Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.211
Filtrar
1.
Skin Res Technol ; 30(5): e13740, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720488

RESUMEN

BACKGROUND: The human nail has a three-layered structure. Although it would be useful to quantitatively evaluate the changes in deformability of the nail due to various surface treatments, few studies have been conducted. METHODS: The effects of two types of surface treatment-a chemically acting nail softener and a physically acting nail strengthener-on the deformability of human fingernails were investigated. The Young's modulus of each plate of the nail samples before and after softening treatment was determined by nanoindentation. The Young's modulus of the strengthener was determined by conducting a three-point bending test on a polyethylene sheet coated with the strengthener. RESULTS: Young's modulus decreased in order from the top plate against the softening treatment time, and the structural elasticity for bending deformation (SEB) of the nail sample, which expresses the deformability against bending deformation independent of its external dimensions, decreased to 60% after 6 h of treatment. The Young's modulus of the nail strengthener was 244.5 MPa, which is less than 10% of the SEB of the nail. When the nail strengthener was applied to the nail surface, the SEB decreased to 73%, whereas the flexural rigidity increased to 117%. CONCLUSION: Changes in nail deformability caused by various surface treatments for softening and hardening were quantitatively evaluated successfully.


Asunto(s)
Módulo de Elasticidad , Uñas , Propiedades de Superficie , Humanos , Módulo de Elasticidad/fisiología , Uñas/fisiología , Femenino , Elasticidad/fisiología , Adulto
2.
PLoS One ; 19(5): e0302729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743667

RESUMEN

The constitutive model and modulus parameter equivalence of shape memory alloy composites (SMAC) serve as the foundation for the structural dynamic modeling of composite materials, which has a direct impact on the dynamic characteristics and modeling accuracy of SMAC. This article proposes a homogenization method for SMA composites considering interfacial phases, models the interface stress transfer of three-phase cylinders physically, and derives the axial and shear stresses of SMA fiber phase, interfacial phase, and matrix phase mathematically. The homogenization method and stress expression were then used to determine the macroscopic effective modulus of SMAC as well as the stress characteristics of the fiber phase and interface phase of SMA. The findings demonstrate the significance of volume fraction and tensile pre-strain in stress transfer between the fiber phase and interface phase at high temperatures. The maximum axial stress in the fiber phase is 705.05 MPa when the SMA is fully austenitic and the pre-strain increases to 5%. At 10% volume fraction of SMA, the fiber phase's maximum axial stress can reach 1000 MPa. Ultimately, an experimental verification of the theoretical calculation method's accuracy for the effective modulus of SMAC lays the groundwork for the dynamic modeling of SMAC structures.


Asunto(s)
Aleaciones , Estrés Mecánico , Resistencia a la Tracción , Aleaciones/química , Ensayo de Materiales/métodos , Módulo de Elasticidad , Materiales Inteligentes/química , Modelos Teóricos
3.
PLoS One ; 19(5): e0302778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713687

RESUMEN

INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS: Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS: The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION: This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Tendones , Animales , Porcinos , Tendones/cirugía , Tendones/fisiología , Tendones/diagnóstico por imagen , Fenómenos Biomecánicos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética/métodos , Resistencia a la Tracción , Módulo de Elasticidad
4.
J Acoust Soc Am ; 155(5): 2948-2958, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717204

RESUMEN

Arteriosclerosis is a major risk factor for cardiovascular disease and results in arterial vessel stiffening. Velocity estimation of the pulse wave sent by the heart and propagating into the arteries is a widely accepted biomarker. This symmetrical pulse wave propagates at a speed which is related to the Young's modulus through the Moens Korteweg (MK) equation. Recently, an antisymmetric flexural wave has been observed in vivo. Unlike the symmetrical wave, it is highly dispersive. This property offers promising applications for monitoring arterial stiffness and early detection of atheromatous plaque. However, as far as it is known, no equivalent of the MK equation exists for flexural pulse waves. To bridge this gap, a beam based theory was developed, and approximate analytical solutions were reached. An experiment in soft polymer artery phantoms was built to observe the dispersion of flexural waves. A good agreement was found between the analytical expression derived from beam theory and experiments. Moreover, numerical simulations validated wave speed dependence on the elastic and geometric parameters at low frequencies. Clinical applications, such as arterial age estimation and arterial pressure measurement, are foreseen.


Asunto(s)
Modelos Cardiovasculares , Fantasmas de Imagen , Análisis de la Onda del Pulso , Rigidez Vascular , Análisis de la Onda del Pulso/métodos , Humanos , Módulo de Elasticidad , Simulación por Computador , Arterias/fisiología , Arterias/fisiopatología , Análisis Numérico Asistido por Computador , Velocidad del Flujo Sanguíneo/fisiología
5.
ACS Biomater Sci Eng ; 10(5): 3454-3469, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38590081

RESUMEN

Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly. The surface topography of the scaffolds closely resembled the design after the 75 s FAE treatment. The actual elastic modulus of the treated scaffolds (3.206 ± 0.040 GPa) was closer to the designed value (3.110 GPa), and a micrometer-scale structure was constructed on the inner and outer surfaces of the scaffolds after the 90 s FAE treatment. However, the yield strength of scaffolds was reduced to 89.743 ± 0.893 MPa from 118.251 ± 0.982 MPa after the 90 s FAE treatment. The FAE method also showed higher efficiency in decreasing the roughness and enhancing the hydrophilicity and surface energy of all of the surfaces. The FAE treatment improved the permeability of scaffolds efficiently, and the permeability of scaffolds increased to 11.93 ± 0.21 × 10-10 mm2 from 8.57 ± 0.021 × 10-10 mm2 after the 90 s FAE treatment. The treated Ti64 scaffolds after the 90 s FAE treatment exhibited optimized osseointegration effects in vitro and in vivo. In conclusion, the FAE method was an efficient way to eliminate unmelted Ti64 particles and obtain ideal surface topography, mechanical properties, and permeability to promote osseointegration in additively manufactured Ti64 scaffolds.


Asunto(s)
Aleaciones , Oseointegración , Propiedades de Superficie , Andamios del Tejido , Titanio , Titanio/química , Aleaciones/química , Oseointegración/efectos de los fármacos , Animales , Andamios del Tejido/química , Módulo de Elasticidad , Ensayo de Materiales
6.
ACS Biomater Sci Eng ; 10(5): 2956-2966, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38593061

RESUMEN

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.


Asunto(s)
Módulo de Elasticidad , Escherichia coli , Staphylococcus aureus , Vibrio cholerae , Staphylococcus aureus/fisiología , Staphylococcus aureus/efectos de los fármacos , Vibrio cholerae/fisiología , Escherichia coli/fisiología , Escherichia coli/efectos de los fármacos , Análisis de Elementos Finitos , Membrana Celular/fisiología , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos
7.
Int J Biol Macromol ; 267(Pt 1): 131587, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631587

RESUMEN

Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.


Asunto(s)
Celulosa , Quitosano , Nanofibras , Protones , Propiedades de Superficie , Quitosano/química , Celulosa/química , Nanofibras/química , Permeabilidad , Módulo de Elasticidad , Fenómenos Mecánicos , Agua/química
8.
Int J Biol Macromol ; 267(Pt 1): 131280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640644

RESUMEN

Bacterial cellulose (BC) is an ideal candidate material for drug delivery, but the disbalance between the swelling behavior and mechanical properties limits its application. In this work, covalent crosslinking of γ-polyglutamic acid (γ-PGA) with the chitosan oligosaccharide (COS) embedded in BC was designed to remove the limitation. As a result, the dosage, time, and batch of COS addition significantly affected the mechanical properties and the yield of bacterial cellulose complex film (BCCF). The addition of 2.25 % COS at the incubation time of 0.5, 1.5, and 2 d increased the Young's modulus and the yield by 5.65 and 1.42 times, respectively, but decreased the swelling behavior to 1774 %, 46 % of that of native BC. Covalent γ-PGA transformed the dendritic structure of BCCF into a spider network, decreasing the porosity and increasing the swelling behavior by 3.46 times. The strategy balanced the swelling behavior and mechanical properties through tunning hydrogen bond, electrostatic interaction, and amido bond. The modified BCCF exhibited a desired behavior of benzalkonium chlorides transport, competent for drug delivery. Thereby, the strategy will be a competent candidate to modify BC for such potential applications as wound dressing, artificial skin, scar-inhibiting patch, and so on.


Asunto(s)
Celulosa , Quitosano , Oligosacáridos , Ácido Poliglutámico , Ácido Poliglutámico/análogos & derivados , Quitosano/química , Celulosa/química , Oligosacáridos/química , Ácido Poliglutámico/química , Fenómenos Mecánicos , Bacterias/efectos de los fármacos , Módulo de Elasticidad
9.
Int J Biol Macromol ; 267(Pt 2): 131519, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608985

RESUMEN

Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.


Asunto(s)
Materiales Biocompatibles , Tornillos Óseos , Quitosano , Fibroínas , Células Endoteliales de la Vena Umbilical Humana , Ensayo de Materiales , Quitosano/química , Quitosano/farmacología , Fibroínas/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hidrogeles/química , Proliferación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Fuerza Compresiva , Módulo de Elasticidad
10.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611786

RESUMEN

Membrane-based sensors (MePSs) exhibit remarkable precision and sensitivity in detecting pressure changes. MePSs are commonly used to monitor catalytic reactions in solution, generating gas products crucial for signal amplification in bioassays. They also allow for catalyst quantification by indirectly measuring the pressure generated by the gaseous products. This is particularly interesting for detecting enzymes in biofluids associated with disease onset. To enhance the performance of a MePS, various structural factors influence membrane flexibility and response time, ultimately dictating the device's pressure sensitivity. In this study, we fabricated MePSs using polydimethylsiloxane (PDMS) and investigated how structural modifications affect the Young's modulus (E) and residual stress (σ0) of the membranes. These modifications have a direct impact on the sensors' sensitivity to pressure variations, observed as a function of the volume of the chamber (Σ) or of the mechanical properties of the membrane itself (S). MePSs exhibiting the highest sensitivities were then employed to detect catalyst quantities inducing the dismutation of hydrogen peroxide, producing dioxygen as a gaseous product. As a result, a catalase enzyme was successfully detected using these optimized MePSs, achieving a remarkable sensitivity of (22.7 ± 1.2) µm/nM and a limit of detection (LoD) of 396 pM.


Asunto(s)
Bioensayo , Gases , Catalasa , Membranas , Catálisis , Módulo de Elasticidad
11.
Scand J Med Sci Sports ; 34(5): e14638, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38671559

RESUMEN

This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load. MTU mechanical, morphological, and material properties were assessed biweekly via simultaneous ultrasonography-dynamometry and magnetic resonance imaging. Our hypothesis that tendon would be more sensitive to the operating magnitude of tendon strain but less to metabolic stress exercise was confirmed as tendon stiffness, Young's modulus, and tendon size were only increased in the DF condition following the intervention. The PF leg demonstrated a continuous increment in maximal AT strain (i.e., higher mechanical demand) over time along with lack of adaptation in its biomechanical properties. The premise that skeletal muscle adapts at a higher rate than tendon and does not require high mechanical load to hypertrophy or increase its force potential during exercise was verified as the adaptive changes in morphological and mechanical properties of the muscle did not differ between DF and PF. Such differences in muscle-tendon sensitivity to mechano-metabolic stimuli may temporarily increase MTU imbalances that could have implications for the risk of tendon overuse injury.


Asunto(s)
Adaptación Fisiológica , Imagen por Resonancia Magnética , Músculo Esquelético , Tendones , Ultrasonografía , Humanos , Masculino , Adulto Joven , Músculo Esquelético/fisiología , Músculo Esquelético/diagnóstico por imagen , Tendones/fisiología , Tendones/diagnóstico por imagen , Adaptación Fisiológica/fisiología , Fenómenos Biomecánicos , Adulto , Femenino , Contracción Isométrica/fisiología , Módulo de Elasticidad/fisiología
12.
Medicine (Baltimore) ; 103(17): e38011, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669391

RESUMEN

OBJECTIVE: To investigate the effects of capacitive and resistive monopolar radiofrequency (CRMF) on the shear elastic modulus of the multifidus and erector spinae muscles in female athletes with low back pain (LBP) and a history of LBP. DESIGN: Randomized crossover trial. SETTING: Academic institution. PARTICIPANTS: Twenty female university athletes with LBP or a history of LBP were included. INTERVENTIONS: All participants received CRMF, hotpack, and sham (CRMF without power) in a random order on the right side of the lumbar region. More than 2 days were allocated between the experiments to eliminate any residual effects. MAIN OUTCOME MEASURES: The shear elastic moduli of the right multifidus and erector spinae were evaluated in the prone (rest) position while sitting with 35° trunk flexion (stretched) using shear wave ultrasound imaging equipment. The moduli were measured before, immediately after, and 30 minutes after the intervention. RESULTS: Repeated-measures 2-way analysis of variance and post hoc analysis showed that the moduli of the CRMF group were significantly lower than those of the sham group in the stretched position immediately after intervention (P = .045). This difference diminished 30 minutes after the intervention (P = .920). CONCLUSIONS: CRMF can be used to reduce the shear elastic modulus of the multifidus muscle in the short term. Further studies are warranted to determine how to provide longer effects. TRIAL REGISTRATION: None.


Asunto(s)
Atletas , Estudios Cruzados , Módulo de Elasticidad , Dolor de la Región Lumbar , Humanos , Femenino , Dolor de la Región Lumbar/terapia , Dolor de la Región Lumbar/fisiopatología , Adulto Joven , Región Lumbosacra , Adulto , Músculos Paraespinales/fisiopatología , Músculos Paraespinales/diagnóstico por imagen , Hipertermia Inducida/métodos
13.
Comput Biol Med ; 174: 108405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613890

RESUMEN

BACKGROUND: Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD: This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (µ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS: For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, µ and Et. CONCLUSION: This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.


Asunto(s)
Fémur , Análisis de Elementos Finitos , Humanos , Fémur/fisiología , Prótesis de Cadera , Modelos Biológicos , Fenómenos Biomecánicos/fisiología , Módulo de Elasticidad
14.
Biomed Mater ; 19(3)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636492

RESUMEN

Three-dimensional (3D) printing has emerged as a transformative technology for tissue engineering, enabling the production of structures that closely emulate the intricate architecture and mechanical properties of native biological tissues. However, the fabrication of complex microstructures with high accuracy using biocompatible, degradable thermoplastic elastomers poses significant technical obstacles. This is primarily due to the inherent soft-matter nature of such materials, which complicates real-time control of micro-squeezing, resulting in low fidelity or even failure. In this study, we employ Poly (L-lactide-co-ϵ-caprolactone) (PLCL) as a model material and introduce a novel framework for high-precision 3D printing based on the material plasticization process. This approach significantly enhances the dynamic responsiveness of the start-stop transition during printing, thereby reducing harmful errors by up to 93%. Leveraging this enhanced material, we have efficiently fabricated arrays of multi-branched vascular scaffolds that exhibit exceptional morphological fidelity and possess elastic moduli that faithfully approximate the physiological modulus spectrum of native blood vessels, ranging from 2.5 to 45 MPa. The methodology we propose for the compatibilization and modification of elastomeric materials addresses the challenge of real-time precision control, representing a significant advancement in the domain of melt polymer 3D printing. This innovation holds considerable promise for the creation of detailed multi-branch vascular scaffolds and other sophisticated organotypic structures critical to advancing tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Elastómeros , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Elastómeros/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Poliésteres/química , Materiales Biocompatibles/química , Módulo de Elasticidad , Ensayo de Materiales , Humanos , Estrés Mecánico , Vasos Sanguíneos , Prótesis Vascular
15.
Curr Protoc ; 4(4): e1011, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648070

RESUMEN

Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000-µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT-MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force-displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT-MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force-displacement data.


Asunto(s)
Encéfalo , Animales , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Ratones , Módulo de Elasticidad , Fenómenos Biomecánicos , Pruebas Mecánicas
16.
Phys Med ; 121: 103356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603998

RESUMEN

PURPOSE: Shear-wave elastography (SWE) provides quantitative and absolute metrics for analyzing the elasticity of soft tissues. Despite the anterior scalene muscle (AS) is a key structure in patients with neck pain and nerve compressive syndromes, the majority of SWE studies only included asymptomatic subjects. This study aimed to analyze the Young's modulus and shear wave speed test-retest reliability in a sample of patients with neck pain symptoms to characterize the AS stiffness. METHODS: A diagnostic accuracy study acquiring a set of ultrasound images at C7 level in 42 patients with mechanical neck pain by one experienced examiner. After blinding the participants' identity, trial and side, the Young's modulus and shear wave velocity were measured by an independent experienced rater in randomized order. Intra-class correlation coefficients (ICC), standard error of measurement (SEM), minimal detectable changes (MDC) and coefficient of variation (CV%) were calculated. RESULTS: The sample reported moderate pain intensity (5.9/10 points) and disability (17.38/100 points). AS stiffness metrics assessed showed no significant differences between males and females, left and right side nor painful and non-painful side. (all, p > 0.05). Intra-examiner reliability was excellent for calculating the Young's modulus for shear wave speed (ICC > 0.90). CONCLUSION: The results support the use of this procedure for assessing the AS stiffness in populations with mechanical neck pain as excellent reliability estimates were obtained. However, future research should analyze case-control differences and the association between SWE metrics with clinical severity indicators.


Asunto(s)
Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Dolor de Cuello , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Masculino , Femenino , Adulto , Dolor de Cuello/diagnóstico por imagen , Dolor de Cuello/fisiopatología , Persona de Mediana Edad , Adulto Joven , Reproducibilidad de los Resultados
17.
Int J Biol Macromol ; 267(Pt 2): 131726, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688791

RESUMEN

The characteristics of multi-hydroxyl structure and strong hydrogen bonding in polyvinyl alcohol (PVA) make its melting point close to its decomposition temperature, causing melt-processing difficulty. In this work, following the plasticization of small-molecule primary plasticizer acetamide, lignin was demonstrated as a green secondary plasticizer in realizing the melt processing and simultaneous reinforcement of PVA. During the plasticization process, lignin was able to combine with the hydroxyl groups of PVA, so as to destroy the hydrogen bonds and regularity of the PVA chains. The synergistic plasticization effect of lignin dramatically reduced the melting point of PVA from 185 °C to 151 °C. The thermal processing window of PVA composites was expanded from 50 °C to roughly 80 °C after introducing lignin. In contrast to acetamide, the addition of lignin significantly increased the tensile strength and Young's modulus of the composites to 71 MPa and 1.34 GPa, respectively. Meanwhile, lignin helped to hinder the migration of acetamide via hydrogen bonds. With the addition of lignin, the composites also displayed enhanced hydrophobicity and excellent UV shielding performance. The strategy of synergistic plasticization of lignin provides a feasible basis for the practical application of lignin in melt-processable PVA materials with good comprehensive properties.


Asunto(s)
Lignina , Plastificantes , Alcohol Polivinílico , Resistencia a la Tracción , Lignina/química , Alcohol Polivinílico/química , Plastificantes/química , Enlace de Hidrógeno , Temperatura , Módulo de Elasticidad , Interacciones Hidrofóbicas e Hidrofílicas
18.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 262-271, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38686406

RESUMEN

Accurate reconstruction of tissue elasticity modulus distribution has always been an important challenge in ultrasound elastography. Considering that existing deep learning-based supervised reconstruction methods only use simulated displacement data with random noise in training, which cannot fully provide the complexity and diversity brought by in-vivo ultrasound data, this study introduces the use of displacement data obtained by tracking in-vivo ultrasound radio frequency signals (i.e., real displacement data) during training, employing a semi-supervised approach to enhance the prediction accuracy of the model. Experimental results indicate that in phantom experiments, the semi-supervised model augmented with real displacement data provides more accurate predictions, with mean absolute errors and mean relative errors both around 3%, while the corresponding data for the fully supervised model are around 5%. When processing real displacement data, the area of prediction error of semi-supervised model was less than that of fully supervised model. The findings of this study confirm the effectiveness and practicality of the proposed approach, providing new insights for the application of deep learning methods in the reconstruction of elastic distribution from in-vivo ultrasound data.


Asunto(s)
Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Fantasmas de Imagen , Diagnóstico por Imagen de Elasticidad/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Algoritmos , Aprendizaje Profundo
19.
Int J Biol Macromol ; 266(Pt 2): 131102, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580021

RESUMEN

Sericin protein possesses excellent biocompatibility, antioxidation, and processability. Nevertheless, manufacturing large quantities of strong and tough pure regenerated sericin materials remains a significant challenge. Herein, we design a lightweight structural sericin film with high ductility by combining radical chain polymerization reaction and liquid-solid phase inversion method. The resulting polyacrylonitrile grafted sericin films exhibit the ability to switch between high strength and high toughness effortlessly, the maximum tensile strength and Young's modulus values are 21.92 ± 1.51 MPa and 8.14 ± 0.09 MPa, respectively, while the elongation at break and toughness reaches up to 344.10 ± 35.40 % and 10.84 ± 1.02 MJ·m-3, respectively. Our findings suggest that incorporating sericin into regenerated films contributes to the transformation of their mechanical properties through influencing the entanglement of molecular chains within polymerized solutions. Structural analyses conducted using infrared spectroscopy and X-ray diffraction confirm that sericin modulates the mechanical properties by affecting the transition of condensed matter conformation. This work presents a convenient yet effective strategy for simultaneously addressing the recycling of sericin as well as producing regenerated protein-based films that hold potential applications in biomedical, wearable, or food packaging.


Asunto(s)
Resinas Acrílicas , Reología , Sericinas , Sericinas/química , Resinas Acrílicas/química , Resistencia a la Tracción , Fenómenos Mecánicos , Polimerizacion , Soluciones , Módulo de Elasticidad , Difracción de Rayos X
20.
J Sport Rehabil ; 33(4): 282-288, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593993

RESUMEN

CONTEXT: Piriformis syndrome is often associated with muscle spasms and shortening of the piriformis muscle (PM). Physical therapy, including static stretching of the PM, is one of the treatments for this syndrome. However, the effective stretching position of the PM is unclear in vivo. This study aimed to determine the effective stretching positions of the PM using ultrasonic shear wave elastography. DESIGN: Observational study. METHODS: Twenty-one healthy young men (22.7 [2.4] y) participated in this study. The shear elastic modulus of the PM was measured at 12 stretching positions using shear wave elastography. Three of the 12 positions were tested with maximum internal rotation at 0°, 20°, or 40° hip adduction in 90° hip flexion. Nine of the 12 positions were tested with maximum external rotation at positions combined with 3 hip-flexion angles (70°, 90°, and 110°) and 3 hip-adduction angles (0°, 20°, and 40°). RESULTS: The shear elastic modulus of the PM was significantly higher in the order of 40°, 20°, and 0° of adduction and higher in external rotation than in internal rotation. The shear elastic modulus of the PM was significantly greater in combined 110° hip flexion and 40° adduction with maximum external rotation than in all other positions. CONCLUSION: This study revealed that the position in which the PM was most stretched was maximum external rotation with 110° hip flexion and 40° hip adduction.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Ejercicios de Estiramiento Muscular , Músculo Esquelético , Humanos , Masculino , Adulto Joven , Ejercicios de Estiramiento Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/diagnóstico por imagen , Rango del Movimiento Articular/fisiología , Módulo de Elasticidad/fisiología , Adulto , Rotación , Articulación de la Cadera/fisiología , Articulación de la Cadera/diagnóstico por imagen , Síndrome del Músculo Piriforme/fisiopatología , Síndrome del Músculo Piriforme/terapia , Síndrome del Músculo Piriforme/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...