Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.131
Filtrar
1.
Exp Physiol ; 109(5): 766-778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551893

RESUMEN

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Asunto(s)
Acetazolamida , Amilorida , Diuréticos , Furosemida , Corteza Renal , Médula Renal , Animales , Furosemida/farmacología , Acetazolamida/farmacología , Amilorida/farmacología , Diuréticos/farmacología , Ovinos , Femenino , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Oxígeno/metabolismo , Hemodinámica/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos
2.
Food Funct ; 13(2): 891-903, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34994761

RESUMEN

A high-salt (HS) diet leads to metabolic disorders in Dahl salt-sensitive (SS) rats, and promotes the development of hypertension. According to the changes in the metabolites of SS rats, a set of combined dietary supplements containing amino acids and organic acids (AO) were designed. The purpose of the present study was to evaluate the effect of AO supplementation on the blood pressure of SS rats after the HS diet and clarify the mechanism of AO by metabolomics and biochemical analyses. The results showed that AO supplementation avoided the elevation of blood pressure induced by the HS diet in SS rats, increased the renal antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase), reduced the H2O2 and MDA levels, and restored the normal antioxidant status of the serum and kidneys. AO also reversed the decrease in the nitric oxide (NO) levels and NO synthase activity induced by the HS feed, which involved the L-arginine/NO pathway. Metabolomics analysis showed that AO administration increased the levels of amino acids such as cysteine, glycine, hypotaurine, and lysine in the renal medulla and the levels of leucine, isoleucine, and serine in the renal cortex. Of note, lysine, hypotaurine and glycine had higher metabolic centrality in the metabolic correlation network of the renal medulla after AO administration. In conclusion, AO intervention could prevent HS diet-induced hypertension in SS rats by restoring the metabolic homeostasis of the kidneys. Hence, AO has the potential to become a functional food additive to improve salt-sensitive hypertension.


Asunto(s)
Aminoácidos/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Cloruro de Sodio Dietético/administración & dosificación , Aminoácidos/química , Animales , Suplementos Dietéticos , Glutatión/metabolismo , Hipertensión/prevención & control , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Masculino , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético/efectos adversos
3.
Sci Rep ; 11(1): 23452, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873190

RESUMEN

Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has become a massive global health burden. Despite considerable efforts, the underlying mechanisms have not yet been comprehensively understood. In this study, a systematic approach was utilized to identify the microRNA signature in DN and to introduce novel drug targets (DTs) in DN. Using microarray profiling followed by qPCR confirmation, 13 and 6 differentially expressed (DE) microRNAs were identified in the kidney cortex and medulla, respectively. The microRNA-target interaction networks for each anatomical compartment were constructed and central nodes were identified. Moreover, enrichment analysis was performed to identify key signaling pathways. To develop a strategy for DT prediction, the human proteome was annotated with 65 biochemical characteristics and 23 network topology parameters. Furthermore, all proteins targeted by at least one FDA-approved drug were identified. Next, mGMDH-AFS, a high-performance machine learning algorithm capable of tolerating massive imbalanced size of the classes, was developed to classify DT and non-DT proteins. The sensitivity, specificity, accuracy, and precision of the proposed method were 90%, 86%, 88%, and 89%, respectively. Moreover, it significantly outperformed the state-of-the-art (P-value ≤ 0.05) and showed very good diagnostic accuracy and high agreement between predicted and observed class labels. The cortex and medulla networks were then analyzed with this validated machine to identify potential DTs. Among the high-rank DT candidates are Egfr, Prkce, clic5, Kit, and Agtr1a which is a current well-known target in DN. In conclusion, a combination of experimental and computational approaches was exploited to provide a holistic insight into the disorder for introducing novel therapeutic targets.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Aprendizaje Automático , Biología de Sistemas , Algoritmos , Animales , Química Farmacéutica/métodos , Análisis por Conglomerados , Biología Computacional/métodos , Diseño de Fármacos , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Salud Global , Humanos , Corteza Renal/efectos de los fármacos , Médula Renal/efectos de los fármacos , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos DBA , MicroARNs/genética , Análisis por Micromatrices , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Componente Principal , Análisis de Regresión , Transducción de Señal , Máquina de Vectores de Soporte
4.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065436

RESUMEN

High saturated fat diets have been associated with the development of obesity and hypertension, along with other pathologies related to the metabolic syndrome. In contrast, the Mediterranean diet, characterized by its high content of monounsaturated fatty acids, has been proposed as a dietary factor capable of positively regulating cardiovascular function. These effects have been linked to changes in the local renal renin angiotensin system (RAS) and the activity of the sympathetic nervous system. The main goal of this study was to analyze the role of two dietary fat sources on aminopeptidases activities involved in local kidney RAS. Male Wistar rats (six months old) were fed during 24 weeks with three different diets: the standard diet (S), the standard diet supplemented with virgin olive oil (20%) (VOO), or the standard diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). Kidney samples were separated in medulla and cortex for aminopeptidase activities (AP) assay. Urine samples were collected for routine analysis by chemical tests. Aminopeptidase activities were determined by fluorometric methods in soluble (sol) and membrane-bound (mb) fractions of renal tissue, using arylamide derivatives as substrates. After the experimental period, the systolic blood pressure (SBP) values were similar in standard and VOO animals, and significantly lower than in the Bch group. At the same time, a significant increase in GluAP and IRAP activities were found in renal medulla of Bch animals. However, in VOO group the increase of GluAP activity in renal medulla was lower, while AspAP activity decreased in the renal cortex. Furthermore, the VOO diet also affected other aminopeptidase activities, such as TyrAP and pGluAP, related to the regulation of the sympathetic nervous system and the metabolic rate. These results support the beneficial effect of VOO in the regulation of SBP through changes in local AP activities of the kidney.


Asunto(s)
Aminopeptidasas/metabolismo , Presión Sanguínea/efectos de los fármacos , Corteza Renal/efectos de los fármacos , Médula Renal/efectos de los fármacos , Aceite de Oliva/farmacología , Animales , Mantequilla , Colesterol/metabolismo , Dieta Mediterránea , Grasas de la Dieta/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Corteza Renal/metabolismo , Médula Renal/metabolismo , Masculino , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratas , Ratas Wistar , Sistema Renina-Angiotensina/efectos de los fármacos
5.
Pflugers Arch ; 473(4): 623-631, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33651165

RESUMEN

Earlier evidence from studies of rat hypertension models undermines the widespread view that the rate of renal medullary blood flow (MBF) is critical in control of arterial pressure (MAP). Here, we examined the role of MBF in rats that were normotensive, with modest short-lasting pressure elevation, or with overt established hypertension. The groups studied were anaesthetised Sprague-Dawley rats: (1) normotensive, (2) with acute i.v. norepinephrine-induced MAP elevation, and (3) with hypertension induced by unilateral nephrectomy followed by administration of deoxycorticosterone-acetate (DOCA) and 1% NaCl drinking fluid for 3 weeks. MBF was measured (laser-Doppler probe) and selectively increased using 4-h renal medullary infusion of bradykinin. MAP, renal excretion parameters and post-experiment medullary tissue osmolality and sodium concentration were determined. In the three experimental groups, baseline MAP was 117, 151 and 171 mmHg, respectively. Intramedullary bradykinin increased MBF by 45%, 65% and 70%, respectively, but this was not associated with a change in MAP. In normotensive rats a significant decrease in medullary tissue sodium was seen. The intramedullary bradykinin specifically increased renal excretion of water, sodium and total solutes in norepinephrine-treated rats but not in the two other groups. As previously shown in models of rat hypertension, in the normotensive rats and those with acute mild pressure elevation (resembling labile borderline human hypertension), 4-h renal medullary hyperperfusion failed to decrease MAP. Nor did it decrease in DOCA-salt model mimicking low-renin human hypertension. Evidently, within the 4-h observation, medullary perfusion was not a critical determinant of MAP in normotensive and hypertensive rats.


Asunto(s)
Hipertensión/fisiopatología , Médula Renal/fisiopatología , Circulación Renal , Animales , Presión Arterial , Bradiquinina/farmacología , Acetato de Desoxicorticosterona/farmacología , Hipertensión/etiología , Médula Renal/efectos de los fármacos , Masculino , Mineralocorticoides/farmacología , Norepinefrina/farmacología , Concentración Osmolar , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/farmacología , Vasodilatadores/farmacología
6.
J Pharmacol Exp Ther ; 376(1): 98-105, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127751

RESUMEN

The G protein-coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1-dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats. SIGNIFICANCE STATEMENT: Activation of G protein-coupled estrogen receptor 1 (GPER1) in the renal medulla of female rats evokes natriuresis via endothelin receptors A and/or B, suggesting that GPER1 and endothelin signaling pathways help efficient sodium excretion in females. Thus, GPER1 activation could be potentially useful to mitigate salt sensitivity in females.


Asunto(s)
Natriuresis , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Atrasentán/farmacología , Antagonistas de los Receptores de Endotelina/farmacología , Femenino , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas
7.
Cells ; 9(12)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255239

RESUMEN

Adrenomedullin (ADM) is a vasodilator that causes natriuresis and diuresis. However, the direct effect of ADM on osmotic water permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether ADM and its ADM receptor components (CRLR, RAMP2, and 3) are expressed in rat inner medulla (IM) and whether ADM regulates osmotic water permeability in isolated perfused rat IMCDs. The mRNAs of ADM, CRLR, and RAMP2 and 3 were detected in rat IM. Abundant protein of CRLR and RAMP3 were also seen but RAMP2 protein level was extremely low. Adding ADM (100 nM) to the bath significantly decreased osmotic water permeability. ADM significantly decreased aquaporin-2 (AQP2) phosphorylation at Serine 256 (pS256) and increased it at Serine 261 (pS261). ADM significantly increased cAMP levels in IM. However, inhibition of cAMP by SQ22536 further decreased ADM-attenuated osmotic water permeability. Stimulation of cAMP by roflumilast increased ADM-attenuated osmotic water permeability. Previous studies show that ADM also stimulates phospholipase C (PLC) pathways including protein kinase C (PKC) and cGMP. We tested whether PLC pathways regulate ADM-attenuated osmotic water permeability. Blockade of either PLC by U73122 or PKC by rottlerin significantly augmented the ADM-attenuated osmotic water permeability and promoted pS256-AQP2 but did change pS261-AQP2. Inhibition of cGMP by L-NAME did not change AQP2 phosphorylation. In conclusion, ADM primarily binds to the CRLR-RAMP3 receptor to initiate signaling pathways in the IM. ADM reduced water reabsorption through a PLC-pathway involving PKC. ADM-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. cAMP is not involved in ADM-attenuated osmotic water permeability.


Asunto(s)
Adrenomedulina/farmacología , Médula Renal/efectos de los fármacos , Ósmosis/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Agua/metabolismo , Aminopiridinas/farmacología , Animales , Acuaporina 2/metabolismo , Benzamidas/farmacología , Membrana Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Ciclopropanos/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/metabolismo , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
8.
Nephron ; 144 Suppl 1: 79-85, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33221804

RESUMEN

AIM: Medullary ray injury was recently reported in renal transplant biopsies. This study was performed to clarify the clinicopathological features of medullary ray injury in paediatric living renal transplant recipients. METHODS: Paediatric recipients who completed a 5-year follow-up after living renal transplantation were enroled. We evaluated the clinical and pathological parameters of the presence or absence of medullary ray injury in their 1-year protocol biopsies. RESULTS: Of 48 1-year protocol biopsies, 18 (37.5%) showed histological evidence of medullary ray injury. The 48 paediatric recipients were classified as those with medullary ray injury (n = 18; MRI-1Y [+] group) and those without medullary ray injury (n = 30; MRI-1Y [-] group) in the 1-year protocol biopsies. The prevalence of histological evidence of calcineurin inhibitor (CNI) nephrotoxicity, chronic obstruction or reflux nephropathy, and imaging findings of vesicoureteral reflux was 66.7, 22.2, and 7.7% in the MRI-1Y (+) group and 33.3, 13.3, and 15.4% in the MRI-1Y (-) group, respectively. Only the prevalence of CNI nephrotoxicity was significantly different between the 2 groups. There was no significant difference in the mean estimated glomerular filtration rate at 1, 3, or 5 years after transplantation between the 2 groups. CONCLUSION: In total, 37.5% of 1-year protocol biopsies showed histological evidence of medullary ray injury. This finding suggests that CNI nephrotoxicity might be the main contributor to medullary ray injury in 1-year protocol biopsies. The presence of medullary ray injury had little influence on renal function, at least during the first 5 years after transplantation.


Asunto(s)
Inhibidores de la Calcineurina/efectos adversos , Médula Renal/patología , Trasplante de Riñón/efectos adversos , Adolescente , Biopsia , Niño , Preescolar , Femenino , Tasa de Filtración Glomerular , Humanos , Médula Renal/efectos de los fármacos , Masculino , Factores de Tiempo , Trasplante Homólogo
9.
JCI Insight ; 5(16)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32673289

RESUMEN

Histone deacetylase (HDAC) enzymes regulate transcription through epigenetic modification of chromatin structure, but their specific functions in the kidney remain elusive. We discovered that the human kidney expresses class I HDACs. Kidney medulla-specific inhibition of class I HDACs in the rat during high-salt feeding results in hypertension, polyuria, hypokalemia, and nitric oxide deficiency. Three new inducible murine models were used to determine that HDAC1 and HDAC2 in the kidney epithelium are necessary for maintaining epithelial integrity and maintaining fluid-electrolyte balance during increased dietary sodium intake. Moreover, single-nucleus RNA-sequencing determined that epithelial HDAC1 and HDAC2 are necessary for expression of many sodium or water transporters and channels. In performing a systematic review and meta-analysis of serious adverse events associated with clinical HDAC inhibitor use, we found that HDAC inhibitors increased the odds ratio of experiencing fluid-electrolyte disorders, such as hypokalemia. This study provides insight on the mechanisms of potential serious adverse events with HDAC inhibitors, which may be fatal to critically ill patients. In conclusion, kidney tubular HDACs provide a link between the environment, such as consumption of high-salt diets, and regulation of homeostatic mechanisms to remain in fluid-electrolyte balance.


Asunto(s)
Electrólitos/metabolismo , Inhibidores de Histona Desacetilasas/efectos adversos , Histona Desacetilasas/metabolismo , Médula Renal/metabolismo , Animales , Benzamidas/farmacología , Presión Sanguínea/efectos de los fármacos , Femenino , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Humanos , Médula Renal/efectos de los fármacos , Médula Renal/fisiopatología , Masculino , Óxido Nítrico/metabolismo , Potasio/sangre , Piridinas/farmacología , Ratas Sprague-Dawley , Cloruro de Sodio Dietético/farmacología , Equilibrio Hidroelectrolítico/fisiología
10.
Am J Physiol Renal Physiol ; 319(1): F8-F18, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421349

RESUMEN

Sepsis is the leading cause of acute kidney injury in critically ill patients. Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of septic kidney injury; however, the sites and mechanisms of renal TNF-α production during sepsis remain to be defined. In the present study, we showed that TNF-α expression is increased in medullary thick ascending limbs (MTALs) of mice with sepsis induced by cecal ligation and puncture. Treatment with lipopolysaccharide (LPS) for 3 h in vitro also increased MTAL TNF-α production. Sepsis and LPS increased MTAL TNF-α expression through activation of the myeloid differentiation factor 88 (MyD88)-IL-1 receptor-associated kinase 1-ERK signaling pathway. Pretreatment with monophosphoryl lipid A (MPLA), a nontoxic immunomodulator that protects against bacterial infection, eliminated the sepsis- and LPS-induced increases in MTAL TNF-α production. The suppressive effect of MPLA on TNF-α was mediated through activation of a phosphatidylinositol 3-kinase-dependent pathway that inhibits MyD88-dependent ERK activation. This likely involves MPLA-phosphatidylinositol 3-kinase-mediated induction of Tollip, which negatively regulates the MyD88-ERK pathway by inhibiting activation of IL-1 receptor-associated kinase 1. These regulatory mechanisms are similar to those previously shown to mediate the effect of MPLA to prevent sepsis-induced inhibition of MTAL [Formula: see text] absorption. These results identify the MTAL as a site of local TNF-α production in the kidney during sepsis and identify molecular mechanisms that can be targeted to attenuate renal TNF-α expression. The ability of MPLA pretreatment to suppress MyD88-dependent ERK signaling in the MTAL during sepsis has the dual beneficial effects of protecting tubule transport functions and attenuating harmful proinflammatory responses.


Asunto(s)
Citocinas/metabolismo , Médula Renal/efectos de los fármacos , Lípido A/análogos & derivados , Asa de la Nefrona/efectos de los fármacos , Sepsis/metabolismo , Animales , Médula Renal/metabolismo , Lípido A/farmacología , Lipopolisacáridos/farmacología , Asa de la Nefrona/metabolismo , Masculino , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/efectos de los fármacos
11.
J Am Heart Assoc ; 9(10): e015110, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32390531

RESUMEN

Background The novel estrogen receptor, G-protein-coupled estrogen receptor (GPER), is responsible for rapid estrogen signaling. GPER activation elicits cardiovascular and nephroprotective effects against salt-induced complications, yet there is no direct evidence for GPER control of renal Na+ handling. We hypothesized that GPER activation in the renal medulla facilitates Na+ excretion. Methods and Results Herein, we show that infusion of the GPER agonist, G1, to the renal medulla increased Na+ excretion in female Sprague Dawley rats, but not male rats. We found that GPER mRNA expression and protein abundance were markedly higher in outer medullary tissues from females relative to males. Blockade of GPER in the renal medulla attenuated Na+ excretion in females. Given that medullary endothelin 1 is a well-established natriuretic factor that is regulated by sex and sex steroids, we hypothesized that GPER activation promotes natriuresis via an endothelin 1-dependent pathway. To test this mechanism, we determined the effect of medullary infusion of G1 after blockade of endothelin receptors. Dual endothelin receptor subtype A and endothelin receptor subtype B antagonism attenuated G1-induced natriuresis in females. Unlike males, female mice with genetic deletion of GPER had reduced endothelin 1, endothelin receptor subtype A, and endothelin receptor subtype B mRNA expression compared with wild-type controls. More important, we found that systemic GPER activation ameliorates the increase in mean arterial pressure induced by ovariectomy. Conclusions Our data uncover a novel role for renal medullary GPER in promoting Na+ excretion via an endothelin 1-dependent pathway in female rats, but not in males. These results highlight GPER as a potential therapeutic target for salt-sensitive hypertension in postmenopausal women.


Asunto(s)
Médula Renal/metabolismo , Natriuresis , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ciclopentanos/farmacología , Endotelina-1/genética , Endotelina-1/metabolismo , Estradiol/metabolismo , Estrógenos/farmacología , Femenino , Médula Renal/efectos de los fármacos , Masculino , Ratones Noqueados , Natriuresis/efectos de los fármacos , Ovariectomía , Quinolinas/farmacología , Ratas Sprague-Dawley , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Receptores de Estrógenos/deficiencia , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Factores Sexuales , Transducción de Señal
12.
Cells ; 9(4)2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295252

RESUMEN

Aldosterone indirectly regulates water reabsorption in the distal tubule by regulating sodium reabsorption. However, the direct effect of aldosterone on vasopressin-regulated water and urea permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether aldosterone regulates osmotic water permeability in isolated perfused rat IMCDs. Adding aldosterone (500 nM) to the bath significantly decreased osmotic water permeability in the presence of vasopressin (50 pM) in both male and female rat IMCDs. Aldosterone significantly decreased aquaporin-2 (AQP2) phosphorylation at S256 but did not change it at S261. Previous studies show that aldosterone can act both genomically and non-genomically. We tested the mechanism by which aldosterone attenuates osmotic water permeability. Blockade of gene transcription with actinomycin D did not reverse aldosterone-attenuated osmotic water permeability. In addition to AQP2, the urea transporter UT-A1 contributes to vasopressin-regulated urine concentrating ability. We tested aldosterone-regulated urea permeability in vasopressin-treated IMCDs. Blockade of gene transcription did not reverse aldosterone-attenuated urea permeability. In conclusion, aldosterone directly regulates water reabsorption through a non-genomic mechanism. Aldosterone-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. There may be a sex difference apparent in the inhibitory effect of aldosterone on water reabsorption in the inner medullary collecting duct. This study is the first to show a direct effect of aldosterone to inhibit vasopressin-stimulated osmotic water permeability and urea permeability in perfused rat IMCDs.


Asunto(s)
Aldosterona/uso terapéutico , Transporte Biológico/fisiología , Médula Renal/efectos de los fármacos , Túbulos Renales Colectores/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Vasopresinas/efectos adversos , Aldosterona/farmacología , Animales , Células Cultivadas , Femenino , Masculino , Ratas
13.
PLoS One ; 15(3): e0229756, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32126132

RESUMEN

The aim of this work was to study the effect of a high sodium (HS) diet on blood pressure and renal function in male adult rats that have been treated with a dual Endothelin receptor antagonist (ERA) during their early postnatal period (day 1 to 20 of life). Male Sprague-Dawley rats were divided in four groups: CNS: control rats with normosodic diet; ERANS: ERA-treated rats with normosodic diet; CHS: control rats with high sodium diet; ERAHS: ERA-treated rats with HS diet. Systolic blood pressure (SBP) was recorded before and after the diet and 24-hour metabolic cage studies were performed. AQP2 and α-ENac expressions were measured by western blot and real time PCR in the renal medulla. Vasopressin (AVP) pathway was evaluated by measuring V2 receptor and adenylyl cyclase 6 (AC6) expression and cAMP production in the renal medulla. Pre-pro ET-1mRNA was also evaluated in the renal medulla. Only rats that had been treated with an ERA during their postnatal period increased their SBP after consumption of a HS diet, showing an impaired capacity to excrete sodium and water, i.e. developing salt sensitivity. This salt sensitivity would be mediated by an increase in renomedullary expression and activity of AQP2 and α-ENaC as a consequence of increased AC6 expression and cAMP production and/or a decreased ET-1 production in the renal medulla. The knowledge of the molecular mechanisms underlying the perinatal programming of salt sensitive hypertension will allow the development of reprogramming strategies in order to avoid this pathology.


Asunto(s)
Endotelinas/metabolismo , Hipertensión/etiología , Médula Renal/crecimiento & desarrollo , Receptores de Endotelina/metabolismo , Transducción de Señal/fisiología , Adulto , Animales , Animales Recién Nacidos , Acuaporina 2/metabolismo , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Endotelina/farmacología , Endotelinas/antagonistas & inhibidores , Canales Epiteliales de Sodio/metabolismo , Humanos , Hipertensión/fisiopatología , Recién Nacido , Médula Renal/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Eliminación Renal/efectos de los fármacos , Eliminación Renal/fisiología , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/metabolismo , Vasopresinas/metabolismo
14.
PLoS One ; 14(11): e0225640, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31774858

RESUMEN

We recently provided highly suggestive preliminary evidence that the renal interstitium contracts reactively in vivo. We demonstrated that renal medullary direct interstitial volume expansion (rmDIVE = 100 µl bolus infusion of 0.9% saline (SS)/30 s) brought about a biphasic renal interstitial hydrostatic pressure (RIHP) response which was abolished when dibutyryl-cAMP was concomitant and interstitially infused. To assess more deeply the feasibility of the concept that the renal interstitium contracts in vivo, two experimental series (S1, S2) were performed in hydropenic rats subjected to acute left renal-denervation, hormonal clamping, and control of renal arterial pressure. In S1, RIHP and renal outer medullary blood flow (RoMBF) were continuously measured before and after a sudden micro-bolus (5µl) injection, into the renal medullary interstitium, of SS containing α-trinositol (α-TNS, anti-inflammatory drug) to either two doses 2 or 4 mM (SS + 2 α-TNS and SS + 4 α-TNS groups). No overall differences between groups in either ΔRIHP or %ΔRoMBF time courses were found; however, in the SS + 2 α-TNS group the data were less scattered and the ΔRIHP time course tended to peak faster and then persisted there, so that, this α-TNS dose was selected for S2. In S2, RIHP and RoMBF were similarly measured in rats randomly assigned to three groups: the CTR group (sham time-control), SS group (SS alone), and SS + α-TNS group. The micro-bolus injection of SS alone (SS group) was unable to increase ΔRIHP. The group with no micro-bolus injection (CTR group) experienced a decrease in ΔRIHP. The micro-bolus injection of SS + 2 α-TNS was accompanied by a differential increase in ΔRIHP (vs. CTR and SS groups). These responses were not associated with differential changes among groups in %ΔRoMBF or hemodilution parameters. These results provide additional evidence that the renal interstitium contracts in vivo.


Asunto(s)
Médula Renal/fisiología , Circulación Renal , Vasoconstricción/fisiología , Animales , Presión Hidrostática , Médula Renal/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Cloruro de Sodio/administración & dosificación , Vasoconstricción/efectos de los fármacos
15.
Am J Physiol Renal Physiol ; 317(6): F1656-F1668, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31657247

RESUMEN

Angiotensin II (ANG II) raises blood pressure partly by stimulating tubular Na+ reabsorption. The effects of ANG II on tubular Na+ transporters (i.e., channels, pumps, cotransporters, and exchangers) vary between short-term and long-term exposure. To better understand the physiological impact, we used a computational model of transport along the rat nephron to predict the effects of short- and long-term ANG II-induced transporter activation on Na+ and K+ reabsorption/secretion, and to compare measured and calculated excretion rates. Three days of ANG II infusion at 200 ng·kg-1·min-1 is nonpressor, yet stimulates transporter accumulation. The increase in abundance of Na+/H+ exchanger 3 (NHE3) or activated Na+-K+-2Cl- cotransporter-2 (NKCC2-P) predicted significant reductions in urinary Na+ excretion, yet there was no observed change in urine Na+. The lack of antinatriuresis, despite Na+ transporter accumulation, was supported by Li+ and creatinine clearance measurements, leading to the conclusion that 3-day nonpressor ANG II increases transporter abundance without proportional activation. Fourteen days of ANG II infusion at 400 ng·kg-1·min-1 raises blood pressure and increases Na+ transporter abundance along the distal nephron; proximal tubule and medullary loop transporters are decreased and urine Na+ and volume output are increased, evidence for pressure natriuresis. Simulations indicate that decreases in NHE3 and NKCC2-P contribute significantly to reducing Na+ reabsorption along the nephron and to pressure natriuresis. Our results also suggest that differential regulation of medullary (decrease) and cortical (increase) NKCC2-P is important to preserve K+ while minimizing Na+ retention during ANG II infusion. Lastly, our model indicates that accumulation of active Na+-Cl- cotransporter counteracts epithelial Na+ channel-induced urinary K+ loss.


Asunto(s)
Angiotensina II/farmacología , Proteínas de Transporte de Membrana/metabolismo , Nefronas/metabolismo , Sodio/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Simulación por Computador , Creatinina/metabolismo , Canales Epiteliales de Sodio , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Litio/orina , Masculino , Natriuresis/efectos de los fármacos , Potasio/metabolismo , Ratas , Sodio/orina , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
16.
J Vet Pharmacol Ther ; 42(4): 476-486, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31190341

RESUMEN

Repeated administration of meloxicam can cause kidney damage in cats by mechanisms that remain unclear. Metabolomics and lipidomics are powerful, noninvasive approaches used to investigate tissue response to drug exposure. Thus, the objective of this study was to assess the effects of meloxicam on the feline kidney using untargeted metabolomics and lipidomics approaches. Female young-adult purpose-breed cats were allocated into the control (n = 4) and meloxicam (n = 4) groups. Cats in the control and meloxicam groups were treated daily with saline and meloxicam at 0.3 mg/kg subcutaneously for 17 days, respectively. Renal cortices and medullas were collected at the end of the treatment period. Random forest and metabolic pathway analyses were used to identify metabolites that discriminate meloxicam-treated from saline-treated cats and to identify disturbed metabolic pathways in renal tissue. Our results revealed that the repeated administration of meloxicam to cats altered the kidney metabolome and lipidome and suggest that at least 40 metabolic pathways were altered in the renal cortex and medulla. These metabolic pathways included lipid, amino acid, carbohydrate, nucleotide and energy metabolisms, and metabolism of cofactors and vitamins. This is the first study using a pharmacometabonomics approach for studying the molecular effects of meloxicam on feline kidneys.


Asunto(s)
Antiinflamatorios no Esteroideos/efectos adversos , Enfermedades de los Gatos/inducido químicamente , Corteza Renal/efectos de los fármacos , Médula Renal/efectos de los fármacos , Meloxicam/efectos adversos , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Enfermedades de los Gatos/patología , Gatos , Esquema de Medicación , Femenino , Metabolismo de los Lípidos , Meloxicam/administración & dosificación , Metabolómica
17.
Am J Pathol ; 189(9): 1721-1731, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31220449

RESUMEN

Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.


Asunto(s)
Lesión Renal Aguda/prevención & control , Hipertensión/patología , Médula Renal/efectos de los fármacos , Receptores del Factor Natriurético Atrial/fisiología , Cloruro de Sodio/toxicidad , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Animales , Femenino , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Médula Renal/metabolismo , Médula Renal/patología , Masculino , Ratones , Ratones Noqueados
18.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R232-R239, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31141418

RESUMEN

In experimental sepsis, the rapid development of renal medullary hypoxia precedes the development of acute kidney injury (AKI) and may contribute to its pathogenesis. We investigated whether inhibiting active sodium transport and oxygen consumption in the medullary thick ascending limb with furosemide attenuates the medullary hypoxia in experimental septic AKI. Sheep were instrumented with flow probes on the pulmonary and renal arteries and fiber optic probes to measure renal cortical and medullary perfusion and oxygen tension (Po2). Sepsis and AKI were induced by infusion of live Escherichia coli. At 24 h of sepsis there were significant decreases in renal medullary tissue perfusion (1,332 ± 233 to 698 ± 159 blood perfusion units) and Po2 (44 ± 6 to 19 ± 6 mmHg) (both P < 0.05). By 5 min after intravenous administration of furosemide (20 mg), renal medullary Po2 increased to 43 ± 6 mmHg and remained at this normal level for 8 h. Furosemide caused transient increases in fractional excretion of sodium and creatinine clearance, but medullary perfusion, renal blood flow, and renal oxygen delivery were unchanged. Urinary F2-isoprostanes, an index of oxidative stress, were not significantly changed at 24 h of sepsis but tended to transiently decrease after furosemide treatment. In septic AKI, furosemide rapidly restored medullary Po2 to preseptic levels. This effect was not accompanied by changes in medullary perfusion or renal oxygen delivery but was accompanied by a transient increase in fractional sodium excretion, implying decreased oxygen consumption as a mechanism.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Médula Renal/efectos de los fármacos , Circulación Renal/efectos de los fármacos , Lesión Renal Aguda/patología , Animales , Furosemida , Hipoxia/fisiopatología , Riñón/efectos de los fármacos , Riñón/metabolismo , Pruebas de Función Renal/métodos , Médula Renal/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Circulación Renal/fisiología , Ovinos
19.
Toxicol Pathol ; 47(5): 645-648, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31117926

RESUMEN

In histopathology, the presence of a tissue change that does not represent the tissue's normal appearance can often lead to an incorrect diagnosis and interpretation. These changes are collectively known as "artifacts" resulting from postmortem autolysis, improper fixation, problems with tissue handling or slide preparation procedures. Most tissue artifacts are obvious, yet some artifacts may be subtle, occur in relatively well-fixed tissue, and demand careful observation to avoid confusion with real biological lesions. The kidney often contains artifacts that may be observed throughout all regions of the renal parenchyma. Cortical tubule artifacts present the greatest challenge when discerning an artifact versus an induced lesion following exposure to a xenobiotic. However, confounding artifacts observed at the tip of the renal papilla may also be problematic for the pathologist. An uncommon artifact involving tinctorial alteration and rarefaction affecting the papillary tip of the rat kidney is described here and differentiated from treatment induced lesions of renal papillary necrosis.


Asunto(s)
Artefactos , Médula Renal/patología , Animales , Médula Renal/efectos de los fármacos , Necrosis , Ratas , Xenobióticos/toxicidad
20.
Acta Physiol (Oxf) ; 227(1): e13292, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31046189

RESUMEN

AIM: Disturbances of renal medullary perfusion and metabolism have been implicated in the pathogenesis of kidney disease and hypertension. Furosemide, a loop diuretic, is widely used to prevent renal medullary hypoxia in acute kidney disease by uncoupling sodium metabolism, but its effects on medullary perfusion in humans are unknown. We performed quantitative imaging of both renal perfusion and oxygenation using Magnetic Resonance Imaging (MRI) before and during furosemide. Based on the literature, we hypothesized that furosemide would increase medullary oxygenation, decrease medullary perfusion, but cause minor changes (<10%) in renal artery flow (RAF). METHODS: Interleaved measurements of RAF, oxygenation (T2 *) and perfusion by arterial spin labelling in the renal cortex and medulla of 9 healthy subjects were acquired before and after an injection of 20 mg furosemide. They were preceded by measurements made during isometric exercise (5 minutes handgrip bouts), which are known to induce changes in renal hemodynamics, that served as a control for the sensitivity of the hemodynamic MRI measurements. Experiments were repeated on a second day to establish that the measurements and the induced changes were reproducible. RESULTS: After furosemide, T2 * values in the medulla increased by 53% (P < 0.01) while RAF and perfusion remained constant. After hand-grip exercise, T2 * values in renal medulla increased by 22% ± 9% despite a drop in medullary perfusion of 7.2% ± 4.7% and a decrease in renal arterial flow of 17.5% ± 1.7% (P < 0.05). Mean coefficients of variation between repeated measurements for all parameters were 7%. CONCLUSION: Furosemide induced the anticipated increase in renal medullary oxygenation, attributable exclusively to a decrease in renal oxygen consumption, since no change of RAF, cortical or medullary perfusion could be demonstrated. All measures and the induced changes were reproducible.


Asunto(s)
Diuréticos/farmacología , Furosemida/farmacología , Corteza Renal/efectos de los fármacos , Médula Renal/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Adulto , Femenino , Humanos , Corteza Renal/fisiología , Médula Renal/fisiología , Masculino , Persona de Mediana Edad , Consumo de Oxígeno/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...