Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Res ; 183: 80-91, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26805621

RESUMEN

Profuse growth of Lycpodium cernuum L. was found in phosphate deficient red lateritic soil of West Bengal, India. Interaction of vesicular-arbuscular mycorrhiza (VAM) with Lycopodium rhizoids were described earlier but association of PGPR with their rhizoids were not studied. Three potent phosphate solubilizing bacterial strains (P4, P9 and P10) associated with L. cernuum rhizoids were isolated and identified by 16S rDNA homologies on Ez-Taxon database as Burkholderia tropica, Burkholderia unamae and Burkholderia cepacia respectively. Day wise kinetics of phosphate solubilization against Ca3(PO4)2 suggested P4 (580.56±13.38 µg ml(-1)) as maximum mineral phosphate solubilizer followed by P9 (517.12±17.15 µg ml(-1)) and P10 (485.18±14.23 µg ml(-1)) at 28 °C. Release of bound phosphates by isolated strains from ferric phosphate (FePO4), aluminum phosphate (AlPO4) and four different complex rock phosphates indicated their very good phosphate solubilizng efficacy. Nitrogen independent solubilizition also supports their nitrogen fixing capabilities. Inhibition of P solubilization by calcium salts and induction by EDTA suggested pH dependent chelation of metal cations by all of the isolates. Rhizoidal colonization potentials of Burkholderia spp. were confirmed by in planta experiment and also using scanning electron microscope (SEM). Increases of total phosphate content in Lycopodium plants upon soil treatment with these isolates were also recorded. In addition siderophore production on CAS agar medium, tryptophan dependent IAA production and antifungal activities against pathogenic fungi by rhizospheric isolates deep-rooted that they have definite role in nutrient mobilization for successful colonization of L. cernuum in nutrient deficient lateritic soil.


Asunto(s)
Burkholderia/metabolismo , Lycopodium/crecimiento & desarrollo , Lycopodium/microbiología , Fosfatos/metabolismo , Compuestos de Aluminio/metabolismo , Burkholderia/genética , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Lycopodium/química , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Micorrizas , Factores de Crecimiento Nervioso , Fijación del Nitrógeno , Fosfatos/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Sideróforos/biosíntesis , Microbiología del Suelo
2.
Ann Bot ; 112(6): 1083-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23979904

RESUMEN

BACKGROUND AND AIMS: Long-lived underground populations of mycoheterotrophic gametophytes and attached sporophytes at various developmental stages occur in lycophytes. Young underground sporophytes obtain carbon solely from the gametophyte and establish nutritional independence only after reaching the soil surface, which may take several years. This prolonged period of matrotrophy exceeds that of bryophytes. The foot is massive and provides the lifeline for sporophyte establishment, yet the fine structure of the placental region is unexplored in lycophytes with underground gametophytes. METHODS: Gametophytes with attached embryos/young sporophytes of Lycopodium obscurum were collected in nature, processed and examined by light and transmission electron microscopy. KEY RESULTS: Three ultrastructurally distinct regions were identified within a single foot of a sporophyte emerging from the soil. Young foot regions actively divide, and have direct contact with and show little differentiation from gametophyte cells. In unlobed foot areas, cells in both generations exhibit polarity in content and indicate unidirectional transport of carbon reserves into the foot toward the developing shoot and root. The foot has inconspicuous wall ingrowths. Highly lobed foot regions contain peripheral transfer cells with prominent wall ingrowths that absorb nutrients from degenerating gametophyte cells. CONCLUSIONS: Variability within a single placenta is consistent with an invasive and long-lived foot. The late appearance of wall ingrowths in transfer cells reflects this dynamic ever-growing embryo. Placental features in lycophytes are related to the unique reorientation of all embryonic regions during development. Small placentas with wall ingrowths in both generations characterize ephemeral embryos in green gametophytes, while short-lived and repositioning embryos of heterosporous taxa are devoid of transfer cells. Transfer cell evolution across embryophytes is riddled with homoplasy and reflects diverse patterns of embryology. Scrutiny of placental evolution must include consideration of nutritional status and life history strategies of the gametophyte and young sporophyte.


Asunto(s)
Células Germinativas de las Plantas/ultraestructura , Lycopodium/ultraestructura , Carbono/metabolismo , Diferenciación Celular , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/fisiología , Lycopodium/genética , Lycopodium/crecimiento & desarrollo , Lycopodium/fisiología , Microscopía Electrónica de Transmisión , Filogenia , Semillas/crecimiento & desarrollo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA