Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
2.
Eur J Neurol ; 31(6): e16268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38465478

RESUMEN

BACKGROUND AND PURPOSE: In amyotrophic lateral sclerosis (ALS), there is an unmet need for more precise patient characterization through quantitative, ideally operator-independent, assessments of disease extent and severity. Radially sampled averaged magnetization inversion recovery acquisitions (rAMIRA) magnetic resonance imaging enables gray matter (GM) and white matter (WM) area quantitation in the cervical and thoracic spinal cord (SC) with optimized contrast. We aimed to investigate rAMIRA-derived SC GM and SC WM areas and their association with clinical phenotype and disability in ALS. METHODS: A total of 36 patients with ALS (mean [SD] age 61.7 [12.6] years, 14 women) and 36 healthy, age- and sex-matched controls (HCs; mean [SD] age 63.1 [12.1] years, 14 women) underwent two-dimensional axial rAMIRA imaging at the inter-vertebral disc levels C2/3-C5/C6 and the lumbar enlargement level Tmax. ALS Functional Rating Scale-revised (ALSFRS-R) score, muscle strength, and sniff nasal inspiratory pressure (SNIP) were assessed. RESULTS: Compared to HCs, GM and WM areas were reduced in patients at all cervical levels (p < 0.0001). GM area (p = 0.0001), but not WM area, was reduced at Tmax. Patients with King's Stage 3 showed significant GM atrophy at all levels, while patients with King's Stage 1 showed significant GM atrophy selectively at Tmax. SC GM area was significantly associated with muscle force at corresponding myotomes. GM area at C3/C4 was associated with ALSFRS-R (p < 0.001) and SNIP (p = 0.0016). CONCLUSION: Patients with ALS assessed by rAMIRA imaging show significant cervical and thoracic SC GM and SC WM atrophy. SC GM area correlates with muscle strength and clinical disability. GM area reduction at Tmax may be an early disease sign. Longitudinal studies are warranted.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia , Sustancia Gris , Imagen por Resonancia Magnética , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/complicaciones , Femenino , Persona de Mediana Edad , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Anciano , Atrofia/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Vértebras Torácicas/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Vértebras Cervicales/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
3.
Mult Scler ; 30(4-5): 516-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372019

RESUMEN

BACKGROUND: We assessed the ability of a brain-and-cord-matched quantitative magnetic resonance imaging (qMRI) protocol to differentiate patients with progressive multiple sclerosis (PMS) from controls, in terms of normal-appearing (NA) tissue abnormalities, and explain disability. METHODS: A total of 27 patients and 16 controls were assessed on the Expanded Disability Status Scale (EDSS), 25-foot timed walk (TWT), 9-hole peg (9HPT) and symbol digit modalities (SDMT) tests. All underwent 3T brain and (C2-C3) cord structural imaging and qMRI (relaxometry, quantitative magnetisation transfer, multi-shell diffusion-weighted imaging), using a fast brain-and-cord-matched protocol with brain-and-cord-unified imaging readouts. Lesion and NA-tissue volumes and qMRI metrics reflecting demyelination and axonal loss were obtained. Random forest analyses identified the most relevant volumetric/qMRI measures to clinical outcomes. Confounder-adjusted linear regression estimated the actual MRI-clinical associations. RESULTS: Several qMRI/volumetric differences between patients and controls were observed (p < 0.01). Higher NA-deep grey matter quantitative-T1 (EDSS: beta = 7.96, p = 0.006; 9HPT: beta = -0.09, p = 0.004), higher NA-white matter orientation dispersion index (TWT: beta = -3.21, p = 0.005; SDMT: beta = -847.10, p < 0.001), lower whole-cord bound pool fraction (9HPT: beta = 0.79, p = 0.001) and higher NA-cortical grey matter quantitative-T1 (SDMT = -94.31, p < 0.001) emerged as particularly relevant predictors of greater disability. CONCLUSION: Fast brain-and-cord-matched qMRI protocols are feasible and identify demyelination - combined with other mechanisms - as key for disability accumulation in PMS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Médula Cervical/patología , Esclerosis Múltiple/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple Crónica Progresiva/patología , Sustancia Gris/patología
4.
Mult Scler ; 30(4-5): 505-515, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38419027

RESUMEN

BACKGROUND: Performing routine brain magnetic resonance imaging (MRI) is widely accepted as the standard of care for disease monitoring in multiple sclerosis (MS), but the utility of performing routine spinal cord (SC) MRI for this purpose is still debatable. OBJECTIVE: This study aimed to measure the frequency of new isolated cervical spinal cord lesions (CSLs) in people with MS (pwMS) undergoing routine brain and cervical SC-MRI for disease monitoring and determine the factors associated with the development of new CSLs and their prognostic value. METHODS: We retrospectively identified 1576 pwMS who underwent follow-up 3T brain and cervical SC-MRI over a 9-month period. MRI was reviewed for the presence of new brain lesions (BLs) and CSLs. Clinical records were reviewed for interval relapses between sequential scans and subsequent clinical relapse and disability worsening after the follow-up MRI. RESULTS: In 1285 pwMS (median interval: 13-14 months) who were clinically stable with respect to relapses, 73 (5.7%) had new CSLs, of which 49 (3.8%) had concomitant new BLs and 24 (1.9%) had new isolated CSLs only. New asymptomatic CSLs were associated with ⩾ 3 prior relapses (p = 0.04), no disease-modifying therapy (DMT) use (p = 0.048), and ⩾ 3 new BLs (p < 0.001); ⩾ 3 new BLs (OR: 7.11, 95% CI: 4.3-11.7, p < 0.001) remained independently associated with new CSLs on multivariable analysis. Having new asymptomatic CSLs was not independently associated with subsequent relapse or disability worsening after the follow-up MRI (median follow-up time of 26 months). CONCLUSION: Routine brain and cervical SC-MRI detected new isolated CSLs in only < 2% of clinically stable pwMS. Developing new asymptomatic CSLs was associated with concomitant new BLs and did not confer an independent increased risk of relapse or disability worsening. Performing SC-MRI may not be warranted for routine monitoring in most pwMS, and performing only brain MRI may be sufficient to capture the vast majority of clinically silent disease activity.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Enfermedades de la Médula Espinal , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Estudios Retrospectivos , Progresión de la Enfermedad , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Enfermedades de la Médula Espinal/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Recurrencia
5.
Elife ; 122024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224498

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.


Asunto(s)
Esclerosis Amiotrófica Lateral , Médula Cervical , Efrina-B2 , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/patología , Astrocitos/metabolismo , Médula Cervical/metabolismo , Médula Cervical/patología , Diafragma/inervación , Modelos Animales de Enfermedad , Efrina-B2/genética , Ratones Transgénicos , Enfermedades Neurodegenerativas/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
6.
Eur Radiol ; 34(4): 2297-2309, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37707550

RESUMEN

OBJECTIVES: To evaluate the ability of intraoperative CEUS to predict neurological recovery in patients with degenerative cervical myelopathy (DCM). METHODS: Twenty-six patients with DCM who underwent laminoplasty and intraoperative ultrasound (IOUS) were included in this prospective study. The modified Japanese Orthopaedic Association (mJOA) scores and MRI were assessed before surgery and 12 months postoperatively. The anteroposterior diameter (APD), maximum spinal cord compression (MSCC), and area of signal changes in the cord at the compressed and normal levels were measured and compared using MRI and IOUS. Conventional blood flow and CEUS indices (time to peak, ascending slope, peak intensity (PI), and area under the curve (AUC)) at different levels during IOUS were calculated and analysed. Correlations between all indicators and the neurological recovery rate were evaluated. RESULTS: All patients underwent IOUS and intraoperative CEUS, and the total recovery rate was 50.7 ± 33.3%. APD and MSCC improved significantly (p < 0.01). The recovery rate of the hyperechoic lesion group was significantly worse than that of the isoechoic group (p = 0.016). 22 patients were analysed by contrast analysis software. PI was higher in the compressed zone than in the normal zone (24.58 ± 3.19 versus 22.43 ± 2.39, p = 0.019). ΔPI compress-normal and ΔAUC compress-normal of the hyperechoic lesion group were significantly higher than those of the isoechoic group (median 2.19 versus 0.55, p = 0.017; 135.7 versus 21.54, p = 0.014, respectively), and both indices were moderately negatively correlated with the recovery rate (r = - 0.463, p = 0.030; r = - 0.466, p = 0.029). CONCLUSIONS: Signal changes and microvascular perfusion evaluated using CEUS during surgery are valuable predictors of cervical myelopathy prognosis. CLINICAL RELEVANCE STATEMENT: In the spinal cord compression area of degenerative cervical myelopathy, especially in the hyperechoic lesions, intraoperative CEUS showed more significant contrast agent perfusion than in the normal area, and the degree was negatively correlated with the neurological prognosis. KEY POINTS: • Recovery rates in patients with hyperechoic findings were lower than those of patients without lesions detected during intraoperative ultrasound. • The peak intensity of CEUS was higher in compressed zones than in the normal parts of the spinal cord. • Quantitative CEUS comparisons of the peak intensity and area under the curve at the compressed and normal levels of the spinal cord revealed differences that were inversely correlated to the recovery rate.


Asunto(s)
Médula Cervical , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Humanos , Compresión de la Médula Espinal/patología , Estudios Prospectivos , Médula Cervical/diagnóstico por imagen , Médula Cervical/cirugía , Médula Cervical/patología , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Vértebras Cervicales/patología , Médula Espinal/patología , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Enfermedades de la Médula Espinal/patología , Imagen por Resonancia Magnética , Resultado del Tratamiento
7.
Neurosci Lett ; 820: 137607, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38141752

RESUMEN

Magnetic resonance imaging plays an important role in characterizing microstructural changes and reorganization after traumatic injuries to the nervous system. In this study, we tested the feasibility of ex-vivo spinal cord diffusion tensor imaging (DTI) in combination with in vivo brain functional MRI to characterize spinal reorganization and its supraspinal association after a hemicontusion cervical spinal cord injury (SCI). DTI parameters (fractional anisotropy [FA], mean diffusion [MD]) and fiber orientation changes related to reorganization in the contused cervical spinal cord were compared to sham specimens. Altered fiber density and fiber directions occurred across the ipsilateral and contralateral hemicords but with only ipsilateral FA and MD changes. The hemicontusion SCI resulted in ipsilateral fiber breaks, voids and vivid fiber reorientations along the injury epicenter. Fiber directional changes below the injury level were primarily inter-hemispheric, indicating prominent below-level cross-hemispheric reorganization. In vivo resting state functional connectivity of the brain from the respective rats before obtaining the spinal cord samples indicated spatial expansion and increased connectivity strength across both the sensory and motor networks after SCI. The consistency of the neuroplastic changes along the neuraxis (both brain and spinal cord) at the single-subject level, indicates that distinctive reorganizational relationships exist between the spinal cord and the brain post-SCI.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Ratas , Animales , Imagen de Difusión Tensora/métodos , Médula Cervical/lesiones , Médula Cervical/patología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Imagen por Resonancia Magnética
8.
Sci Rep ; 13(1): 22660, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114733

RESUMEN

The aim of this study was to determine tissue-specific blood perfusion impairment of the cervical cord above the compression site in patients with degenerative cervical myelopathy (DCM) using intravoxel incoherent motion (IVIM) imaging. A quantitative MRI protocol, including structural and IVIM imaging, was conducted in healthy controls and patients. In patients, T2-weighted scans were acquired to quantify intramedullary signal changes, the maximal canal compromise, and the maximal cord compression. T2*-weighted MRI and IVIM were applied in all participants in the cervical cord (covering C1-C3 levels) to determine white matter (WM) and grey matter (GM) cross-sectional areas (as a marker of atrophy), and tissue-specific perfusion indices, respectively. IVIM imaging resulted in microvascular volume fraction ([Formula: see text]), blood velocity ([Formula: see text]), and blood flow ([Formula: see text]) indices. DCM patients additionally underwent a standard neurological clinical assessment. Regression analysis assessed associations between perfusion parameters, clinical outcome measures, and remote spinal cord atrophy. Twenty-nine DCM patients and 30 healthy controls were enrolled in the study. At the level of stenosis, 11 patients showed focal radiological evidence of cervical myelopathy. Above the stenosis level, cord atrophy was observed in the WM (- 9.3%; p = 0.005) and GM (- 6.3%; p = 0.008) in patients compared to healthy controls. Blood velocity (BV) and blood flow (BF) indices were decreased in the ventral horns of the GM (BV: - 20.1%, p = 0.0009; BF: - 28.2%, p = 0.0008), in the ventral funiculi (BV: - 18.2%, p = 0.01; BF: - 21.5%, p = 0.04) and lateral funiculi (BV: - 8.5%, p = 0.03; BF: - 16.5%, p = 0.03) of the WM, across C1-C3 levels. A decrease in microvascular volume fraction was associated with GM atrophy (R = 0.46, p = 0.02). This study demonstrates tissue-specific cervical perfusion impairment rostral to the compression site in DCM patients. IVIM indices are sensitive to remote perfusion changes in the cervical cord in DCM and may serve as neuroimaging biomarkers of hemodynamic impairment in future studies. The association between perfusion impairment and cervical cord atrophy indicates that changes in hemodynamics caused by compression may contribute to the neurodegenerative processes in DCM.


Asunto(s)
Médula Cervical , Enfermedades Musculoesqueléticas , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Humanos , Constricción Patológica/patología , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/patología , Compresión de la Médula Espinal/diagnóstico por imagen , Compresión de la Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Perfusión , Enfermedades Musculoesqueléticas/patología , Atrofia/patología , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/patología
9.
Rev Assoc Med Bras (1992) ; 69(12): e20230949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37971136

RESUMEN

OBJECTIVE: Multiple sclerosis is an autoimmune disease that commonly affects the cervical part of the spinal cord. The aim of this study was to evaluate the relationship between cervical spinal cord atrophy and clinical disability in multiple sclerosis patients. METHODS: We examined the cervical spinal cord area measurements of 64 multiple sclerosis patients and 64 healthy control groups over the images obtained by a T2-weighted magnetic resonance imaging device. RESULTS: The C2-3, C3-4, C4-5, and C6-7 axial cross-sectional surface area values of the patient group were statistically lower than those of the control group (p<0.05). A negative correlation was found between patients' Expanded Disability Status Scale scores and C4-5, C5-6, and C6-7 axial area (axial area p<0.05; r1=-0.472, r2=-0.513, and r3=-0.415). CONCLUSION: When all parameters were evaluated, the data of our control group were found to be higher than the multiple sclerosis groups. There appears to be a significant relationship between patients with cervical spinal cord atrophy and an increase in Expanded Disability Status Scale scores.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Estudios Transversales , Imagen por Resonancia Magnética , Atrofia , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Evaluación de la Discapacidad
10.
Neuroimage ; 284: 120460, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979894

RESUMEN

BACKGROUND: Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE: Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS: In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS: We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION: In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Humanos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Retrospectivos , Proyectos Piloto , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos
11.
J Clin Neurosci ; 117: 84-90, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37783068

RESUMEN

BACKGROUND: Degenerative cervical myelopathy (DCM) arises from spinal degenerative changes injuring the cervical spinal cord. Most cord compression is incidental, referred to as asymptomatic spinal cord compression (ASCC). How and why ASCC differs from DCM is poorly understood. In this paper, we study a local cohort to identify specific types and groups of degenerative pathology more likely associated with DCM than ASCC. METHODS: This study was a retrospective cohort analysis (IRB Approval ID: PRN10455). The frequency of degenerative findings between those with ASCC and DCM patients were compared using network analysis, hierarchical clustering, and comparison to existing literature to identify potential subgroups in a local cohort (N = 155) with MRI-defined cervical spinal cord compression. Quantitative measures of spinal cord compression (MSCC and MCC) were used to confirm their relevance. RESULTS: ELF (8.7 %, 95 % CI 3.8-13.6 % vs 35.7 %, 95 % CI 27.4-44.0 %) Congenital Stenosis (3.9 %, 95 % CI 0.6-7.3 % vs 25.0 %, 95 % CI 17.5-32.5 %), and OPLL (0.0 %, 95 % CI 0.0-0.0 % vs 3.6 %, 95 % CI 0.3-6.8 %) were more likely in patients with DCM. Comparative network analysis indicated loss of lordosis was associated with ASCC, whilst ELF with DCM. Hierarchical Cluster Analysis indicated four sub-groups: multi-level disc disease with ELF, single-level disc disease without loss of lordosis and OPLL with DCM, and single-level disc disease with loss of lordosis with ASCC. Quantitative measures of cord compression were higher in groups associated with DCM, but similar in patients with single-level disc disease and loss of lordosis. CONCLUSIONS: This study identified four subgroups based on degenerative pathology requiring further investigation.


Asunto(s)
Médula Cervical , Lordosis , Enfermedades Musculoesqueléticas , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Animales , Humanos , Compresión de la Médula Espinal/etiología , Compresión de la Médula Espinal/complicaciones , Estudios Retrospectivos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Lordosis/patología , Enfermedades de la Médula Espinal/complicaciones , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/patología , Imagen por Resonancia Magnética , Enfermedades Musculoesqueléticas/patología
12.
World Neurosurg ; 180: 149-154.e2, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783305

RESUMEN

OBJECTIVE: Posterior fossa decompression (PFD) surgery creates more space at the skull base, reduces the resistance to the cerebrospinal fluid motion, and alters craniocervical biomechanics. In this paper, we retrospectively examined the changes in neural tissue dimensions following PFD surgery on Chiari malformation type 1 adults. METHODS: Measurements were performed on T2-weighted brain magnetic resonance images acquired before and 4 months after surgery. Measurements were conducted for neural tissue volume and spinal cord/brainstem width at 4 different locations; 2 width measurements were made on the brainstem and 2 on the spinal cord in the midsagittal plane. Cerebellar tonsillar position (CTP) was also measured before and after surgery. RESULTS: Twenty-five adult patients, with a mean age of 38.9 ± 8.8 years, were included in the study. The cervical cord volume increased by an average of 2.3 ± 3.3% (P = 0.002). The width at the pontomedullary junction increased by 2.2 ± 3.5% (P < 0.01), while the width 10 mm caudal to this junction increased by 4.2 ± 3.9% (P < 0.0001). The spinal cord width at the base of second cervical vertebra and third cervical vertebra did not significantly change after surgery. The CTP decreased by 60 ± 37% (P < 0.0001) after surgery, but no correlation was found between CTP change and dimension change. CONCLUSIONS: The brainstem width and cervical cord volume showed a modest increase after PFD surgery, although standard deviations were large. A reduction in compression after PFD surgery may allow for an increase in neural tissue dimension. However, clinical relevance is unclear and should be assessed in future studies with high-resolution imaging.


Asunto(s)
Malformación de Arnold-Chiari , Médula Cervical , Adulto , Humanos , Persona de Mediana Edad , Médula Cervical/diagnóstico por imagen , Médula Cervical/cirugía , Médula Cervical/patología , Estudios Retrospectivos , Descompresión Quirúrgica/métodos , Malformación de Arnold-Chiari/diagnóstico por imagen , Malformación de Arnold-Chiari/cirugía , Malformación de Arnold-Chiari/patología , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/cirugía , Tronco Encefálico/patología , Médula Espinal/cirugía , Imagen por Resonancia Magnética , Fosa Craneal Posterior/diagnóstico por imagen , Fosa Craneal Posterior/cirugía , Fosa Craneal Posterior/patología , Resultado del Tratamiento
13.
Brain Behav ; 13(11): e3159, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37775975

RESUMEN

INTRODUCTION: Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is widely used for MS diagnosis and clinical follow-up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball-and-Stick models. METHODS: We analyzed spinal cord data acquired from multiple hospitals and extracted average diffusion MRI metrics per vertebral level using a collection of image processing methods and an atlas-based approach. We then performed a statistical analysis to evaluate the feasibility of these metrics for detecting lesions, exploring the usefulness of combining different metrics to improve accuracy. RESULTS: Our study demonstrates the sensitivity of each metric to underlying microstructure changes in MS patients. We show that selecting a specific subset of metrics, which provide complementary information, significantly improves the prediction score of lesion presence in the cervical spinal cord. Furthermore, the Ball-and-Stick model has the potential to provide novel information about the microstructure of damaged tissue. CONCLUSION: Our results suggest that diffusion measures, particularly combined measures, are sensitive in discriminating abnormal from healthy cervical vertebral levels in patients. This information could aid in improving MS diagnosis and clinical follow-up. Our study highlights the potential of the Ball-and-Stick model in providing additional insights into the microstructure of the damaged tissue.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Humanos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen de Difusión Tensora/métodos , Médula Espinal/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos
14.
Clin Neurol Neurosurg ; 233: 107943, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37634395

RESUMEN

BACKGROUND: In recent years, structural and functional reorganization of the brain and changes in brainstem structural connectivity have been shown in patients with degenerative cervical myelopathy (DCM). We hypothesized that volume loss in the basal ganglia, thalami, and brainstem structures exists and is associated with spinal cord compression severity in patients with DCM. METHODS: Forty-seven patients with DCM and 25 patients with cervical radiculopathy were evaluated using cervical spinal cord and brain magnetic resonance imaging (MRI). Brainstem structures, basal ganglia, and thalami volumes were evaluated with FreeSurfer and compared between groups with correction for individual intracranial volume, as well as patient age and sex. Additionally, spinal cord MRI data were analysed with the Spinal Cord Toolbox, and cross-sectional area (CSA) and fractional anisotropy (FA) values were calculated. Correlations between MR-morphometry data and spinal cord structural changes, as well as disease duration, were also evaluated in patients with DCM. RESULTS: A statistically significant reduction in the volume of the whole brainstem was revealed in the DCM group compared to the radiculopathy group (p < 0.01, FDR-corrected). Additionally, reductions in medulla oblongata, pons and midbrain volumes were found in patients with DCM (p < 0.01, p < 0.01 and p < 0.05, respectively, FDR-corrected). Additionally, a trend in the loss of volume of the left putamen was found (p = 0.087, FDR-corrected). Furthermore, medulla oblongata volume was correlated with spinal cord compression severity (R = 0.54, adjusted p < 0.001) and white matter damage (R = 0.46, adjusted p < 0.05) in patients with DCM. Negative correlations between the duration of the disease and the severity of spinal cord compression (R = -0.42, adjusted p < 0.05) and white matter damage (R = -0.49, adjusted p < 0.05) were also revealed, as well as a trend toward a negative association between the duration of the disease and the volume of the medulla oblongata (R = -0.35; adjusted p < 0.1). CONCLUSIONS: We revealed a reduction in the volume of brainstem structures in patients with DCM compared to patients with radiculopathy. Moreover, we found that these changes are associated with cord compression severity.


Asunto(s)
Médula Cervical , Radiculopatía , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Humanos , Compresión de la Médula Espinal/diagnóstico por imagen , Compresión de la Médula Espinal/etiología , Compresión de la Médula Espinal/patología , Enfermedades de la Médula Espinal/patología , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Tronco Encefálico/patología , Vértebras Cervicales/patología
15.
AJNR Am J Neuroradiol ; 44(9): 1101-1107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562829

RESUMEN

BACKGROUND AND PURPOSE: The detection of spinal cord lesions in patients with MS is challenging. Recently, the 3D MP2RAGE sequence demonstrated its usefulness at 3T. Benefiting from the high spatial resolution provided by ultra-high-field MR imaging systems, we aimed to evaluate the contribution of the 3D MP2RAGE sequence acquired at 7T for the detection of MS lesions in the cervical spine. MATERIALS AND METHODS: Seventeen patients with MS participated in this study. They were examined at both 3T and 7T. The MR imaging examination included a Magnetic Imaging in MS (MAGNIMS) protocol with an axial T2*-WI gradient recalled-echo sequence ("optimized MAGNIMS protocol") and a 0.9-mm isotropic 3D MP2RAGE sequence at 3T, as well as a 0.7-mm isotropic and 0.3-mm in-plane-resolution anisotropic 3D MP2RAGE sequences at 7T. Each data set was read by a consensus of radiologists, neurologists, and neuroscientists. The number of lesions and their topography, as well as the visibility of the lesions from one set to another, were carefully analyzed. RESULTS: A total of 55 lesions were detected. The absolute number of visible lesions differed among the 4 sequences (linear mixed effect ANOVA, P = .020). The highest detection was observed for the two 7T sequences with 51 lesions each (92.7% of the total). The optimized 3T MAGNIMS protocol and the 3T MP2RAGE isotropic sequence detected 41 (74.5%) and 35 lesions (63.6%), respectively. CONCLUSIONS: The 7T MP2RAGE sequences detected more lesions than the 3T sets. Isotropic and anisotropic acquisitions performed comparably. Ultra-high-resolution sequences obtained at 7T improve the identification and delineation of lesions of the cervical spinal cord in MS.


Asunto(s)
Médula Cervical , Humanos , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Imagen por Resonancia Magnética/métodos , Vértebras Cervicales/diagnóstico por imagen , Consenso
16.
Pract Neurol ; 23(5): 414-417, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37474302

RESUMEN

Leukodystrophies are a group of genetic diseases with diverse clinical features and prominent involvement of the central nervous system white matter. We describe a 27-year-old man who presented with a progressive neurological disease, and striking involvement of the brainstem and symmetrical white matter lesions on MR scanning. Having excluded several other causes of leukodystrophy, we confirmed Alexander disease when a genetic panel showed a probable pathogenic variant in GFAP: p.Leu359Pro. Clinicians should suspect Alexander disease in people with a progressive neurological motor decline who has pyramidal and bulbar signs and compatible neuroimaging.


Asunto(s)
Enfermedad de Alexander , Médula Cervical , Masculino , Humanos , Adulto , Enfermedad de Alexander/complicaciones , Enfermedad de Alexander/diagnóstico por imagen , Enfermedad de Alexander/genética , Proteína Ácida Fibrilar de la Glía/genética , Médula Cervical/patología , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Imagen por Resonancia Magnética/métodos
17.
Medicine (Baltimore) ; 102(29): e34205, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478237

RESUMEN

This research aimed to assess gray matter (GM), white matter (WM), lesions of multiple sclerosis (MS) and the therapeutic effect using diffusion kurtosis imaging (DKI). From January 2018 to October 2019, 78 subjects (48 of MS and 30 of health) perform routine MR scan and DKI of cervical spinal cord. The MS patients were divided into 2 groups according to the presence or absence of T2 hyperintensity. DKI-metrics were measured in the lesions, normal-appearing GM and WM. Significant differences were detected in DKI metrics between MS and healthy (P < .05) and between patients with cervical spinal cord T2-hyperintense and without T2-hyperintense (P < .001). Compared to healthy, GM-mean kurtosis (MK), GM-radial kurtosis, and WM-fractional anisotropy, WM-axial diffusion were statistically reduced in patients without T2-hyperintense (P < .05). Significant differences were observed in DKI metrics between patients with T2-hyperintense after therapy (P < .05), as well as GM-MK and WM-fractional anisotropy, WM-axial diffusion in patients without T2-hyperintense (P < .05); Expanded Disability Status Scale was correlated with MK values, as well as Expanded Disability Status Scale scores and MK values after therapy. Our results indicate that DKI-metrics can detect and quantitatively evaluate the changes in cervical spinal cord micropathological structure.


Asunto(s)
Médula Cervical , Esclerosis Múltiple , Traumatismos del Cuello , Traumatismos de la Médula Espinal , Sustancia Blanca , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Estudios de Factibilidad , Imagen de Difusión Tensora/métodos , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
Neurochem Int ; 168: 105564, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286109

RESUMEN

Cervical spondylotic myelopathy (CSM) is a severe non-traumatic spinal cord injury (SCI) wherein the spinal canal and cervical cord are compressed due to the degeneration of cervical tissues. To explore the mechanism of CSM, the ideal model of chronic cervical cord compression in rats was constructed by embedding a polyvinyl alcohol-polyacrylamide hydrogel in lamina space. Then, the RNA sequencing technology was used to screen the differentially expressed genes (DEGs) and enriched pathways among intact and compressed spinal cords. A total of 444 DEGs were filtered out based on the value of log2(Compression/Sham); these were associated with IL-17, PI3K-AKT, TGF-ß, and Hippo signaling pathways according to the GSEA, KEGG, and GO analyses. Transmission electron microscopy indicated the changes in mitochondrial morphology. Western blot and immunofluorescence staining revealed neuronal apoptosis, astrogliosis and microglial neuroinflammation in the lesion area. Specifically, the expression of apoptotic indicators, such as Bax and cleaved caspase-3, and inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, were upregulated. The activation of IL-17 signaling pathway was observed in microglia instead of neurons or astrocytes, the activation of TGF-ß and inhibition of Hippo signaling pathways were detected in astrocytes instead of neurons or microglia, and the inhibition of PI3K-AKT signaling pathway was discovered in neurons rather than microglia of astrocytes in the lesion area. In conclusion, this study indicated that neuronal apoptosis was accompanied by inhibiting of the PI3K-AKT pathway. Then, the activation of microglia IL-17 pathway and NLRP3 inflammasome effectuated the neuroinflammation, and astrogliosis was ascribed to the activation of TGF-ß and the inhibition of the Hippo pathway in the chronic cervical cord of compression. Therefore, therapeutic methods targeting these pathways in nerve cells could be promising CSM treatments.


Asunto(s)
Médula Cervical , Compresión de la Médula Espinal , Enfermedades de la Médula Espinal , Traumatismos de la Médula Espinal , Ratas , Animales , Interleucina-17/metabolismo , Interleucina-17/uso terapéutico , Médula Cervical/patología , Gliosis/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Neuroinflamatorias , Transcriptoma , Fosfatidilinositol 3-Quinasas/metabolismo , Compresión de la Médula Espinal/patología , Enfermedades de la Médula Espinal/complicaciones , Médula Espinal/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Traumatismos de la Médula Espinal/metabolismo
19.
BMC Musculoskelet Disord ; 24(1): 459, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277760

RESUMEN

BACKGROUND: Irreversible neurological dysfunction (IND) is an adverse event after cervical spinal cord injury (CSCI). However, there is still a shortage of objective criteria for the early prediction of neurological function. We aimed to screen independent predictors of IND and use these findings to construct a nomogram that could predict the development of neurological function in CSCI patients. METHODS: Patients with CSCI attending the Affiliated Hospital of Southwest Medical University between January 2014 and March 2021 were included in this study. We divided the patients into two groups: reversible neurological dysfunction (RND) and IND. The independent predictors of IND in CSCI patients were screened using the regularization technique to construct a nomogram, which was finally converted into an online calculator. Concordance index (C-index), calibration curves analysis and decision curve analysis (DCA) evaluated the model's discrimination, calibration, and clinical applicability. We tested the nomogram in an external validation cohort and performed internal validation using the bootstrap method. RESULTS: We enrolled 193 individuals with CSCI in this study, including IND (n = 75) and RND (n = 118). Six features, including age, American spinal injury association Impairment Scale (AIS) grade, signal of spinal cord (SC), maximum canal compromise (MCC), intramedullary lesion length (IMLL), and specialized institution-based rehabilitation (SIBR), were included in the model. The C-index of 0.882 from the training set and its externally validated value of 0.827 demonstrated the model's prediction accuracy. Meanwhile, the model has satisfactory actual consistency and clinical applicability, verified in the calibration curve and DCA. CONCLUSION: We constructed a prediction model based on six clinical and MRI features that can be used to assess the probability of developing IND in patients with CSCI.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Nomogramas , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Probabilidad , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/patología , Imagen por Resonancia Magnética/métodos
20.
Glia ; 71(8): 1947-1959, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37096399

RESUMEN

Neural activity and learning lead to myelin sheath plasticity in the intact central nervous system (CNS), but this plasticity has not been well-studied after CNS injury. In the context of spinal cord injury (SCI), demyelination occurs at the lesion site and natural remyelination of surviving axons can take months. To determine if neural activity modulates myelin and axon plasticity in the injured, adult CNS, we electrically stimulated the contralesional motor cortex at 10 Hz to drive neural activity in the corticospinal tract of rats with sub-chronic spinal contusion injuries. We quantified myelin and axonal characteristics by tracing corticospinal axons rostral to and at the lesion epicenter and identifying nodes of Ranvier by immunohistochemistry. Three weeks of daily stimulation induced very short myelin sheaths, axon branching, and thinner axons outside of the lesion zone, where remodeling has not previously been reported. Surprisingly, remodeling was particularly robust rostral to the injury which suggests that electrical stimulation can promote white matter plasticity even in areas not directly demyelinated by the contusion. Stimulation did not alter myelin or axons at the lesion site, which suggests that neuronal activity does not contribute to myelin remodeling near the injury in the sub-chronic period. These data are the first to demonstrate wide-scale remodeling of nodal and myelin structures of a mature, long-tract motor pathway in response to electrical stimulation. This finding suggests that neuromodulation promotes white matter plasticity in intact regions of pathways after injury and raises intriguing questions regarding the interplay between axonal and myelin plasticity.


Asunto(s)
Médula Cervical , Contusiones , Traumatismos de la Médula Espinal , Ratas , Animales , Vaina de Mielina/metabolismo , Médula Cervical/patología , Traumatismos de la Médula Espinal/metabolismo , Axones/patología , Contusiones/metabolismo , Contusiones/patología , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...