Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.142
Filtrar
1.
Curr Top Dev Biol ; 159: 168-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729676

RESUMEN

The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Tubo Neural , Transducción de Señal , Tubo Neural/embriología , Tubo Neural/metabolismo , Tubo Neural/citología , Animales , Tipificación del Cuerpo/genética , Humanos , Redes Reguladoras de Genes , Médula Espinal/embriología , Médula Espinal/citología , Médula Espinal/metabolismo , Diferenciación Celular , Movimiento Celular
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731901

RESUMEN

Growing demand for therapeutic tissue repair recurrently focusses scientists' attention on critical assessment of postmortal collection of live cells, especially stem cells. Our study aimed to assess the survival of neuronal progenitors in postmortal spinal cord and their differentiation potential. Postmortal samples of spinal cords were obtained from human-sized animals (goats) at 6, 12, 24, 36, and 54 h after slaughter. Samples were studied by immunohistology, differentiation assay, Western blot and flow cytometry for the presence and location of GD2-positive neural progenitors and their susceptibility to cell death. TUNEL staining of the goat spinal cord samples over 6-54 h postmortem revealed no difference in the number of positive cells per cross-section. Many TUNEL-positive cells were located in the gray commissure around the central canal of the spinal cord; no increase in TUNEL-positive cells was recorded in either posterior or anterior horns of the gray matter where many GD2-positive neural progenitors can be found. The active caspase 3 amount as measured by Western blot at the same intervals was moderately increasing over time. Neuronal cells were enriched by magnetic separation with antibodies against CD24; among them, the GD2-positive neural progenitor subpopulation did not overlap with apoptotic cells having high pan-caspase activity. Apoptotic cell death events are relatively rare in postmortal spinal cords and are not increased in areas of the neural progenitor cell's location, within measured postmortal intervals, or among the CD24/GD2-positive cells. Data from our study suggest postmortal spinal cords as a valuable source for harvesting highly viable allogenic neural progenitor cells.


Asunto(s)
Apoptosis , Cabras , Células-Madre Neurales , Médula Espinal , Animales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Médula Espinal/metabolismo , Médula Espinal/citología , Diferenciación Celular , Supervivencia Celular , Caspasa 3/metabolismo
3.
Mol Brain ; 17(1): 25, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773624

RESUMEN

A growing body of evidence indicates intra- and inter-regional heterogeneity of astrocytes in the brain. However, because of a lack of an efficient method for isolating astrocytes from the spinal cord, little is known about how much spinal cord astrocytes are heterogeneous in adult mice. In this study, we developed a new method for isolating spinal astrocytes from adult mice using a cold-active protease from Bacillus licheniformis with an astrocyte cell surface antigen-2 (ACSA-2) antibody. Using fluorescence-activated cell sorting, isolated spinal ACSA-2+ cells were divided into two distinct populations, ACSA-2high and ACSA-2low. By analyzing the expression of cell-type marker genes, the ACSA-2high and ACSA-2low populations were identified as astrocytes and ependymal cells, respectively. Furthermore, ACSA-2high cells had mRNAs encoding genes that were abundantly expressed in the gray matter (GM) but not white matter astrocytes. By optimizing enzymatic isolation procedures, the yield of GM astrocytes also increased. Therefore, our newly established method enabled the selective and efficient isolation of GM astrocytes from the spinal cord of adult mice and may be useful for bulk- or single-cell RNA-sequencing under physiological and pathological conditions.


Asunto(s)
Astrocitos , Separación Celular , Sustancia Gris , Médula Espinal , Animales , Astrocitos/metabolismo , Astrocitos/citología , Médula Espinal/citología , Separación Celular/métodos , Ratones Endogámicos C57BL , Ratones , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Envejecimiento
4.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667267

RESUMEN

The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults. Current experimental therapies, including electrical stimulation, training, pharmacological treatments, or cell implantation, that have resulted in improvements in locomotor behavior rely on the modulation of the activity and connectivity of interneurons located in the surroundings of the lesion core for the formation of detour circuits. However, very few publications clarify the specific identity of these cells. In this work, we review the studies where premotor interneurons were able to create new intraspinal circuits after different kinds of traumatic spinal cord injury, highlighting the difficulties encountered by researchers, to classify these populations.


Asunto(s)
Interneuronas , Recuperación de la Función , Traumatismos de la Médula Espinal , Adulto , Animales , Humanos , Interneuronas/metabolismo , Médula Espinal/citología , Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología
5.
ACS Biomater Sci Eng ; 10(5): 3203-3217, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38557027

RESUMEN

The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.


Asunto(s)
Encéfalo , Hidrogeles , Células Madre Pluripotentes Inducidas , Organoides , Médula Espinal , Organoides/efectos de los fármacos , Organoides/citología , Organoides/metabolismo , Humanos , Animales , Médula Espinal/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Encéfalo/metabolismo , Ratas , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacología , Laminina/química , Proteoglicanos/química , Ratas Sprague-Dawley , Combinación de Medicamentos , Colágeno
6.
ACS Biomater Sci Eng ; 10(5): 3218-3231, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38593429

RESUMEN

Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids. The human placenta-sourced decellularized extracellular matrix (dECM), verified through hematoxylin and eosin staining, DNA quantification, and immunofluorescence staining, retained essential ECM components such as elastin, fibronectin, type I collagen, laminin, and so forth. The temperature-sensitive hydrogel made from human placenta dECM demonstrated good biocompatibility and promoted the differentiation of human induced pluripotent stem cell (hiPSCs)-derived spinal cord organoids into neurons. It displayed enhanced expression of laminar markers in comparison to Matrigel and showed higher expression of laminar markers compared to Matrigel, accelerating the maturation process of spinal cord organoids and demonstrating its potential as an organoid culture substrate. DPECMH has the potential to replace Matrigel as the standard additive for human spinal cord organoids, thus advancing the development of spinal cord organoid culture protocols and their application in the in vitro modeling of spinal cord-related diseases.


Asunto(s)
Diferenciación Celular , Matriz Extracelular Descelularizada , Hidrogeles , Células Madre Pluripotentes Inducidas , Organoides , Placenta , Médula Espinal , Humanos , Organoides/citología , Organoides/metabolismo , Organoides/efectos de los fármacos , Femenino , Placenta/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Embarazo , Hidrogeles/química , Hidrogeles/farmacología , Médula Espinal/citología , Médula Espinal/metabolismo , Diferenciación Celular/efectos de los fármacos , Matriz Extracelular Descelularizada/farmacología , Matriz Extracelular Descelularizada/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Laminina/farmacología , Laminina/química
7.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627062

RESUMEN

Proprioception, the sense of limb and body position, is required to produce accurate and precise movements. Proprioceptive sensory neurons transmit muscle length and tension information to the spinal cord. The function of excitatory neurons in the intermediate spinal cord, which receive this proprioceptive information, remains poorly understood. Using genetic labeling strategies and patch-clamp techniques in acute spinal cord preparations in mice, we set out to uncover how two sets of spinal neurons, Clarke's column (CC) and Atoh1-lineage neurons, respond to electrical activity and how their inputs are organized. Both sets of neurons are located in close proximity in laminae V-VII of the thoracolumbar spinal cord and have been described to receive proprioceptive signals. We find that a majority of CC neurons have a tonic-firing type and express a distinctive hyperpolarization-activated current (Ih). Atoh1-lineage neurons, which cluster into two spatially distinct populations, are mostly a fading-firing type and display similar electrophysiological properties to each other, possibly due to their common developmental lineage. Finally, we find that CC neurons respond to stimulation of lumbar dorsal roots, consistent with prior knowledge that CC neurons receive hindlimb proprioceptive information. In contrast, using a combination of electrical stimulation, optogenetic stimulation, and transsynaptic rabies virus tracing, we find that Atoh1-lineage neurons receive heterogeneous, predominantly local thoracic inputs that include parvalbumin-lineage sensory afferents and local interneuron presynaptic inputs. Altogether, we find that CC and Atoh1-lineage neurons have distinct membrane properties and sensory input organization, representing different subcircuit modes of proprioceptive information processing.


Asunto(s)
Propiocepción , Médula Espinal , Animales , Propiocepción/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones Transgénicos , Ratones , Masculino , Femenino , Potenciales de Acción/fisiología , Células Receptoras Sensoriales/fisiología , Técnicas de Placa-Clamp , Ratones Endogámicos C57BL , Vértebras Torácicas
8.
J Physiol ; 602(9): 2107-2126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38568869

RESUMEN

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Asunto(s)
Segmento Inicial del Axón , Reflejo H , Neuronas Motoras , Ratas Sprague-Dawley , Animales , Neuronas Motoras/fisiología , Ratas , Masculino , Reflejo H/fisiología , Segmento Inicial del Axón/fisiología , Aprendizaje/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Axones/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Operante/fisiología , Ancirinas/metabolismo
9.
Exp Neurol ; 376: 114779, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621449

RESUMEN

Neural stem cells have exhibited efficacy in pre-clinical models of spinal cord injury (SCI) and are on a translational path to human testing. We recently reported that neural stem cells must be driven to a spinal cord fate to optimize host axonal regeneration into sites of implantation in the injured spinal cord, where they subsequently form neural relays across the lesion that support significant functional improvement. We also reported methods of deriving and culturing human spinal cord neural stem cells derived from embryonic stem cells that can be sustained over serial high passage numbers in vitro, providing a potentially optimized cell source for human clinical trials. We now report further optimization of methods for deriving and sustaining cultures of human spinal cord neural stem cell lines that result in improved karyotypic stability while retaining anatomical efficacy in vivo. This development improves prospects for safe human translation.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales , Traumatismos de la Médula Espinal , Médula Espinal , Humanos , Células-Madre Neurales/citología , Médula Espinal/citología , Animales , Traumatismos de la Médula Espinal/terapia , Diferenciación Celular/fisiología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Ratones , Trasplante de Células Madre/métodos
10.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682940

RESUMEN

Resolutive cures for spinal cord injuries (SCIs) are still lacking, due to the complex pathophysiology. One of the most promising regenerative approaches is based on stem cell transplantation to replace lost tissue and promote functional recovery. This approach should be further explored better in vitro and ex vivo for safety and efficacy before proceeding with more expensive and time-consuming animal testing. In this work, we show the establishment of a long-term platform based on mouse spinal cord (SC) organotypic slices transplanted with human neural stem cells to test cellular replacement therapies for SCIs. Standard SC organotypic cultures are maintained for around 2 or 3 weeks in vitro. Here, we describe an optimized protocol for long-term maintenance (≥30 days) for up to 90 days. The medium used for long-term culturing of SC slices was also optimized for transplanting neural stem cells into the organotypic model. Human SC-derived neuroepithelial stem (h-SC-NES) cells carrying a green fluorescent protein (GFP) reporter were transplanted into mouse SC slices. Thirty days after the transplant, cells still show GFP expression and a low apoptotic rate, suggesting that the optimized environment sustained their survival and integration inside the tissue. This protocol represents a robust reference for efficiently testing cell replacement therapies in the SC tissue. This platform will allow researchers to perform an ex vivo pre-screening of different cell transplantation therapies, helping them to choose the most appropriate strategy before proceeding with in vivo experiments.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Médula Espinal , Animales , Ratones , Traumatismos de la Médula Espinal/terapia , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Médula Espinal/citología , Técnicas de Cultivo de Órganos/métodos , Trasplante de Células Madre/métodos
11.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438260

RESUMEN

Locomotion allows us to move and interact with our surroundings. Spinal networks that control locomotion produce rhythm and left-right and flexor-extensor coordination. Several glutamatergic populations, Shox2 non-V2a, Hb9-derived interneurons, and, recently, spinocerebellar neurons have been proposed to be involved in the mouse rhythm generating networks. These cells make up only a smaller fraction of the excitatory cells in the ventral spinal cord. Here, we set out to identify additional populations of excitatory spinal neurons that may be involved in rhythm generation or other functions in the locomotor network. We use RNA sequencing from glutamatergic, non-glutamatergic, and Shox2 cells in the neonatal mice from both sexes followed by differential gene expression analyses. These analyses identified transcription factors that are highly expressed by glutamatergic spinal neurons and differentially expressed between Shox2 neurons and glutamatergic neurons. From this latter category, we identified the Lhx9-derived neurons as having a restricted spinal expression pattern with no Shox2 neuron overlap. They are purely glutamatergic and ipsilaterally projecting. Ablation of the glutamatergic transmission or acute inactivation of the neuronal activity of Lhx9-derived neurons leads to a decrease in the frequency of locomotor-like activity without change in coordination pattern. Optogenetic activation of Lhx9-derived neurons promotes locomotor-like activity and modulates the frequency of the locomotor activity. Calcium activities of Lhx9-derived neurons show strong left-right out-of-phase rhythmicity during locomotor-like activity. Our study identifies a distinct population of spinal excitatory neurons that regulates the frequency of locomotor output with a suggested role in rhythm-generation in the mouse alongside other spinal populations.


Asunto(s)
Interneuronas , Proteínas con Homeodominio LIM , Locomoción , Médula Espinal , Factores de Transcripción , Animales , Interneuronas/fisiología , Ratones , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Locomoción/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Masculino , Femenino , Ácido Glutámico/metabolismo , Animales Recién Nacidos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
12.
Cell Rep ; 43(4): 113993, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38551963

RESUMEN

Corticospinal neurons (CSNs) synapse directly on spinal neurons, a diverse assortment of cells with unique structural and functional properties necessary for body movements. CSNs modulating forelimb behavior fractionate into caudal forelimb area (CFA) and rostral forelimb area (RFA) motor cortical populations. Despite their prominence, the full diversity of spinal neurons targeted by CFA and RFA CSNs is uncharted. Here, we use anatomical and RNA sequencing methods to show that CSNs synapse onto a remarkably selective group of spinal cell types, favoring inhibitory populations that regulate motoneuron activity and gate sensory feedback. CFA and RFA CSNs target similar spinal neuron types, with notable exceptions that suggest that these populations differ in how they influence behavior. Finally, axon collaterals of CFA and RFA CSNs target similar brain regions yet receive highly divergent inputs. These results detail the rules of CSN connectivity throughout the brain and spinal cord for two regions critical for forelimb behavior.


Asunto(s)
Miembro Anterior , Tractos Piramidales , Animales , Miembro Anterior/fisiología , Tractos Piramidales/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Ratones , Corteza Motora/fisiología , Neuronas/fisiología , Neuronas Motoras/fisiología , Femenino , Masculino , Axones/fisiología , Sinapsis/fisiología
13.
Nature ; 628(8007): 391-399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408487

RESUMEN

The human nervous system is a highly complex but organized organ. The foundation of its complexity and organization is laid down during regional patterning of the neural tube, the embryonic precursor to the human nervous system. Historically, studies of neural tube patterning have relied on animal models to uncover underlying principles. Recently, models of neurodevelopment based on human pluripotent stem cells, including neural organoids1-5 and bioengineered neural tube development models6-10, have emerged. However, such models fail to recapitulate neural patterning along both rostral-caudal and dorsal-ventral axes in a three-dimensional tubular geometry, a hallmark of neural tube development. Here we report a human pluripotent stem cell-based, microfluidic neural tube-like structure, the development of which recapitulates several crucial aspects of neural patterning in brain and spinal cord regions and along rostral-caudal and dorsal-ventral axes. This structure was utilized for studying neuronal lineage development, which revealed pre-patterning of axial identities of neural crest progenitors and functional roles of neuromesodermal progenitors and the caudal gene CDX2 in spinal cord and trunk neural crest development. We further developed dorsal-ventral patterned microfluidic forebrain-like structures with spatially segregated dorsal and ventral regions and layered apicobasal cellular organizations that mimic development of the human forebrain pallium and subpallium, respectively. Together, these microfluidics-based neurodevelopment models provide three-dimensional lumenal tissue architectures with in vivo-like spatiotemporal cell differentiation and organization, which will facilitate the study of human neurodevelopment and disease.


Asunto(s)
Tipificación del Cuerpo , Microfluídica , Tubo Neural , Humanos , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Cresta Neural/citología , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células Madre Pluripotentes/citología , Prosencéfalo/citología , Prosencéfalo/embriología , Médula Espinal/citología , Médula Espinal/embriología
14.
Cell Prolif ; 57(5): e13594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155412

RESUMEN

The study of neurogenesis is essential to understanding fundamental developmental processes and for the development of cell replacement therapies for central nervous system disorders. Here, we designed an in vivo drug screening protocol in developing zebrafish to find new molecules and signalling pathways regulating neurogenesis in the ventral spinal cord. This unbiased drug screen revealed that 4 cyclooxygenase (COX) inhibitors reduced the generation of serotonergic interneurons in the developing spinal cord. These results fitted very nicely with available single-cell RNAseq data revealing that floor plate cells show differential expression of 1 of the 2 COX2 zebrafish genes (ptgs2a). Indeed, several selective COX2 inhibitors and two different morpholinos against ptgs2a reduced the number of serotonergic neurons in the ventral spinal cord and led to locomotor deficits. Single-cell RNAseq data and different pharmacological manipulations further revealed that COX2-floor plate-derived prostaglandin D2 promotes neurogenesis in the developing spinal cord by promoting mitotic activity in progenitor cells. Rescue experiments using a phosphodiesterase-4 inhibitor suggest that intracellular changes in cAMP levels underlie the effects of COX inhibitors on neurogenesis and locomotion. Our study provides compelling in vivo evidence showing that prostaglandin signalling promotes neurogenesis in the ventral spinal cord.


Asunto(s)
Ciclooxigenasa 2 , Neurogénesis , Médula Espinal , Pez Cebra , Animales , Pez Cebra/metabolismo , Neurogénesis/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Evaluación Preclínica de Medicamentos/métodos , Inhibidores de la Ciclooxigenasa 2/farmacología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Transducción de Señal/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología
15.
Nature ; 624(7991): 403-414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092914

RESUMEN

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Asunto(s)
Encéfalo , Perfilación de la Expresión Génica , Vías Nerviosas , Neuronas , Médula Espinal , Animales , Ratones , Hipotálamo , Neuronas/metabolismo , Neuropéptidos , Médula Espinal/citología , Médula Espinal/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Neurotransmisores , Mesencéfalo/citología , Formación Reticular/citología , Electrofisiología , Cerebelo/citología , Corteza Cerebral/citología
16.
Nature ; 622(7983): 552-561, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758947

RESUMEN

Spatially charting molecular cell types at single-cell resolution across the 3D volume is critical for illustrating the molecular basis of brain anatomy and functions. Single-cell RNA sequencing has profiled molecular cell types in the mouse brain1,2, but cannot capture their spatial organization. Here we used an in situ sequencing method, STARmap PLUS3,4, to profile 1,022 genes in 3D at a voxel size of 194 × 194 × 345 nm3, mapping 1.09 million high-quality cells across the adult mouse brain and spinal cord. We developed computational pipelines to segment, cluster and annotate 230 molecular cell types by single-cell gene expression and 106 molecular tissue regions by spatial niche gene expression. Joint analysis of molecular cell types and molecular tissue regions enabled a systematic molecular spatial cell-type nomenclature and identification of tissue architectures that were undefined in established brain anatomy. To create a transcriptome-wide spatial atlas, we integrated STARmap PLUS measurements with a published single-cell RNA-sequencing atlas1, imputing single-cell expression profiles of 11,844 genes. Finally, we delineated viral tropisms of a brain-wide transgene delivery tool, AAV-PHP.eB5,6. Together, this annotated dataset provides a single-cell resource that integrates the molecular spatial atlas, brain anatomy and the accessibility to genetic manipulation of the mammalian central nervous system.


Asunto(s)
Sistema Nervioso Central , Imagenología Tridimensional , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Sistema Nervioso Central/anatomía & histología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Análisis de la Célula Individual/métodos , Médula Espinal/anatomía & histología , Médula Espinal/citología , Médula Espinal/metabolismo , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula , Tropismo Viral , Conjuntos de Datos como Asunto , Transgenes/genética , Imagenología Tridimensional/métodos
17.
Nature ; 611(7936): 540-547, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352232

RESUMEN

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Asunto(s)
Neuronas , Parálisis , Traumatismos de la Médula Espinal , Médula Espinal , Caminata , Animales , Humanos , Ratones , Neuronas/fisiología , Parálisis/genética , Parálisis/fisiopatología , Parálisis/terapia , Médula Espinal/citología , Médula Espinal/fisiología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Caminata/fisiología , Estimulación Eléctrica , Región Lumbosacra/inervación , Rehabilitación Neurológica , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
18.
Nature ; 610(7932): 526-531, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224394

RESUMEN

Although the generation of movements is a fundamental function of the nervous system, the underlying neural principles remain unclear. As flexor and extensor muscle activities alternate during rhythmic movements such as walking, it is often assumed that the responsible neural circuitry is similarly exhibiting alternating activity1. Here we present ensemble recordings of neurons in the lumbar spinal cord that indicate that, rather than alternating, the population is performing a low-dimensional 'rotation' in neural space, in which the neural activity is cycling through all phases continuously during the rhythmic behaviour. The radius of rotation correlates with the intended muscle force, and a perturbation of the low-dimensional trajectory can modify the motor behaviour. As existing models of spinal motor control do not offer an adequate explanation of rotation1,2, we propose a theory of neural generation of movements from which this and other unresolved issues, such as speed regulation, force control and multifunctionalism, are readily explained.


Asunto(s)
Neuronas Motoras , Movimiento , Rotación , Médula Espinal , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Caminata/fisiología , Neuronas Motoras/fisiología
19.
Stem Cell Res Ther ; 13(1): 117, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35314006

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) represent critical effectors in the host defense response against various pathogens; however, their known function during development has also highlighted a potential role in cell fate determination and neural differentiation. While glial cells and neural precursor cells (NPCs) of the spinal cord express both TLR2 and TLR4, their influence on self-renewal and cell differentiation remains incompletely described. METHODS: TLR2, TLR4 knock-out and the wild type mice were employed for spinal cord tissue analysis and NPCs isolation at early post-natal stage. Sox2, FoxJ1 and Ki67 expression among others served to identify the undifferentiated and proliferative NPCs; GFAP, Olig2 and ß-III-tubulin markers served to identify astrocytes, oligodendrocytes and neurons respectively after NPC spontaneous differentiation. Multiple comparisons were analyzed using one-way ANOVA, with appropriate corrections such as Tukey's post hoc tests used for comparisons. RESULTS: We discovered that the deletion of TLR2 or TLR4 significantly reduced the number of Sox2-expressing NPCs in the neonatal mouse spinal cord. While TLR2-knockout NPCs displayed enhanced self-renewal, increased proliferation and apoptosis, and delayed neural differentiation, the absence of TLR4 promoted the neural differentiation of NPCs without affecting proliferation, producing long projecting neurons. TLR4 knock-out NPCs showed significantly higher expression of Neurogenin1, that would be involved in the activation of this neurogenic program by a ligand and microenvironment-independent mechanism. Interestingly, the absence of both TLR2 and TLR4, which induces also a significant reduction in the expression of TLR1, in NPCs impeded oligodendrocyte precursor cell maturation to a similar degree. CONCLUSIONS: Our data suggest that Toll-like receptors are needed to maintain Sox2 positive neural progenitors in the spinal cord, however possess distinct regulatory roles in mouse neonatal spinal cord NPCs-while TLR2 and TLR4 play a similar role in oligodendrocytic differentiation, they differentially influence neural differentiation.


Asunto(s)
Diferenciación Celular , Células-Madre Neurales , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Animales , Ratones , Células-Madre Neurales/citología , Neuronas/citología , Médula Espinal/citología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
20.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156681

RESUMEN

Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3'UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced.


Asunto(s)
MicroARNs/metabolismo , Regeneración de la Medula Espinal/genética , Médula Espinal/metabolismo , Regiones no Traducidas 3' , Ambystoma mexicanum/metabolismo , Animales , Antagomirs/metabolismo , Diferenciación Celular , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/fisiología , Vía de Señalización Wnt , beta Catenina/antagonistas & inhibidores , beta Catenina/química , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...