Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.495
Filtrar
1.
Pharmacology ; 107(1-2): 46-53, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34788751

RESUMEN

AIM: The aim of this study was to assess the influence of adrenomedullary secretion on the plasma glucose, lactate, and free fatty acids (FFAs) during running exercise in rats submitted to intracerebroventricular (i.c.v.) injection of physostigmine (PHY). PHY i.c.v. was used to activate the central cholinergic system. METHODS: Wistar rats were divided into sham-saline (sham-SAL), sham-PHY, adrenal medullectomy-SAL, and ADM-PHY groups. The plasma concentrations of glucose, lactate, and FFAs were determined immediately before and after i.c.v. injection of 20 µL of SAL or PHY at rest and during running exercise on a treadmill. RESULTS: The i.c.v. injection of PHY at rest increased plasma glucose in the sham group, but not in the ADM group. An increase in plasma glucose, lactate, and FFAs mobilization from adipose tissue was observed during physical exercise in the sham-SAL group; however, the increase in plasma glucose was greater with i.c.v. PHY. Moreover, the hyperglycemia induced by exercise and PHY in the ADM group were blunted by ADM, whereas FFA mobilization was unaffected. CONCLUSION: These results indicate that there is a dual metabolic control by which activation of the central cholinergic pathway increases plasma glucose but not FFA during rest and exercise, and that this hyperglycemic response is dependent on adrenomedullary secretion.


Asunto(s)
Médula Suprarrenal/fisiología , Fibras Colinérgicas/fisiología , Metabolismo/fisiología , Esfuerzo Físico/fisiología , Médula Suprarrenal/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Fibras Colinérgicas/efectos de los fármacos , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/farmacología , Ácidos Grasos no Esterificados/sangre , Inyecciones Intraventriculares , Ácido Láctico/sangre , Masculino , Metabolismo/efectos de los fármacos , Condicionamiento Físico Animal , Fisostigmina/administración & dosificación , Fisostigmina/farmacología , Ratas Wistar
2.
J Neurochem ; 158(2): 153-168, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33704788

RESUMEN

γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA receptor Cl- channel activities in AMC cells of rats and mice, where corticosterone is the major glucocorticoid, were much smaller than those in AMC cells of guinea-pigs and cattle, where cortisol is the major. The extent of enhancement of GABAA receptor α3 subunit expression in rat pheochromocytoma (PC12) cells by cortisol was larger than that by corticosterone in parallel with their glucocorticoid activities. Thus, the species difference in GABAA receptor expression may be ascribed to a difference in glucocorticoid activity between corticosterone and cortisol. GABAA receptor Cl- channel activity in mouse AMC cells was enhanced by allopregnanolone, as noted with that in guinea-pig AMC cells, and the enzymes involved in allopregnanolone production were immunohistochemically detected in the zona fasciculata in both mice and guinea pigs. The expression of glutamic acid decarboxylase 67 (GAD67), one of the GABA synthesizing enzymes, increased after birth, whereas GABAA receptors already developed at birth. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, but not nicotinic or muscarinic receptors, in PC12 cells, resulted in an increase in GAD67 expression in a protein-kinase A-dependent manner. The results indicate that glucocorticoid and PACAP are mainly responsible for the expressions of GABAA receptors and GAD67 involved in GABA signaling in AMC cells, respectively.


Asunto(s)
Médula Suprarrenal/fisiología , Células Cromafines/fisiología , Comunicación Paracrina/fisiología , Ácido gamma-Aminobutírico/fisiología , Médula Suprarrenal/citología , Animales , Bovinos , Canales de Cloruro/metabolismo , Cricetinae , Glutamato Descarboxilasa/metabolismo , Cobayas , Hidrocortisona/metabolismo , Inmunohistoquímica , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Células PC12 , Pregnanolona/farmacología , Ratas , Receptores de GABA-A/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/efectos de los fármacos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo
3.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171955

RESUMEN

We have investigated whether the stress response mediated by the adrenal medulla in rats subjected to chronic constriction injury of the sciatic nerve (CCI) modulates their nocifensive behavior. Treatment with SK29661 (300 mg/kg; intraperitoneal (I.P.)), a selective inhibitor of phenylethanolamine N-methyltransferase (PNMT) that converts noradrenaline (NA) into adrenaline (A), fully reverted mechanical allodynia in the injured hind paw without affecting mechanical sensitivity in the contralateral paw. The effect was fast and reversible and was associated with a decrease in the A to NA ratio (A/NA) in the adrenal gland and circulating blood, an A/NA that was elevated by CCI. 1,2,3,4-tetrahydroisoquinoline-7-sulfonamide (SKF29661) did not affect exocytosis evoked by Ca2+ entry as well as major ionic conductances (voltage-gated Na+, Ca2+, and K+ channels, nicotinic acetylcholine receptors) involved in stimulus-secretion coupling in chromaffin cells, suggesting that it acted by changing the relative content of the two adrenal catecholamines. Denervation of the adrenal medulla by surgical splanchnectomy attenuated mechanical allodynia in neuropathic animals, hence confirming the involvement of the adrenal medulla in the pathophysiology of the CCI model. Inhibition of PNMT appears to be an effective and probably safe way to modulate adrenal medulla activity and, in turn, to alleviate pain secondary to the injury of a peripheral nerve.


Asunto(s)
Médula Suprarrenal/fisiología , Hiperalgesia/fisiopatología , Neuralgia/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Médula Suprarrenal/metabolismo , Animales , Catecolaminas/farmacología , Células Cromafines/efectos de los fármacos , Modelos Animales de Enfermedad , Epinefrina/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/fisiopatología , Norepinefrina/metabolismo , Feniletanolamina N-Metiltransferasa/antagonistas & inhibidores , Feniletanolamina N-Metiltransferasa/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Mol Cell Endocrinol ; 518: 110998, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818585

RESUMEN

The mammalian adrenal gland is composed of two main components; the catecholaminergic neural crest-derived medulla, found in the center of the gland, and the mesoderm-derived cortex producing steroidogenic hormones. The medulla is composed of neuroendocrine chromaffin cells with oxygen-sensing properties and is dependent on tissue interactions with the overlying cortex, both during development and in adulthood. Other relevant organs include the Zuckerkandl organ containing extra-adrenal chromaffin cells, and carotid oxygen-sensing bodies containing glomus cells. Chromaffin and glomus cells reveal a number of important similarities and are derived from the multipotent nerve-associated descendants of the neural crest, or Schwann cell precursors. Abnormalities in complex developmental processes during differentiation of nerve-associated and other progenitors into chromaffin and oxygen-sensing populations may result in different subtypes of paraganglioma, neuroblastoma and pheochromocytoma. Here, we summarize recent findings explaining the development of chromaffin and oxygen-sensing cells, as well as the potential mechanisms driving neuroendocrine tumor initiation.


Asunto(s)
Enfermedades de las Glándulas Suprarrenales/etiología , Médula Suprarrenal/fisiología , Evolución Biológica , Células Madre/fisiología , Enfermedades de las Glándulas Suprarrenales/patología , Médula Suprarrenal/patología , Animales , Diferenciación Celular , Humanos , Cresta Neural/citología , Cresta Neural/fisiología , Células Madre/citología , Células Madre/patología
5.
Psychoneuroendocrinology ; 119: 104750, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32569990

RESUMEN

BACKGROUND AND AIMS: The gut microbiota produces metabolites that are an integral part of the metabolome and, as such, of the host physiology. Changes in gut microbiota metabolism could therefore contribute to pathophysiological processes. We showed previously that a chronic and moderate overproduction of indole from tryptophan in male individuals of the highly stress-sensitive F344 rat strain induced anxiety-like and helplessness behaviors. The aim of the present study was to extend the scope of these findings by investigating whether emotional behaviors of male mice that are moderately stress-sensitive but chronically exposed to environmental stressors would also be affected by indole. METHODS: We colonized germ-free male C3H/HeN mice with a wild-type indole-producing Escherichia coli strain, or with the non-indole producing mutant. Gnotobiotic mice were subjected to an unpredictable chronic mild stress procedure, then to a set of tests aimed at assessing anxiety-like (novelty and elevated plus maze tests) and depression-like behaviors (coat state, splash, nesting, tail suspension and sucrose tests). Results of the individual tests were aggregated into a common z-score to estimate the overall emotional response to chronic mild stress and chronic indole production. We also carried out biochemical and molecular analyses in gut mucosa, plasma, brain hippocampus and striatum, and adrenal glands, to examine biological correlates that are usually associated with stress, anxiety and depression. RESULTS: Chronic mild stress caused coat state degradation and anhedonia in both indole-producing and non-indole producing mice, but it did not influence behaviors in the other tests. Chronic indole production did not influence mice behavior when tests were considered individually, but it increased the overall emotionality z-score, specifically in mice under chronic mild stress. Interestingly, in the same mice, indole induced a dramatic increase of the expression of the adrenomedullary Pnmt gene, which is involved in catecholamine biosynthesis. By contrast, systemic tryptophan bioavailability, brain serotonin and dopamine levels and turnover, as well as expression of gut and brain genes involved in cytokine production and tryptophan metabolism along the serotonin and kynurenine pathways, remained similar in all mice. CONCLUSIONS: Chronic indole production by the gut microbiota increased the vulnerability of male mice to the adverse effects of chronic mild stress on emotional behaviors. It also targeted catecholamine biosynthetic pathway of the adrenal medulla, which plays a pivotal role in body's physiological adaptation to stressful events. Future studies will aim to investigate the action mechanisms responsible for these effects.


Asunto(s)
Médula Suprarrenal/efectos de los fármacos , Emociones/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Indoles/farmacología , Estrés Psicológico , Médula Suprarrenal/fisiología , Animales , Conducta Animal/efectos de los fármacos , Enfermedad Crónica , Indoles/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Estrés Psicológico/metabolismo , Estrés Psicológico/microbiología , Estrés Psicológico/patología , Estrés Psicológico/psicología , Factores de Tiempo
6.
Sci Rep ; 10(1): 7540, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371955

RESUMEN

Large dense-core vesicles (LDCVs) contain a variety of neurotransmitters, proteins, and hormones such as biogenic amines and peptides, together with microRNAs (miRNAs). Isolation of LDCVs is essential for functional studies including vesicle fusion, vesicle acidification, monoamine transport, and the miRNAs stored in LDCVs. Although several methods were reported for purifying LDCVs, the final fractions are significantly contaminated by other organelles, compromising biochemical characterization. Here we isolated LDCVs (chromaffin granules) with high yield and purity from bovine adrenal medulla. The fractionation protocol combines differential and continuous sucrose gradient centrifugation, allowing for reducing major contaminants such as mitochondria. Purified LDCVs show robust acidification by the endogenous V-ATPase and undergo SNARE-mediated fusion with artificial membranes. Interestingly, LDCVs contain specific miRNAs such as miR-375 and miR-375 is stabilized by protein complex against RNase A. This protocol can be useful in research on the biological functions of LDCVs.


Asunto(s)
Médula Suprarrenal/fisiología , Técnicas Citológicas/métodos , Animales , Bovinos , Fraccionamiento Celular , Gránulos Cromafines/metabolismo , Fusión de Membrana , MicroARNs/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurotransmisores/metabolismo
7.
Cell Tissue Res ; 379(1): 157-167, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31673758

RESUMEN

REIC (reduced expression in immortalized cells) has been identified as a gene whose expression was reduced in immortalized cultured cells. The REIC gene is identical to Dickkopf-3 (Dkk3), which encodes a secreted glycoprotein belonging to the Dkk family. Previously, we showed that Dkk3 protein is present in the mouse adrenal medulla. However, its role in this tissue has not been elucidated. To explore it, we performed electron microscopic (EM) studies and RNA-sequencing (RNA-seq) analysis on Dkk3-null adrenal glands. EM studies showed that the number of dense core secretory vesicles were significantly reduced and empty vesicles were increased in the medulla endocrine cells. Quantitative PCR (qPCR) analysis showed relative expression levels of chromogranin A (Chga) and neuropeptide Y (Npy) were slightly but significantly reduced in the Dkk3-null adrenal glands. From the result of RNA-seq analysis as a parallel study, we selected three of the downregulated genes, uncoupled protein-1 (Ucp1), growth arrest and DNA-damage-inducible 45 gamma (Gadd45g), and Junb with regard to the estimated expression levels. In situ hybridization confirmed that these genes were regionally expressed in the adrenal gland. However, expression levels of these three genes were not consistent as revealed by qPCR. Thus, Dkk3 maintains the integrity of secreting vesicles in mouse adrenal medulla by regulating the expression of Chga and Npy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Médula Suprarrenal/fisiología , Vesículas Secretoras/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Médula Suprarrenal/citología , Médula Suprarrenal/ultraestructura , Animales , Cromogranina A/metabolismo , Regulación hacia Abajo , Femenino , Hibridación in Situ , Ratones , Ratones Noqueados , Neuropéptido Y/metabolismo , ARN Mensajero , RNA-Seq , Vesículas Secretoras/ultraestructura , Transcriptoma
8.
Int J Obes (Lond) ; 43(2): 263-275, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29717268

RESUMEN

BACKGROUND: Obesity-associated activation of sympathetic nervous outflow is well documented, whereas involvement of dysregulated adrenomedullary hormonal function in obesity is less clear. This study assessed relationships of sympathoadrenal function with indices of obesity and influences of circulating catecholamines on body mass. METHODS: Anthropometric and clinical data along with plasma and 24-h urine samples were collected from 590 volunteers and 1368 patients tested for phaeochromocytoma and paraganglioma (PPGL), among whom tumours were diagnosed in 210 individuals. RESULTS: Among patients tested for PPGL, those with tumours less often had a body mass index (BMI) above 30 kg/m2 (12 vs. 31%) and more often a BMI under 25 kg/m2 (56 vs. 32%) than those without tumours (P < 0.0001). Urinary outputs of catecholamines in patients with PPGL were negatively related to BMI (r = -0.175, P = 0.0133). Post-operative weight gain (P < 0.0001) after resection of PPGL was positively related to presurgical tumoural catecholamine output (r = 0.257, P = 0.0101). Higher BMI in men and women and percent body fat in women of the volunteer group were associated with lower plasma concentrations and urinary outputs of adrenaline and metanephrine, the former indicating obesity-related reduced adrenaline secretion and the latter obesity-related reduced adrenomedullary adrenaline stores. Daytime activity was associated with substantial increases in urinary adrenaline and noradrenaline excretion, with blunted responses in obese subjects. CONCLUSIONS: The findings in patients with PPGL support an influence of high circulating catecholamines on body weight. Additional associations of adrenomedullary dysfunction with obesity raise the possibility of a permissive influence of the adrenal medulla on the regulation of body weight.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Peso Corporal/fisiología , Catecolaminas , Obesidad , Adolescente , Neoplasias de las Glándulas Suprarrenales/complicaciones , Neoplasias de las Glándulas Suprarrenales/epidemiología , Médula Suprarrenal/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Catecolaminas/sangre , Catecolaminas/orina , Células Cromafines/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/epidemiología , Feocromocitoma , Estudios Prospectivos , Adulto Joven
9.
FASEB J ; 33(1): 455-468, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30001168

RESUMEN

External acidity induces catecholamine secretion by inhibiting TASK1-like channels in rat adrenal medullary (AM) cells. TASK channels can function as a heteromer or homomer in the TASK subfamily. In this study, we elucidate the molecular identity of TASK1-like channels in mouse AM cells using gene knockout. Genetic deletion of TASK1, but not TASK3, abolished the depolarizing inward current and catecholamine secretion in response to acidity, whereas it did not affect the resting current level. Immunocytochemistry revealed that AM cells exhibited predominantly TASK1-like and little TASK3-like immunoreactivity. A proximity ligation assay showed that TASK1/3 heteromeric channels were not formed in AM cells or PC12 cells. However, the exogenous expression of p11 in PC12 cells resulted in the heteromeric formation of TASK isoforms, which were mainly located in the cytoplasm, and p11 was not expressed in rat adrenal medullae or PC12 cells. In AM cells, genetic deletion of TASK1 resulted in enhancement of the immunoreactivity of the TALK2 channel, but not TASK3. The results indicate that TASK1 homomeric channels function as acidity sensors in AM cells, and that function is facilitated by the lack of p11 expression.-Inoue, M., Matsuoka, H., Lesage, F., Harada, K. Lack of p11 expression facilitates acidity-sensing function of TASK1 channels in mouse adrenal medullary cells.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Ácidos/química , Médula Suprarrenal/fisiología , Anexina A2/deficiencia , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio/fisiología , Proteínas S100/deficiencia , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células PC12 , Ratas
10.
Adv Anat Embryol Cell Biol ; 230: 1-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30543033

RESUMEN

The observation of two precursor groups of the early stem cells (Groups I and II) leads to the realization that a first amount of fetal stem cells (Group I) migrate from the AMG (Aortal-Mesonephric-Gonadal)-region into the aorta and its branching vessels. A second group (Group II) gains quite a new significance during human development. This group presents a specific developmental step which is found only in the human. This continuation of the early development along a different way indicates a general alteration of the stem cell biology. This changed process in the stem cell scene dominates the further development of the human stem cells. It remains unclear where this phylogenetic step first appears. By far not all advanced mammals show this second group of stem cells and their axonal migration. Essentially only primates seem to be involved in this special development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/ultraestructura , Gónadas/citología , Gónadas/embriología , Células APUD/citología , Corteza Suprarrenal/citología , Corteza Suprarrenal/embriología , Corteza Suprarrenal/fisiología , Corteza Suprarrenal/ultraestructura , Médula Suprarrenal/citología , Médula Suprarrenal/embriología , Médula Suprarrenal/fisiología , Aorta/citología , Aorta/embriología , Aorta/ultraestructura , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/embriología , Sistema Nervioso Autónomo/fisiología , Orientación del Axón/fisiología , Movimiento Celular/fisiología , Células Madre Embrionarias/fisiología , Gónadas/fisiología , Gónadas/ultraestructura , Desarrollo Humano/fisiología , Humanos , Microscopía Electrónica , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/fisiología , Páncreas/citología , Páncreas/crecimiento & desarrollo , Páncreas/ultraestructura , Paraganglios Cromafines/citología , Paraganglios Cromafines/fisiología , Paraganglios Cromafines/ultraestructura , Teratoma/embriología , Teratoma/fisiopatología
11.
Adv Exp Med Biol ; 1071: 167-174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30357748

RESUMEN

Guinea pigs (GP), originally from the Andes, have absence of hypoxia-driven carotid body (CB) reflex. Neonatal mammals have an immature CB chemo reflex and respond to hypoxia with metabolic changes arising from direct effects of hypoxia on adrenal medulla (AM). Our working hypothesis is that adult GP would mimic neonatal mammals. Plasma epinephrine (E) has an AM origin, while norepinephrine (NE) is mainly originated in sympathetic endings, implying that specific GP changes in plasma E/NE ratio, and in blood glucose and lactate levels during hypoxia would be observed. Experiments were performed on young adult GP and rats. Hypoxic ventilation (10% O2) increased E and NE plasma levels similarly in both species but PaO2 was lower in GP than in rats. Plasma E/NE ratio in GP was higher (≈1.0) than in rats (≈0.5). The hypoxia-evoked increases in blood glucose and lactate were smaller in GP than in the rat. The AM of both species contain comparable E content, but NE was four times lower in GP than in rats. GP superior cervical ganglion also had lower NE content than rats and an unusual high level of dopamine, a negative modulator of sympathetic transmission. Isolated AM from GP released half of E and one tenth of NE than the rat AM, and hypoxia did not alter the time course of CA outflow. These data indicate the absence of direct effects of hypoxia on AM in the GP, and a lower noradrenergic tone in this species. Pathways for hypoxic sympatho-adrenal system activation in GP are discussed.


Asunto(s)
Médula Suprarrenal/fisiología , Cuerpo Carotídeo/fisiología , Hipoxia/fisiopatología , Animales , Epinefrina/sangre , Cobayas , Norepinefrina/sangre , Ratas , Reflejo
12.
PLoS One ; 13(3): e0193963, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29509800

RESUMEN

INTRODUCTION: The vestibular acute stress induces reversible alert-like reactions that involve the sympathetic adrenal-medullar system and hypothalamic-pituitary-adrenal axis responses. The present study aimed to evaluate salivary α-amylase and salivary cortisol production in relation with cardiovascular reactivity induced by acute stress in healthy subjects. MATERIAL AND METHODS: Forty-eight young healthy male volunteers were examined under basal conditions and at various times after reaching the maximal nystagmic reaction following air caloric vestibular test. Heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure were recorded at the same time as measurement of the salivary α-amylase and salivary cortisol. At the end of the caloric vestibular test session, perceived stress scale questionnaires were administered to measure the self-perceived stress impact induced by the task, and individual scores were compared with those measured on the enrollment day. RESULTS: Following caloric vestibular test-evoked vertigo, salivary α-amylase and cortisol showed distinct trends in their production after acute stress: Student's t-test was used to compare the α-amylase vs cortisol slopes of the respective interpolated regression lines, and the difference was significant (t = -3.283; p<0.001); an increase in salivary cortisol production corresponded with a decrease in the salivary α-amylase concentration. In addition, salivary biomarker modifications were associated with consistent changes in the heart rate, systolic blood pressure and mean arterial pressure. CONCLUSIONS: Using the air caloric vestibular test task as a stressor, the present study demonstrated a connection between the acute hormonal stress response to vestibular stimulation and cardiovascular output. However, further research is needed before we can define the potential importance of the consistent cardiovascular activity changes evoked by vestibular stimulation and the possible functional consequences for cardiovascular regulation and orthostatic tolerance in humans.


Asunto(s)
Médula Suprarrenal/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Reflejo Vestibuloocular/fisiología , Sistema Nervioso Simpático/fisiología , Adulto , Humanos , Hidrocortisona/análisis , Masculino , Saliva/química , Saliva/enzimología , Estrés Psicológico/fisiopatología , Adulto Joven , alfa-Amilasas/metabolismo
13.
Environ Int ; 115: 117-126, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29558634

RESUMEN

Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM2.5, PM10, SO2, NO2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM2.5, PM10, SO2 and NO2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM2.5, PM10, SO2, NO2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure impairs the SAM system in children.


Asunto(s)
Contaminantes Atmosféricos/sangre , Residuos Electrónicos/efectos adversos , Exposición por Inhalación , Médula Suprarrenal/fisiología , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , China , Frecuencia Cardíaca/fisiología , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/estadística & datos numéricos , Factores de Riesgo , Sistema Nervioso Simpático/fisiología
14.
Pflugers Arch ; 470(1): 89-96, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28735418

RESUMEN

From birth to death, catecholamine secretion undergoes continuous adjustments, allowing the organism to adapt to homeostasis changes. To cope with these stressful conditions, the neuroendocrine cells of the adrenal medulla play an immediate and crucial role. Chromaffin cell-driven catecholamine release is chiefly controlled by a neurogenic command that arises from the sympathetic nervous system, which releases acetylcholine at the splanchnic nerve terminal-chromaffin cell synapses. In addition to receiving several synaptic inputs individually, chromaffin cells are coupled by gap junctions. This raises interesting questions about the usefulness and the role of the gap junctional coupling within the chromaffin tissue, considering that secretory function is efficiently completed by the neurogenic pathway. The findings that gap junctions contribute to catecholamine secretion, both ex vivo and in vivo, provide some early answers, but their involvement in other cellular functions still remains unexplored. This review summarizes the molecular and physiological evidence that gap junctions can act either as an accelerator or a brake of stimulus-secretion coupling and discusses this functional plasticity in the context of specific needs in circulating catecholamine levels. It introduces the concept of gap junctions as sympathetic activity sensors and guardians of the functional integrity of the chromaffin tissue.


Asunto(s)
Médula Suprarrenal/metabolismo , Comunicación Autocrina , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Uniones Comunicantes/metabolismo , Estrés Fisiológico , Médula Suprarrenal/citología , Médula Suprarrenal/fisiología , Animales , Células Cromafines/fisiología , Humanos
15.
Pflugers Arch ; 470(1): 61-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28836008

RESUMEN

Chromaffin cells from the adrenal medulla participate in stress responses by releasing catecholamines into the bloodstream. Main control of adrenal catecholamine secretion is exerted both neurally (by the splanchnic nerve fibers) and humorally (by corticosteroids, circulating noradrenaline, etc.). It should be noted, however, that secretory products themselves (catecholamines, ATP, opioids, ascorbic acid, chromogranins) could also influence the secretory response in an autocrine/paracrine manner. This form of control is activity-dependent and can be either inhibitory or excitatory. Among the inhibitory influences, it stands out the one mediated by α2-adrenergic autoreceptors activated by released catecholamines. α2-adrenoceptors are G protein-coupled receptors capable to inhibit exocytotic secretion through a direct interaction of Gßγ subunits with voltage-gated Ca2+ channels. Interestingly, upon intense and/or prolonged stimulation, α2-adrenergic receptors become desensitized by the intervention of G protein-coupled receptor kinase 2 (GRK2). In several experimental models of heart failure, there has been reported the up-regulation of GRK2 and the loss of functioning of inhibitory α2-adrenoceptors resulting in enhanced release of adrenomedullary catecholamines. Given the importance of circulating catecholamines in the pathophysiology of heart failure, the recovery of α2-adrenergic modulation of the secretory response from chromaffin cells appears as a novel strategy for a better control of the patients with this cardiac disease.


Asunto(s)
Médula Suprarrenal/metabolismo , Células Cromafines/metabolismo , Cardiopatías/etiología , Receptores Adrenérgicos alfa 2/metabolismo , Médula Suprarrenal/citología , Médula Suprarrenal/fisiología , Animales , Catecolaminas/metabolismo , Células Cromafines/fisiología , Humanos
16.
Peptides ; 91: 26-32, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263851

RESUMEN

Due to the important interactions of proenkephalin fragments (e.g., proenkephalin [107-140] Peptide F) to enhance activation of immune cells and potentially combat pain associated with exercise-induced muscle tissue damage, we examined the differential plasma responses of Peptide F to different exercise training programs. Participants were tested pre-training (T1), and after 8 weeks (T2) of training. Fifty-nine healthy women were matched and then randomly assigned to one of four groups: heavy resistance strength training (STR, n=18), high intensity endurance training (END, n=14), combined strength and endurance training (CMB, n=17), or control (CON, n=10). Blood was collected using a cannula inserted into a superficial vein in the antecubital fossa with samples collected at rest and immediately after an acute bout of 6 X 10 RM in a squat resistance exercise before training and after training. Prior to any training, no significant differences were observed for any of the groups before or after acute exercise. With training, significant (P≤0.95) elevations were observed with acute exercise in each of the exercise training groups and this effect was significantly greater in the CMB group. These data indicate that in untrained women exercise training will not change resting of plasma Peptide F concentrations unless both forms of exercise are performed but will result in significant increases in the immediate post-exercise responses. Such findings appear to indicate adrenal medullary adaptations opioid production significantly altered with exercise training.


Asunto(s)
Médula Suprarrenal/fisiología , Encefalina Metionina/análogos & derivados , Ejercicio Físico/fisiología , Precursores de Proteínas/sangre , Adaptación Fisiológica , Adulto , Cánula , Encefalina Metionina/sangre , Femenino , Humanos , Resistencia Física/fisiología , Entrenamiento de Fuerza , Factores de Tiempo
17.
J Appl Physiol (1985) ; 122(2): 317-326, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765842

RESUMEN

Previous studies have shown that catecholamines in vivo and in vitro inhibit the activity of Ca2+-dependent proteolysis in skeletal muscles under basal conditions. In the present study we sought to investigate the role of catecholamines in regulating the Ca2+-dependent proteolysis in soleus and extensor digitorum longus (EDL) muscles from rats acutely exposed to cold. Overall proteolysis, the activity of proteolytic systems, protein levels and gene expression of different components of the calpain system were investigated in rats submitted to adrenodemedullation (ADMX) and exposed to cold for 24 h. ADMX drastically reduced plasma epinephrine and promoted an additional increase in the overall proteolysis, which was already increased by cold exposure. The rise in the rate of protein degradation in soleus muscles from adrenodemedullated cold-exposed rats was caused by the high activity of the Ca2+-dependent proteolysis, which was associated with the generation of a 145-kDa cleaved α-fodrin fragment, a typical calpain substrate, and lower protein levels and mRNA expression of calpastatin, the endogenous calpain inhibitor. Unlike that observed for soleus muscles, the cold-induced muscle proteolysis in EDL was not affected by ADMX. In isolated soleus muscle, clenbuterol, a selective ß2-adrenoceptor agonist, reduced the basal Ca2+-dependent proteolysis and completely abolished the activation of this pathway by the cholinergic agonist carbachol. These data suggest that catecholamines released from the adrenal medulla inhibit cold-induced protein breakdown in soleus, and this antiproteolytic effect on the Ca2+-dependent proteolytic system is apparently mediated through expression of calpastatin, which leads to suppression of calpain activation.NEW & NOTEWORTHY Although many effects of the sympathetic nervous system on muscle physiology are known, the role of catecholamines in skeletal muscle protein metabolism has been scarcely studied. We suggest that catecholamines released from adrenal medulla may be of particular importance for restraining the activation of the Ca2+-dependent proteolysis in soleus muscles during acute cold exposure. This finding helps us to understand the adaptive changes that occur in skeletal muscle protein metabolism during cold stress.


Asunto(s)
Médula Suprarrenal/metabolismo , Médula Suprarrenal/fisiología , Calcio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Proteínas Portadoras/metabolismo , Catecolaminas/metabolismo , Frío , Epinefrina/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteolisis , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/fisiología
18.
Proc Natl Acad Sci U S A ; 113(35): 9922-7, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528671

RESUMEN

Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.


Asunto(s)
Médula Suprarrenal/fisiología , Corteza Cerebral/fisiología , Cognición/fisiología , Corteza Motora/fisiología , Médula Suprarrenal/virología , Animales , Transporte Biológico , Cebus , Corteza Cerebral/virología , Femenino , Giro del Cíngulo/fisiología , Giro del Cíngulo/virología , Humanos , Masculino , Corteza Motora/virología , Movimiento/fisiología , Red Nerviosa/fisiología , Red Nerviosa/virología , Vías Nerviosas/fisiología , Vías Nerviosas/virología , Corteza Prefrontal/fisiología , Corteza Prefrontal/virología , Rabia/virología , Virus de la Rabia/fisiología
20.
Mol Cell Biochem ; 411(1-2): 201-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26427671

RESUMEN

Previously, we reported that central administration of bombesin, a stress-related peptide, elevated plasma levels of catecholamines (noradrenaline and adrenaline) in the rat. The sympatho-adrenomedullary system, which is an important component of stress responses, can be regulated by the central opioid system. In the present study, therefore, we examined the roles of brain opioid receptor subtypes (µ, δ, and κ) and nociceptin receptors, originally identified as opioid-like orphan receptors, in the bombesin-induced activation of central sympatho-adrenomedullary outflow using anesthetized male Wistar rats. Intracerebroventricularly (i.c.v.) administered bombesin-(1 nmol/animal) induced elevation of plasma catecholamines was significantly potentiated by pretreatment with naloxone (300 and 1000 µg/animal, i.c.v.), a non-selective antagonist for µ-, δ-, and κ-opioid receptors. Pretreatment with cyprodime (100 µg/animal, i.c.v.), a selective antagonist for µ-opioid receptors, also potentiated the bombesin-induced responses. In contrast, pretreatment with naltrindole (100 µg/animal, i.c.v.) or nor-binaltorphimine (100 µg/animal, i.c.v.), a selective antagonist for δ- or κ-opioid receptors, significantly reduced the elevation of bombesin-induced catecholamines. In addition, pretreatment with JTC-801 (30 and 100 µg/animal, i.c.v.) or J-113397 (100 µg/animal, i.c.v.), which are selective antagonists for nociceptin receptors, also reduced the bombesin-induced responses. These results suggest that brain µ-opioid receptors play a suppressive role and that brain δ-, κ-opioid, and nociceptin receptors play a facilitative role in the bombesin-induced elevation of plasma catecholamines in the rat. Thus, in the brain, these receptors could play differential roles in regulating the activation of central sympatho-adrenomedullary outflow.


Asunto(s)
Médula Suprarrenal/fisiología , Bombesina/farmacología , Encéfalo/metabolismo , Receptores Opioides/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Catecolaminas/sangre , Morfinanos/administración & dosificación , Naloxona/administración & dosificación , Naltrexona/administración & dosificación , Naltrexona/análogos & derivados , Ratas , Receptor de Nociceptina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...