Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
1.
Sci Rep ; 14(1): 10586, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719951

RESUMEN

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Lycium , Nicotiana , Proteínas de Plantas , Tolerancia a la Sal , Carotenoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tolerancia a la Sal/genética , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Fotosíntesis/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ácido Abscísico/metabolismo
2.
Sci Rep ; 14(1): 10856, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740857

RESUMEN

Bitter gourd, being perishable, requires timely harvesting. Delayed harvesting can result in a substantial reduction in fruit quality. while premature harvesting leads to underdeveloped fruit and decreased yields, the continuous flowering pattern in bitter gourd underscores the significance of accurately assessing fruit growth and ensuring timely harvesting for subsequent fruit setting and development. The current reliance on the experience of production personnel represents a substantial inefficiency. We present an improved real-time instance segmentation model based on YOLOv5-seg. The utilization of dynamic snake convolution enables the extraction of morphological features from the curved and elongated structure of bitter gourd. Diverse branch blocks enhance feature space diversity without inflating model size and inference time, contributing to improved recognition of expansion stages during bitter gourd growth. Additionally, the introduction of Focal-EIOU loss accurately locates the boundary box and mask, addressing sample imbalances in the L2 stage. Experimental results showcase remarkable accuracy rates of 99.3%, 93.8%, and 98.3% for L1, L2, and L3 stages using mAP@0.5. In comparison, our model outperforms other case segmentation models, excelling in both detection accuracy and inference speed. The improved YOLOv5-seg model demonstrates strong performance in fine-grained recognition of bitter gourd during the expansion stage. It efficiently segments bitter gourd in real-time under varying lighting and occlusion conditions, providing crucial maturity information. This model offers reliable insights for agricultural workers, facilitating precise harvesting decisions.


Asunto(s)
Frutas , Frutas/crecimiento & desarrollo , Lycium/crecimiento & desarrollo , Algoritmos
4.
Int J Biol Macromol ; 267(Pt 1): 131316, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574908

RESUMEN

Lycium barbarum polysaccharide (LBP) is beneficial for elderly people, but its use is limited in geriatric foods due to the lack of comprehensive information on its preparation strategy and physical property. In this study, the low-ester rhamnogalacturonan-I (RG-I) type pectic polysaccharide-protein complexes with varying physicochemical properties, structural characteristics, proliferative activities on Bacteroides, and immune-enhancing activities on RAW 264.7 cells, were obtained by moderate-temperature acid extraction within adjustment of enzymatic and physical pretreatments. LBP prepared by moderate-temperature acid extraction, namely S1-A, showed the strongest immune-enhancing activity via increasing the phagocytosis capacity and NO release of RAW 264.7 cells by 23 % and 76 %, respectively. S1-A exhibited relatively high viscosity and calcium ion response characteristic with the application potential for thickened liquid foods for the elderly with dysphagia. LBP prepared by composite cellulase and pectinase pretreatment combined with moderate-temperature acid extraction, namely S1-M1, showed the strongest Bacteroides proliferative activity that was equivalent to 0.60-0.97 times of that of inulin. S1-M1 exhibited extremely low viscosity and strong tolerance to food nutrients with high processing applicability for fluid foods. This study provided crucial data for the preparation and application of LBP targeting gut microbiota disorders and immunosenescence for the development of geriatric foods.


Asunto(s)
Bacteroides , Proliferación Celular , Ratones , Animales , Células RAW 264.7 , Bacteroides/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Fagocitosis/efectos de los fármacos , Viscosidad , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Lycium/química , Humanos
5.
Food Res Int ; 184: 114270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609246

RESUMEN

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Asunto(s)
Lycium , Polygonatum , Vino , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Microextracción en Fase Sólida
6.
Int Immunopharmacol ; 130: 111762, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38428146

RESUMEN

Drug-induced liver injury (DILI) is a common and severe adverse drug reaction that can result in acute liver failure. Previously, we have shown that Lycium barbarum L. (wolfberry) ameliorated liver damage in acetaminophen (APAP)-induced DILI. Nevertheless, the mechanism needs further clarification. Herein, we utilized APAP-induced DILI mice to investigate how wolfberry impacts the gut-liver axis to mitigate liver damage. We showed that the abundance of Akkermansia muciniphila (A. muciniphila) was decreased, and intestinal microbiota was disrupted, while the expression levels of YAP1 and FXR-mediated CYP7A1 were reduced in the liver of DILI mice. Furthermore, wolfberry increased the abundance of A. muciniphila and the number of goblet cells in the intestines, while decreasing AST, ALT, and total bile acids (TBA) levels in the serum. Interestingly, A. muciniphila promoted YAP1 and FXR expression in hepatocytes, leading to the inhibition of CYP7A1 expression and a decrease in TBA content. Notably, wolfberry did not exert the beneficial effects mentioned above after the removal of intestinal bacteria by antibiotics (ATB)-containing water. Additionally, Yap1 knockout downregulated FXR expression and enhanced CYP7A1 expression in the liver of hepatocyte-specific Yap1 knockout mice. Therefore, wolfberry stimulated YAP1/FXR activation and reduced CYP7A1 expression by promoting the balance of intestinal microbiota, thereby suppressing the overproduction of bile acids.


Asunto(s)
Acetaminofén , Akkermansia , Ácidos y Sales Biliares , Enfermedad Hepática Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Lycium , Proteínas de Unión al ARN , Proteínas Señalizadoras YAP , Animales , Ratones , Acetaminofén/efectos adversos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/microbiología , Hígado , Lycium/química , Proteínas Señalizadoras YAP/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratones Noqueados
7.
J Agric Food Chem ; 72(12): 6781-6786, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470138

RESUMEN

This Comment critically addresses the article by Gao et al. (Gao, K., et al. J. Agric. Food Chem. 2015, 63, 1067-1075), providing the structural elucidation of three phenolamide dimers (neolignanamides) from the fruits of Lycium barbarum. A more recent article published by Chen et al. (Chen, H., et al. J. Agric. Food Chem. 2023, 71, 11080-11093) incorporates these structures into further research on the bioactivity of these compounds. Although the analytical techniques used by Gao et al. are adequate, in our opinion, the nuclear magnetic resonance (NMR) spectroscopic data have not been interpreted correctly, resulting in incorrect structures for three neolignanamides from the fruits of L. barbarum. In this Comment, an alternative interpretation of the NMR spectroscopic data and the corresponding structures are proposed. The proposed structures feature linkage types that are much more common for neolignanamides than the linkage types in the originally reported structures of these compounds.


Asunto(s)
Antioxidantes , Lycium , Antioxidantes/química , Lycium/química , Amidas , Frutas/química , Fenoles/química
8.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493701

RESUMEN

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , Lycium , Humanos , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/metabolismo , Material Particulado/metabolismo , Senescencia Celular
9.
Int J Biol Macromol ; 264(Pt 1): 130483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430999

RESUMEN

To investigate the efficacy of sodium alginate-konjac glucomannan (SA-KGM) films with anthocyanins (LRA) and tea polyphenols (TP) in meat, beef and grass carp were selected as representative meat products for preservation and freshness monitoring experiments at 4 °C. Concurrently, storage experiments of the films were conducted in this controlled environment. The results of the storage experiment showed that the films delayed meat spoilage by 2-4 days, nearly doubling the preservation time compared to the blank control. Additionally, the film exhibited significant capability to monitor the spoilage process of beef and grass carp. It was revealed by curve fitting analysis that there was a significant correlation between the color change of the film and the spoilage index of the meat. Throughout the storage experiment with the film, it was observed that moisture significantly influenced the microstructure and bonding situation of the films, thereby impacting their mechanical and barrier properties. However, the films were still able to maintain satisfactory physicochemical properties in general. The above findings were crucial in guiding the promotion of the film within the food preservation industry.


Asunto(s)
Alginatos , Lycium , Mananos , Animales , Bovinos , Alginatos/química , Antocianinas/química , Polifenoles/química , Té/química , Embalaje de Alimentos
10.
Planta ; 259(4): 74, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407665

RESUMEN

MAIN CONCLUSION: The combined analysis of transcriptome and metabolome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum. Lycium barbarum L. has a high concentration of active ingredients and is well known in traditional Chinese herbal medicine for its therapeutic properties. However, there are many Lycium barbarum cultivars, and the content of active components varies, resulting in inconsistent quality between Lycium barbarum cultivars. At present, few research has been conducted to reveal the difference in active ingredient content among different cultivars of Lycium barbarum at the molecular level. Therefore, the transcriptome of 'Ningqi No.1' and 'Qixin No.1' during the three development stages (G, T, and M) was constructed in this study. A total of 797,570,278 clean reads were obtained. Between the two types of wolfberries, a total of 469, 2394, and 1531 differentially expressed genes (DEGs) were obtained in the 'G1 vs. G10,' 'T1 vs. T10,' and 'M1 vs. M10,' respectively, and were annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology identifiers. Using these transcriptome data, most DEGs related to the metabolism of the active ingredients in 'Ningqi No.1' and 'Qixin No.1' were identified. Moreover, a widely targeted metabolome analysis of the metabolites of 'Ningqi 1' and 'Qixin 1' fruits at the maturity stage revealed 1,135 differentially expressed metabolites (DEMs) in 'M1 vs. M10,' and many DEMs were associated with active ingredients such as flavonoids, alkaloids, terpenoids, and so on. We further quantified the flavonoid, lignin, and carotenoid contents of the two Lycium barbarum cultivars during the three developmental stages. The present outcome provided molecular insight into the dynamics of multiple active ingredients biosynthesis and accumulation across different cultivars of Lycium barbarum, which would provide the basic data for the formation of Lycium barbarum fruit quality and the breeding of outstanding strains.


Asunto(s)
Lycium , Lycium/genética , Transcriptoma/genética , Fitomejoramiento , Metaboloma , Carotenoides , Flavonoides/genética
11.
Int J Biol Macromol ; 262(Pt 2): 130203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365147

RESUMEN

To address the growing and urgent need for quick and accurate food spoilage detection systems as well as to reduce food resource wastage, recent research has focused on intelligent bio-labels using pH indicators. Accordingly, we developed a dual-channel intelligent label with colorimetric and fluorescent capabilities using black lycium anthocyanin (BLA) and 9,10-bis(2,2-dipyridylvinyl) anthracene (DSA4P) as colorimetric and fluorescent indicators within a composite film consisting of chitosan (Cs), whey protein (Wp), and sodium tripolyphosphate (STPP). The addition of STPP as a cross-linking agent significantly improved the hydrophobicity, mechanical properties, and thermal stability of the Cs/Wp composite films under low pH conditions. After the incorporation of BLA and DSA4P, the resulting dual-channel intelligent label (Cs/Wp/STPP/BLA/DSA4P) exhibited superior hydrophobicity, as indicated by a water contact angle of 78.03°. Additionally, it displayed enhanced mechanical properties, with a tensile strength (TS) of 3.04 MPa and an elongation at break (EAB) of 81.07 %, while maintaining a low transmittance of 28.48 % at 600 nm. After 25 days of burial in soil, the label was significantly degraded, which showcases its eco-friendly nature. Moreover, the label could visually detect color changes indicating volatile ammonia concentrations (25-25,000 ppm). The color of the label in daylight gradually shifted from brick-red to light-red, brownish-yellow, and finally light-green as the ammonia concentration increased. Correspondingly, its fluorescence transitioned from no fluorescence to green fluorescence with increasing ammonia concentration, gradually intensifying under 365-nm UV light. Furthermore, the label effectively monitored the freshness of shrimp stored at temperatures of 4 °C, 25 °C, and - 18 °C. Thus, the label developed in this study exhibits significant potential for enhancing food safety monitoring.


Asunto(s)
Quitosano , Lycium , Polifosfatos , Animales , Amoníaco , Colorimetría , Proteína de Suero de Leche , Alimentos Marinos , Colorantes , Antocianinas , Crustáceos , Concentración de Iones de Hidrógeno , Embalaje de Alimentos
12.
Chemosphere ; 353: 141561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417492

RESUMEN

Carbofuran and acetamiprid pose the highest residual risk among pesticides found in wolfberries. This study aimed to degrade these pesticides in wolfberries using a multi-array dielectric barrier discharge plasma (DBD), evaluate the impact on safety and quality and explore their degradation mechanism. The results showed that DBD treatment achieved 90.6% and 80.9% degradation rates for carbofuran and acetamiprid, respectively, following a first-order kinetic reaction. The 120 s treatment successfully reduced pesticide contamination to levels below maximum residue limits. Treatment up to 180 s did not adversely affect the quality of wolfberries. QTOF/MS identification and degradation pathway analysis revealed that DBD broke down the furan ring and carbamate group of carbofuran, while replacing the chlorine atom and oxidizing the side chain of acetamiprid, leading to degradation. The toxicological evaluation showed that the degradation products were less toxic than undegraded pesticides. Molecular dynamics simulations revealed the reactive oxygen species (ROS) facilitated the degradation of pesticides through dehydrogenation and radical addition reactions. ROS type and dosage significantly affected the breakage of chemical bonds associated with toxicity (C4-O5 and C2-Cl1). These findings deepen insights into the plasma chemical degradation of pesticides.


Asunto(s)
Carbofurano , Lycium , Neonicotinoides , Plaguicidas , Carbofurano/toxicidad , Especies Reactivas de Oxígeno , Simulación de Dinámica Molecular , Plaguicidas/análisis
13.
J Ethnopharmacol ; 325: 117889, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336183

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY: To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS: The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS: Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION: Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.


Asunto(s)
Lycium , Degeneración Retiniana , Ratones , Animales , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/tratamiento farmacológico , Lycium/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estrés Oxidativo , Modelos Animales de Enfermedad
14.
Zhongguo Zhong Yao Za Zhi ; 49(1): 110-122, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403344

RESUMEN

Studying the physicochemical properties and biological activities of Lycium barbarum polysaccharides(LBPs) is of great significance. The previous study had extracted LBPs(LBP-1, LBP-2, LBP-3, LBP-4, and LBP-5) by five different methods(cold water extraction, boiling water reflux extraction of the residue after cold water extraction, ultrasonic extraction with 50% ethanol, ultrasonic extraction with 25% ethanol of the residue after 50% ethanol extraction, and hot water extraction). In this study, the structures of the obtained five LBPs were characterized by UV spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Furthermore, the antioxidant, blood lipid-lowering, nitrosation-inhibting, acetylcholinesterase-inhibiting, and tyrosinase-inhibiting activities of the five LBPs were measured in vitro. The results showed that high-temperature extraction destroyed the polysaccharide structure, while ultrasound-assisted extraction ensured the structural integrity. The thermal stability and degradation behaviors differed among the five LBPs. However, the UV spectroscopic results of the five LBPs did not show significant differences, and all of the five LBPs showed the characteristic absorption peaks of proteins. LBP-3 and LBP-4 exhibited strong antioxidant activity, while LBP-3 had the strongest blood lipid-lowering activity. In addition, LBP-3 outperformed other LBPs in inhibiting nitrosation and acetylcholineste-rase, and LBP-2 showed the strongest inhibitory effect on tyrosinase. This study explored the effects of different extraction methods on the physicochemical properties and biological activities of LBPs, with a view to providing a basis for the selection of suitable extraction methods to obtain LBPs with ideal biological activities.


Asunto(s)
Medicamentos Herbarios Chinos , Lycium , Lycium/química , Monofenol Monooxigenasa , Acetilcolinesterasa , Antioxidantes/farmacología , Antioxidantes/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Polisacáridos/farmacología , Polisacáridos/química , Lípidos , Etanol , Agua
15.
Front Immunol ; 15: 1333469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380326

RESUMEN

High soybean meal diet (HSBMD) decreased the immunity and damaged the liver health of spotted sea bass; in this study, Lycium barbarum polysaccharides (LBP) was added to HSBMD to explore its effects on the immunity and liver health. The diet with 44% fish meal content was designed as a blank control. On this basis, soybean meal was used to replace 50% fish meal as HSBMD, and LBP was added in HSBMD in gradient (1.0, 1.5, 2.0 g/kg) as the experimental diet. 225-tailed spotted sea bass with initial body weight of 44.52 ± 0.24 g were randomly divided into 5 groups and fed the corresponding diet for 52 days, respectively. The results show that: after ingestion of HSBMD, the immunity of spotted sea bass decreased slightly and hepatic tissue was severely damaged. And the addition of LBP significantly improved the immune capacity and protected the hepatic health. Specifically, the activities of serum lysozyme (LZM), immunoglobulin M (IgM), liver acid phosphatase (ACP) and alkaline phosphatase (AKP) were increased, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were significantly decreased, and hepatic morphology was improved. In the analysis of transcriptome results, it was found that toll-like receptor 3 (TLR3) and toll-like receptor 5 (TLR5) were down-regulated in toll-like receptor signaling pathway. And LBP may protect hepatic health by regulating Glycolysis/Gluconeogenesis, Insulin signaling pathway, Steroid biosynthesis and other glucolipid-related pathways. In conclusion, the addition of LBP in HSBMD can improve the immunity and protect the hepatic health of spotted sea bass, and its mechanism may be related to glucose and lipid metabolism.


Asunto(s)
Lubina , Lycium , Animales , Dieta , Harina , Hígado/metabolismo , Polisacáridos/farmacología , Polisacáridos/metabolismo
16.
New Phytol ; 242(2): 558-575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396374

RESUMEN

Black wolfberry (Lycium ruthenicum Murr.) contains various bioactive metabolites represented by flavonoids, which are quite different among production regions. However, the underlying regulation mechanism of flavonoid biosynthesis governing the bioactivity of black wolfberry remains unclear. Presently, we compared the bioactivity of black wolfberry from five production regions. Multi-omics were performed to construct the regulation network associated with the fruit bioactivity. The detailed regulation mechanisms were identified using genetic and molecular methods. Typically, Qinghai (QH) fruit exhibited higher antioxidant and anti-inflammatory activities. The higher medicinal activity of QH fruit was closely associated with the accumulation of eight flavonoids, especially Kaempferol-3-O-rutinoside (K3R) and Quercetin-3-O-rutinoside (rutin). Flavonoid biosynthesis was found to be more active in QH fruit, and the upregulation of LrFLS, LrCHS, LrF3H and LrCYP75B1 caused the accumulation of K3R and rutin, leading to high medicinal bioactivities of black wolfberry. Importantly, transcription factor LrMYB94 was found to regulate LrFLS, LrCHS and LrF3H, while LrWRKY32 directly triggered LrCYP75B1 expression. Moreover, LrMYB94 interacted with LrWRKY32 to promote LrWRKY32-regulated LrCYP75B1 expression and rutin synthesis in black wolfberry. Transgenic black wolfberry overexpressing LrMYB94/LrWRKY32 contained higher levels of K3R and rutin, and exhibited high medicinal bioactivities. Importantly, the LrMYB94/LrWRKY32-regulated flavonoid biosynthesis was light-responsive, showing the importance of light intensity for the medicinal quality of black wolfberry. Overall, our results elucidated the regulation mechanisms of K3R and rutin synthesis, providing the basis for the genetic breeding of high-quality black wolfberry.


Asunto(s)
Lycium , Lycium/genética , Fitomejoramiento , Flavonoides , Antioxidantes , Rutina , Frutas/genética
17.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302892

RESUMEN

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Asunto(s)
Lycium , Lycium/genética , Lycium/metabolismo , Frutas/metabolismo , Perfilación de la Expresión Génica , Metaboloma , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Glutamatos/metabolismo
18.
Carbohydr Polym ; 330: 121882, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368089

RESUMEN

Structurally defined arabinogalactan (LBP-3) from Lycium barbarum have effect on improving intestinal barrier function. However, whether its intestinal barrier function depended on the changes of intestinal mucin O-glycans have not been investigated. A dextran sodium sulfate-induced acute colitis mouse model was employed to test prevention and treatment with LBP-3. The intestinal microbiota as well as colonic mucin O-glycan profiles were analyzed. Supplementation with LBP-3 inhibited harmful bacteria, including Desulfovibrionaceae, Enterobacteriaceae, and Helicobacteraceae while significantly increased the abundance of beneficial bacteria (e.g., Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae). Notably, LBP-3 augmented the content of neutral O-glycans by stimulating the fucosylation glycoforms (F1H1N2 and F1H2N2), short-chain sulfated O-glycans (S1F1H1N2, S1H1N2, and S1H2N3), and sialylated medium- and long-chain O-glycans (F1H2N2A1, H2N3A1, and F1H3N2A1). In summary, we report that supplement LBP-3 significantly reduced pathological symptoms, restored the bacterial community, and promoted the expression of O-glycans to successfully prevent and alleviate colitis in a mouse model, especially in the LBP-3 prevention testing group. The underlying mechanism of action was investigated using glycomics to better clarify which the structurally defined LBP-3 were responsible for its beneficial effect against ulcerative colitis and assess its use as a functional food or pharmaceutical supplement.


Asunto(s)
Colitis , Galactanos , Lycium , Ratones , Animales , Mucinas/metabolismo , Lycium/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Polisacáridos/efectos adversos , Bacterias/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
19.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396806

RESUMEN

Goji berries, long valued in Traditional Chinese Medicine and Asian cuisine for their wide range of medicinal benefits, are now considered a 'superfruit' and functional food worldwide. Because of growing demand, Europe and North America are increasing their goji berry production, using goji berry varieties that are not originally from these regions. European breeding programs are focusing on producing Lycium varieties adapted to local conditions and market demands. By 2023, seven varieties of goji berries were successfully registered in Romania, developed using germplasm that originated from sources outside the country. A broader project focused on goji berry breeding was initiated in 2014 at USAMV Bucharest. In the present research, five cultivated and three wild L. barbarum genotypes were compared to analyse genetic variation at the whole genome level. In addition, a case study presents the differences in the genomic coding sequences of BODYGUARD (BDG) 3 and 4 genes from chromosomes 4, 8, and 9, which are involved in cuticle-related resistance. All three BDG genes show distinctive differences between the cultivated and wild-type genotypes at the SNP level. In the BDG 4 gene located on chromosome 8, 69% of SNPs differentiate the wild from the cultivated genotypes, while in BDG 3 on chromosome 4, 64% of SNPs could tell the difference between the wild and cultivated goji berry. The research also uncovered significant SNP and InDel differences between cultivated and wild genotypes, in the entire genome, providing crucial insights for goji berry breeders to support the development of goji berry cultivation in Romania.


Asunto(s)
Lycium , Lycium/genética , Rumanía , Fitomejoramiento , Genotipo , Genómica , Frutas/genética
20.
J Sci Food Agric ; 104(6): 3749-3756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234140

RESUMEN

BACKGROUND: Laboratory scale experiments have shown that curdlan and gellan gum gelled together as curdlan/gellan gum (CG) hybrid gels showed better gel properties than the individual curdlan and gellan gum. In this study, CG and black wolfberry anthocyanin (BWA), CG and maltitol (ML) hybrid gels were constructed using CG hybrid gel as matrix. The effects of BWA or ML on the gel properties and microstructure of CG hybrid gels were investigated and a confectionery gel was developed. RESULTS: The presence of BWA increased the storage modulus (G') value of CG at 0.1 Hz, whereas ML had little effect on the G' value of CG. The addition of BWA (5 g L-1 ) and ML (0.3 mol L-1 ) increased the melting and gelling temperatures of CG hybrid gels to 42.4 °C and 34.1 °C and 44.2 °C and 33.2 °C, respectively. Meanwhile, the relaxation time T22 in CG-ML and CG-BWA hybrid gels was reduced to 91.96 and 410.27 ms, indicating the strong binding between BWA and CG, ML and CG. The hydrogen bond interaction between BWA or ML and CG was confirmed by the shift in the hydroxyl stretching vibration peak. Moreover, the microstructures of CG-ML and CG-BWA hybrid gels were denser than that of CG. In addition, confectionery gel containing CG-BWA-ML has good chewing properties. CONCLUSION: These results indicated that the incorporation of BWA or ML could improve the structure of CG hybrid gels and assign a sustainability potential for the development of confectionery gels based on CG complex. © 2024 Society of Chemical Industry.


Asunto(s)
Lycium , Maltosa/análogos & derivados , Alcoholes del Azúcar , beta-Glucanos , Antocianinas , Polisacáridos Bacterianos/química , Geles/química , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...