , Animales , Locus Coeruleus/fisiología , Masculino , Norepinefrina/metabolismo , Gusto/fisiología , Ratones , Percepción del Gusto/fisiología , Ácido Cítrico/metabolismo , Sacarina/administración & dosificación , Neuronas/fisiología , Femenino , Conducta Animal/fisiología
10.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542133

RESUMEN

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Ratones , Animales , Locus Coeruleus/metabolismo , Norepinefrina/metabolismo , Neuronas/metabolismo , Neurotoxinas/farmacología , Axones/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo
11.
Nat Commun ; 15(1): 1966, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438345

RESUMEN

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.


Asunto(s)
Ascomicetos , Núcleos Parabraquiales , Tegmento Pontino , Humanos , Animales , Ratones , Hibridación Fluorescente in Situ , Tronco Encefálico , Locus Coeruleus
12.
Eur J Neurosci ; 59(10): 2616-2627, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38441250

RESUMEN

Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.


Asunto(s)
Biomarcadores , Imagen por Resonancia Magnética , Melaninas , Enfermedad de Parkinson , Humanos , Melaninas/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Imagen por Resonancia Magnética/métodos , Biomarcadores/metabolismo , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Porción Compacta de la Sustancia Negra/diagnóstico por imagen , Porción Compacta de la Sustancia Negra/metabolismo
13.
J Headache Pain ; 25(1): 31, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443795

RESUMEN

BACKGROUND: Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD: To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS: Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION: The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.


Asunto(s)
Dolor Agudo , Neuronas Adrenérgicas , Trastornos Migrañosos , Trastornos del Sueño-Vigilia , Humanos , Locus Coeruleus , Trastornos del Sueño-Vigilia/complicaciones , Cefalea , Privación de Sueño , Sueño , Nitroglicerina
14.
Acta Physiol (Oxf) ; 240(4): e14123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459766

RESUMEN

AIMS: This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS: Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS: Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS: Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Proteína Fluorescente Roja , Ratones , Femenino , Masculino , Animales , Locus Coeruleus/metabolismo , Caracteres Sexuales , Proteómica , Ratones Transgénicos , Espectrometría de Masas
15.
Elife ; 122024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477670

RESUMEN

Exposure to an acute stressor triggers a complex cascade of neurochemical events in the brain. However, deciphering their individual impact on stress-induced molecular changes remains a major challenge. Here, we combine RNA sequencing with selective pharmacological, chemogenetic, and optogenetic manipulations to isolate the contribution of the locus coeruleus-noradrenaline (LC-NA) system to the acute stress response in mice. We reveal that NA release during stress exposure regulates a large and reproducible set of genes in the dorsal and ventral hippocampus via ß-adrenergic receptors. For a smaller subset of these genes, we show that NA release triggered by LC stimulation is sufficient to mimic the stress-induced transcriptional response. We observe these effects in both sexes, and independent of the pattern and frequency of LC activation. Using a retrograde optogenetic approach, we demonstrate that hippocampus-projecting LC neurons directly regulate hippocampal gene expression. Overall, a highly selective set of astrocyte-enriched genes emerges as key targets of LC-NA activation, most prominently several subunits of protein phosphatase 1 (Ppp1r3c, Ppp1r3d, Ppp1r3g) and type II iodothyronine deiodinase (Dio2). These results highlight the importance of astrocytic energy metabolism and thyroid hormone signaling in LC-mediated hippocampal function and offer new molecular targets for understanding how NA impacts brain function in health and disease.


Asunto(s)
Locus Coeruleus , Norepinefrina , Femenino , Masculino , Animales , Ratones , Encéfalo , Hipocampo , Expresión Génica
16.
J Integr Neurosci ; 23(3): 60, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38538224

RESUMEN

BACKGROUND: The medial prefrontal cortex (mPFC) is synaptically coupled to locus ceruleus (LC) located in the pontine tegmentum. The LC supplies norepinephrine (NE) to most of the central nervous system (CNS) via an elaborate efferent network. NE release in the cortex and various limbic structures regulates arousal, memory processes, adaptive behavior and cognitive control. METHODS: The study investigated the role of the mPFC-LC circuit in the cognitive behavior of mice. The mPFC efferents were inhibited optogenetically at the level of dorso-rostral pons by virally delivered ArchT opsin. The mice were implanted bilaterally with optic fibers transmitting yellow light and tested for anxiety-like behavior on Elevated O-maze (EOM), for long-term memory with Novel Object Recognition test (NOR), for problem-solving ability with Puzzle test and for learning with Cued Fear Conditioning (FC). In addition, we used anterograde transsynaptic viral tracing to map a possible anatomical circuit allowing the mPFC to modulate the activity of LC neurons, which supply NE to the main limbic structures with a functional role in cognitive behavior. RESULTS: The application of yellow light did not affect the anxiety-like behavior of the mice but impaired their ability to recognize a novel object and solve a problem. Optogenetic inhibition of mPFC to LC, in either acquisition or recall phase of FC similarly decreased freezing. The viral tracing identified the following tripartite circuits: mPFC-LC-dentate gyrus of the hippocampus (DG), mPFC-LC-amygdala (Amy), and mPFC-LC-mPFC. CONCLUSIONS: Our results reveal essential long-range regulatory circuits from the mPFC to LC and from LC to the limbic system that serves to optimize cognitive performance.


Asunto(s)
Locus Coeruleus , Optogenética , Ratones , Animales , Locus Coeruleus/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Cognición
17.
Front Biosci (Landmark Ed) ; 29(3): 118, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38538284

RESUMEN

Locus coeruleus is a small bilateral nucleus in the brainstem. It is the main source of norepinephrine (noradrenaline) throughout the central nervous system (about 70% of all norepinephrine in the central nervous system), and, as shown in numerous studies, it is involved in regulating a significant number of functions. The detailed study of the functions of the Locus Coeruleus (LC) and its significance in human life became possible only after the development of histofluorescence methods for monoamines in the 1960s. The widespread locus coeruleus-norepinephrine (LC-NE) projection system regulates the entire central nervous system and modulates sensory processing, motor behavior, arousal, and cognitive processes. Damage to the LC and the associated decrease in norepinephrine levels are involved in a wide range of clinical conditions and pathological processes. Although much about the anatomy and physiology of the LC is currently known, its ultimate role in the regulation of behavior, control of the sleep-wake cycle, stress response, and the development of pathological conditions (such as Alzheimer's disease, dementia, depression, suicidal behavior, chronic traumatic encephalopathy, and Parkinson's disease) is not fully understood. Non-invasive visualization of the LC can be used for differential diagnosis, determining the stage of the disease, and predicting its course. Studying the dysfunction of the LC-norepinephrine system, involved in the pathogenesis of various neurological diseases, may ultimately form the basis for the development of new treatment methods based on the pharmacological elevation of norepinephrine levels. In this review, we will attempt to highlight the key points regarding the structure and function of the Locus Coeruleus, as well as outline the main directions and prospects for its study.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Locus Coeruleus/patología , Locus Coeruleus/fisiología , Enfermedades Neurodegenerativas/patología , Norepinefrina/fisiología
18.
Exp Brain Res ; 242(4): 857-867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358538

RESUMEN

Emotionally motivated behaviors rely on the coordinated activity of descending neural circuits involved in motor and autonomic functions. Using a pseudorabies (PRV) tract-tracing approach in typically behaving rats, our group previously identified descending premotor, presympathetic, and dual-labeled premotor-presympathetic populations throughout the central rostral-caudal axis. The premotor-presympathetic populations are thought to integrate somatomotor and sympathetic activity. To determine whether these circuits are dysregulated in subjects with altered emotional regulation, subsequent neuroanatomical analyses were performed in male subjects of two distinct genetic models relevant to clinical depression and anxiety: the Wistar Kyoto (WKY) rat and selectively bred Low Novelty Responder (bLR) rat. The present study explored alterations in premotor efferents from locus coeruleus (LC) and subdivisions of the periaqueductal grey (PAG), two areas involved in emotionally motivated behaviors. Compared to Sprague Dawley rats, WKY rats had significantly fewer premotor projections to hindlimb skeletal muscle from the LC and from the dorsomedial (DMPAG), lateral (LPAG), and ventrolateral (VLPAG) subdivisions of PAG. Relative to selectively bred High Novelty Responder (bHR) rats, bLR rats had significantly fewer premotor efferents from LC and dorsolateral PAG (DLPAG). Cumulatively, these results demonstrate that somatomotor circuitry in several brain areas involved in responses to stress and emotional stimuli are altered in rat models with depression-relevant phenotypes. These somatomotor circuit differences could be implicated in motor-related impairments in clinically depressed patients.


Asunto(s)
Locus Coeruleus , Sustancia Gris Periacueductal , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Ratas Endogámicas WKY , Emociones
19.
Ann Neurol ; 95(4): 653-664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407546

RESUMEN

OBJECTIVE: While studies suggested that locus coeruleus (LC) neurodegeneration contributes to sleep-wake dysregulation in Alzheimer's disease (AD), the association between LC integrity and circadian rest-activity patterns remains unknown. Here, we investigated the relationships between 24-hour rest-activity rhythms, cognitive trajectories, and autopsy-derived LC integrity in older adults with and without cortical AD neuropathology. METHODS: This retrospective study leveraged multi-modal data from participants of the longitudinal clinical-pathological Rush Memory and Aging Project. Indices of 24-hour rest-activity rhythm fragmentation (intradaily variability) and stability (interdaily stability) were extracted from annual actigraphic recordings, and cognitive trajectories were computed from annual cognitive evaluations. At autopsy, LC neurodegeneration was determined by the presence of hypopigmentation, and cortical AD neuropathology was assessed. Contributions of comorbid pathologies (Lewy bodies, cerebrovascular pathology) were evaluated. RESULTS: Among the 388 cases included in the study sample (age at death = 92.1 ± 5.9 years; 273 women), 98 (25.3%) displayed LC hypopigmentation, and 251 (64.7%) exhibited cortical AD neuropathology. Logistic regression models showed that higher rest-activity rhythm fragmentation, measured up to ~7.1 years before death, was associated with increased risk to display LC neurodegeneration at autopsy (odds ratio [OR] = 1.46, 95% confidence interval [CI95%]: 1.16-1.84, pBONF = 0.004), particularly in individuals with cortical AD neuropathology (OR = 1.56, CI95%: 1.15-2.15, pBONF = 0.03) and independently of comorbid pathologies. In addition, longitudinal increases in rest-activity rhythm fragmentation partially mediated the association between LC neurodegeneration and cognitive decline (estimate = -0.011, CI95%: -0.023--0.002, pBONF = 0.03). INTERPRETATION: These findings highlight the LC as a neurobiological correlate of sleep-wake dysregulation in AD, and further underscore the clinical relevance of monitoring rest-activity patterns for improved detection of at-risk individuals. ANN NEUROL 2024;95:653-664.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Hipopigmentación , Humanos , Femenino , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Locus Coeruleus/patología , Estudios Retrospectivos , Disfunción Cognitiva/patología , Hipopigmentación/patología , Autopsia , Ritmo Circadiano/fisiología
20.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374364

RESUMEN

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Asunto(s)
Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Hipocampo , Locus Coeruleus , Autoadministración , Animales , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Femenino , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Morfina/farmacología , Morfina/administración & dosificación , Ratas Sprague-Dawley , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Trastornos Relacionados con Opioides/fisiopatología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...