Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Arq. Inst. Biol. (Online) ; 89: e00222020, 2022.
Artículo en Inglés | VETINDEX, LILACS | ID: biblio-1393888

RESUMEN

Heterobostrychus aequalis (Waterhouse, 1884) (Coleoptera: Bostrichidae) is considered a severe pest for wood and wood products in regions where it is established. In Brazil, so far, there are no records of its establishment. Therefore, this work reports the interception of this Bostrichidae in the Harbor of Rio de Janeiro, on pallet wood from India. It also defends the maintenance of this insect as an absent quarantine pest (A1), by the Ministry of Agriculture, Livestock and Supply. It also conducts a discussion that addresses the efficiency of wood treatments, usually used to prevent the spread of quarantine pests in environments where there is international transit of wood, demonstrating that they may not be efficient in this regard, especially for insect species that have the capacity to lay eggs on dry wood. In this context, it also suggests population monitoring, combined with inspections, as an aid measure for the early detection of this pest in an environment where there is international transit of wood.


Asunto(s)
Madera/parasitología , Escarabajos , Bromuros/administración & dosificación , Control de Plagas/métodos , Brasil , Saneamiento de Puertos
2.
PLoS One ; 16(8): e0255762, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34351999

RESUMEN

Exotic pests have caused huge losses to agriculture, forestry, and human health. Analyzing information on all concerned pest species and their origin will help to improve the inspection procedures and will help to clarify the relative risks of imported cargo and formulate international trade policies. Records of intercepted pests from wood packaging materials (WPM) from 2003 to 2016 in the China Port Information Network (CPIN) database were analyzed. Results showed that the number of intercepted pests from WPM was lowest in the first quarter and highest in the fourth one. The total number of interceptions increased each year, with 53.33% of intercepted insects followed by nematodes (31.54%). The original continent of most intercepted pests was Asia (49.29%). Xylophagous insects were primarily intercepted from Southeast Asian countries, whereas nematodes were primarily intercepted from Korea, Australia, Mexico, and other countries. WPM interception records were mainly concentrated in China's coastal inspection stations (98.7%), with the largest number of interceptions documented in Shanghai, followed by the inspection stations of Jiangsu Province. The proportion of pest taxa intercepted by the Chinese provinces' stations each year is becoming increasingly balanced. The number of pest disposal treatment measures for intercepted cargoes with dead non-quarantine pests increased significantly from 2012 to 2016. This reflects the fact that Chinese customs inspection stations are becoming increasingly scientific and standardizing the interception and treatment of WPM pests. The issues reflected in the database, with a view to providing a reference for future work by customs officers and researchers.


Asunto(s)
Control de Plagas/estadística & datos numéricos , Embalaje de Productos/métodos , Cuarentena/estadística & datos numéricos , Navíos/estadística & datos numéricos , Madera/parasitología , Animales , China , Comercio/estadística & datos numéricos , Insectos/patogenicidad , Nematodos/patogenicidad , Control de Plagas/métodos , Embalaje de Productos/estadística & datos numéricos
3.
Sci Rep ; 11(1): 16887, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413443

RESUMEN

Invasive alien species are increasing due to globalization. Their spread has resulted in global economic losses. Asian [Anoplophora glabripennis (Motschulsky)] (ALB) and citrus [A. chinensis (Forster)] (CLB) longhorn beetles are two introduced wood borers which contribute to these economic losses e.g. the destruction of tree plantations. Early detection is key to reduce the ecological influence alongside the detrimental and expensive eradication. Dogs (Canis lupus familiaris) can detect these insects, potentially at an early stage. We trained two privately owned dogs to investigate their use as detection tools. We tested the dog's ability to discriminate ALB and CLB from native wood borers by carrying out double-blind and randomized experiments in three search conditions; (1) laboratory, (2) semi-field and (3) standardized field. For condition one, a mean sensitivity of 80%, specificity of 95% and accuracy of 92% were achieved. For condition two and three, a mean sensitivity of 88% and 95%, specificity of 94% and 92% and accuracy of 92% and 93% were achieved. We conclude that dogs can detect all types of traces and remains of ALB and CLB and discriminate them from native wood borers and uninfested wood, but further tests on live insects should be initiated.


Asunto(s)
Escarabajos/fisiología , Control Biológico de Vectores , Madera/parasitología , Perros de Trabajo/fisiología , Animales , Perros , Odorantes , Árboles/parasitología
4.
PLoS One ; 15(9): e0238979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32931513

RESUMEN

Invasive pests, such as emerald ash borer or Asian longhorn beetle, have been responsible for unprecedented ecological and economic damage in eastern North America. These and other wood-boring invasive insects can spread to new areas through human transport of untreated firewood. Behaviour, such as transport of firewood, is affected not only by immediate material benefits and costs, but also by social forces. Potential approaches to reduce the spread of wood-boring pests through firewood include raising awareness of the problem and increasing the social costs of the damages incurred by transporting firewood. In order to evaluate the efficacy of these measures, we create a coupled social-ecological model of firewood transport, pest spread, and social dynamics, on a geographical network of camper travel between recreational destinations. We also evaluate interventions aimed to slow the spread of invasive pests with untreated firewood, such as inspections at checkpoints to stop the movement of transported firewood and quarantine of high-risk locations. We find that public information and awareness programs can be effective only if the rate of spread of the pest between and within forested areas is slow. Direct intervention via inspections at checkpoints can only be successful if a high proportion of the infested firewood is intercepted. Patch quarantine is only effective if sufficiently many locations can be included in the quarantine and if the quarantine begins early. Our results indicate that the current, relatively low levels of public outreach activities and lack of adequate funding are likely to render inspections, quarantine and public outreach efforts ineffective.


Asunto(s)
Control de Insectos/métodos , Control de Plagas/métodos , Animales , Acampada/tendencias , Escarabajos , Bosques , Humanos , Insectos , Especies Introducidas/tendencias , Modelos Teóricos , Viaje/tendencias , Madera/parasitología
5.
Sci Rep ; 9(1): 17951, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31784624

RESUMEN

Olfaction plays key roles in insect survival and reproduction, such as feeding, courtship, mating, and oviposition. The olfactory-based control strategies have been developed an important means for pest management. Streltzoviella insularis is a destructive insect pest of many street tree species, and characterization of its olfactory proteins could provide targets for the disruption of their odour recognition processes and for urban forestry protection. In this study, we assembled the antennal transcriptome of S. insularis by next-generation sequencing and annotated the main olfactory multi-gene families, including 28 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 56 odorant receptors (ORs), 11 ionotropic receptors (IRs), two sensory neuron membrane proteins (SNMPs), and 101 odorant-degrading enzymes (ODEs). Sequence and phylogenetic analyses confirmed the characteristics of these proteins. We further detected tissue- and sex-specific expression patterns of OBPs, CSPs and SNMPs by quantitative real time-PCR. Most OBPs were highly and differentially expressed in the antennae of both sexes. SinsCSP10 was expressed more highly in male antennae than in other tissues. Two SNMPs were highly expressed in the antennae, with no significant difference in expression between the sexes. Our results lay a solid foundation for understanding the precise molecular mechanisms underlying S. insularis odour recognition.


Asunto(s)
Antenas de Artrópodos/metabolismo , Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Mariposas Nocturnas/fisiología , Control de Plagas , Receptores Odorantes/genética , Células Receptoras Sensoriales/metabolismo , Olfato , Árboles/parasitología , Madera/parasitología
6.
Int J Mol Sci ; 20(13)2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31284685

RESUMEN

Bursaphelenchus xylophilus, the causal agent of pine wilt disease, is a destructive threat to pine forests. The role of bacteria associated with B. xylophilus in pine wilt disease has attracted widespread attention. This study investigated variation in bacterial communities and the virulence of surface-sterilized B. xylophilus from different Pinus spp. The predominant culturable bacteria of nematodes from different pines were Stenotrophomonas and Pseudomonas. Biolog EcoPlate analysis showed that metabolic diversity of bacteria in B. xylophilus from P. massoniana was the highest, followed by P. thunbergii and P. densiflora. High-throughput sequencing analysis indicated that bacterial diversity and community structure in nematodes from the different pine species varied, and the dominant bacteria were Stenotrophomonas and Elizabethkingia. The virulence determination of B. xylophilus showed that the nematodes from P. massoniana had the greatest virulence, followed by the nematodes from P. thunbergii and P. densiflora. After the nematodes were inoculated onto P. thunbergii, the relative abundance of the predominant bacteria changed greatly, and some new bacterial species emerged. Meanwhile, the virulence of all the nematode isolates increased after passage through P. thunbergii. These inferred that some bacteria associated with B. xylophilus isolated from different pine species might be helpful to adjust the PWN's parasitic adaptability.


Asunto(s)
Bacterias/aislamiento & purificación , Pinus/parasitología , Tylenchida/microbiología , Tylenchida/patogenicidad , Madera/parasitología , Animales , Bacterias/crecimiento & desarrollo , Biodiversidad , Carbono/metabolismo , Filogenia , Especificidad de la Especie , Tylenchida/aislamiento & purificación , Virulencia
7.
Antonie Van Leeuwenhoek ; 112(10): 1501-1521, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31140027

RESUMEN

Fungi under the order Ophiostomatales (Ascomycota) are known to associate with various species of bark beetles (Coleoptera: Curculionidae: Scolytinae). In addition this group of fungi contains many taxa that can impart blue-stain on sapwood and some are important tree pathogens. A recent survey that focussed on the diversity of the Ophiostomatales in the forest ecosystems of the Czech Republic and Poland uncovered four putative new species. Phylogenetic analyses of four gene regions (ITS1-5.8S-ITS2 region, ß-tubulin, calmodulin, and translation elongation factor 1-α) indicated that these four species are members of the genus Ophiostoma. All four newly described species can be distinguished from each other and from closely related species based on DNA sequence comparisons, morphological characters, growth rates, and their insect associations. Based on this study four new taxa can be circumscribed and the following names are provided: Ophiostoma pityokteinis sp. nov., Ophiostoma rufum sp. nov., Ophiostoma solheimii sp. nov., and Ophiostoma taphrorychi sp. nov. O. rufum sp. nov. is a member of the Ophiostoma piceae species complex, while O. pityokteinis sp. nov. resides in a discrete lineage within Ophiostoma s. stricto. O. taphrorychi sp. nov. together with O. distortum formed a well-supported clade in Ophiostoma s. stricto close to O. pityokteinis sp. nov. O. solheimii sp. nov. groups within a currently undefined lineage A, which also includes Ophiostoma grandicarpum and Ophiostoma microsporum. This study highlights the need for more intensive surveys that should include additional countries of Central Europe, insect vectors and host tree species in order to elucidate Ophiostoma species diversity in this region.


Asunto(s)
Ophiostoma/clasificación , Ophiostoma/aislamiento & purificación , Filogenia , Gorgojos/microbiología , Animales , Calmodulina/genética , República Checa , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Ophiostoma/genética , Ophiostoma/fisiología , Factor 1 de Elongación Peptídica/genética , Polonia , ARN Ribosómico 5.8S/genética , Análisis de Secuencia de ADN , Tracheophyta/parasitología , Tubulina (Proteína)/genética , Gorgojos/crecimiento & desarrollo , Madera/parasitología
8.
Sci Rep ; 9(1): 4923, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894631

RESUMEN

The genus Agrilus comprises diverse exotic and agriculturally important wood-boring insects that have evolved efficient digestive systems. Agrilus mali Matsumara, an invasive insect, is causing extensive mortality to endangered wild apple trees in Tianshan. In this study, we present an in-depth characterization of the gut microbiota of A. mali based on high-throughput sequencing of the 16S rRNA gene and report the presence of lignocellulose-degrading bacteria. Thirty-nine operational taxonomic units (OTUs) were characterized from the larval gut. OTUs represented 6 phyla, 10 classes, 16 orders, 20 families, and 20 genera. The majority of bacterial OTUs belonged to the order Enterobacteriales which was the most abundant taxa in the larval gut. Cultivable bacteria revealed 9 OTUs that all belonged to Gammaproteobacteria. Subsequently, we examined the breakdown of plant cell-wall compounds by bacterial isolates. Among the isolates, the highest efficiency was observed in Pantoea sp., which was able to synthesize four out of the six enzymes (cellulase, cellobiase, ß-xylanase, and ß-gluconase) responsible for plant-cell wall degradation. One isolate identified as Pseudomonas orientalis exhibited lignin peroxidase activity. Our study provides the first characterization of the gut microbial diversity of A. mali larvae and shows that some cultivable bacteria play a significant role in the digestive tracts of larvae by providing nutritional needs.


Asunto(s)
Pared Celular/química , Escarabajos/microbiología , Enterobacteriaceae/enzimología , Gammaproteobacteria/enzimología , Microbioma Gastrointestinal/genética , Malus/parasitología , Filogenia , Animales , Proteínas Bacterianas , Biodiversidad , Pared Celular/parasitología , Celulasa/genética , Celulasa/aislamiento & purificación , Celulasa/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Tracto Gastrointestinal/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Larva/microbiología , Lignina/metabolismo , Malus/química , Peroxidasas/genética , Peroxidasas/aislamiento & purificación , Peroxidasas/metabolismo , Células Vegetales/química , Células Vegetales/parasitología , ARN Ribosómico 16S/genética , Madera/química , Madera/parasitología , beta-Glucosidasa/genética , beta-Glucosidasa/aislamiento & purificación , beta-Glucosidasa/metabolismo
9.
J Eukaryot Microbiol ; 66(5): 757-770, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30793409

RESUMEN

Myxomycetes (plasmodial slime molds) are abundant protist predators that feed on bacteria and other microorganisms, thereby playing important roles in terrestrial nutrient cycling. Despite their significance, little is known about myxomycete communities and the extent to which they are affected by nutrient availability. We studied the influence of long-term addition of N, P, and K on the myxomycete community in a lowland forest in the Republic of Panama. In a previous study, microbial biomass increased with P but not N or K addition at this site. We hypothesized that myxomycetes would increase in abundance in response to P but that they would not respond to the sole addition of N or K. Moist chamber cultures of leaf litter and small woody debris were used to quantify myxomycete abundance. We generated the largest myxomycete dataset (3,381 records) for any single locality in the tropics comprised by 91 morphospecies. In line with our hypothesis, myxomycete abundance increased in response to P addition but did not respond to N or K. Community composition was unaffected by nutrient treatments. This work represents one of very few large-scale and long-term field studies to include a heterotrophic protist highlighting the feasibility and value in doing so.


Asunto(s)
Mixomicetos/metabolismo , Ecosistema , Bosques , Mixomicetos/crecimiento & desarrollo , Nitrógeno/metabolismo , Nutrientes/metabolismo , Panamá , Fósforo/metabolismo , Hojas de la Planta/parasitología , Potasio/metabolismo , Suelo/parasitología , Madera/parasitología
10.
Int J Biol Macromol ; 123: 1189-1196, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30408451

RESUMEN

The Symphyta has long been recognized as a paraphyletic grade forming the base of the remaining Hymenopteran, and the superfamily relationships within Symphyta remain controversial. Here, the first two representative mitochondrial genomes from the superfamily Siricoidea and Xiphydrioidea (Hymenoptera: Symphyta) are obtained using next-generation sequencing. The complete mitochondrial genome of Xiphydria sp. is 16,482 bp long with an A + T content of 84.18% while the incomplete one of Tremex columba is 16,847 bp long and A + T content is 81.69%. All 37 typical mitochondrial genes are possessed in both species. The secondary structure of tRNAs and rRNAs for both species are successfully predicted. Compared with the ancestral organization, seven and five tRNA genes are rearranged in mitochondrial genomes of Tremex and Xiphydria, respectively, which are the most rearrangement events within Symphyta. The rearrangement patterns in Tremex and Xiphydria present in this study are all novel to the Symphyta. Phylogenetic relationships among the major lineages of Symphyta are reconstructed using mitochondrial genomes. Both maximum likelihood and Bayesian inference analyses highly support Symphyta is a paraphyletic grade, Xyeloidea + (Tenthredinoidea + (Pamphilioidea + (Xiphydrioidea + (Cephoidea + (Orussoidea + Apocrita))))).


Asunto(s)
Reordenamiento Génico , Genoma Mitocondrial , Filogenia , Avispas/clasificación , Avispas/genética , Madera/parasitología , Animales , Composición de Base/genética , Genes de Insecto , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , ARN Ribosómico/genética , ARN de Transferencia/química , ARN de Transferencia/genética
11.
Nat Commun ; 9(1): 5125, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510200

RESUMEN

Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.


Asunto(s)
Tracto Gastrointestinal/fisiología , Hemocianinas/metabolismo , Isópodos/fisiología , Lignina/metabolismo , Madera/parasitología , Animales , Celulosa/metabolismo , Dieta , Digestión/fisiología , Heces/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/ultraestructura , Isópodos/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Xilanos/metabolismo
12.
Fungal Biol ; 122(12): 1142-1158, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30449352

RESUMEN

Ophiostoma spp. (Ophiostomatales, Ascomycota) are well-known fungi associated with bark and ambrosia beetles (Curculionidae: Scolytinae, Platypodinae). Fungi in the Ophiostomatales include serious tree pathogens as well as agents of timber blue-stain. Although these fungi have been extensively studied in the northern hemisphere, very little is known regarding their occurrence on hardwoods in Europe. The aims of the present study were to identify and characterize new Ophiostoma spp. associated with bark and ambrosia beetles infesting hardwoods in Norway and Poland, and to resolve phylogenetic relationships of Ophiostoma spp. related to the Norwegian and Polish isolates, using multigene phylogenetic analyses. Results obtained from five gene regions (ITS, LSU, ß-tubulin, calmodulin, translation elongation factor 1-α) revealed four new Ophiostoma spp. These include Ophiostoma hylesinum sp. nov., O. signatum sp. nov., and O. villosum sp. nov. that phylogenetically are positioned within the Ophiostoma ulmi complex. The other new species, Ophiostoma pseudokarelicum sp. nov. reside along with Ophiostoma karelicum in a discrete, well-supported phylogenetic group in Ophiostoma s. stricto. The results of this study clearly show that the diversity and ecology of Ophiostoma spp. on hardwoods in Europe is poorly understood and that further studies are required to enrich our knowledge about these fungi.


Asunto(s)
Ophiostomatales/clasificación , Ophiostomatales/aislamiento & purificación , Filogenia , Gorgojos/microbiología , Madera/parasitología , Animales , Calmodulina/genética , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Noruega , Ophiostomatales/genética , Factor 1 de Elongación Peptídica/genética , Polonia , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Tubulina (Proteína)/genética
13.
PLoS One ; 13(11): e0200437, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30427852

RESUMEN

Teredinidae are a family of highly adapted wood-feeding and wood-boring bivalves, commonly known as shipworms, whose evolution is linked to the acquisition of cellulolytic gammaproteobacterial symbionts harbored in bacteriocytes within the gills. In the present work we applied metagenomics to characterize microbiomes of the gills and digestive tract of Neoteredo reynei, a mangrove-adapted shipworm species found over a large range of the Brazilian coast. Comparative metagenomics grouped the gill symbiont community of different N. reynei specimens, indicating closely related bacterial types are shared. Similarly, the intestine and digestive gland communities were related, yet were more diverse than and showed no overlap with the gill community. Annotation of assembled metagenomic contigs revealed that the gill symbiotic community of N. reynei encodes a plethora of plant cell wall polysaccharides degrading glycoside hydrolase encoding genes, and Biosynthetic Gene Clusters (BGCs). In contrast, the digestive tract microbiomes seem to play little role in wood digestion and secondary metabolites biosynthesis. Metagenome binning recovered the nearly complete genome sequences of two symbiotic Teredinibacter strains from the gills, a representative of Teredinibacter turnerae "clade I" strain, and a yet to be cultivated Teredinibacter sp. type. These Teredinibacter genomes, as well as un-binned gill-derived gammaproteobacteria contigs, also include an endo-ß-1,4-xylanase/acetylxylan esterase multi-catalytic carbohydrate-active enzyme, and a trans-acyltransferase polyketide synthase (trans-AT PKS) gene cluster with the gene cassette for generating ß-branching on complex polyketides. Finally, we use multivariate analyses to show that the secondary metabolome from the genomes of Teredinibacter representatives, including genomes binned from N. reynei gills' metagenomes presented herein, stands out within the Cellvibrionaceae family by size, and enrichments for polyketide, nonribosomal peptide and hybrid BGCs. Results presented here add to the growing characterization of shipworm symbiotic microbiomes and indicate that the N. reynei gill gammaproteobacterial community is a prolific source of biotechnologically relevant enzymes for wood-digestion and bioactive compounds production.


Asunto(s)
Bivalvos/microbiología , Gammaproteobacteria/enzimología , Gammaproteobacteria/fisiología , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Simbiosis , Animales , Bivalvos/fisiología , Gammaproteobacteria/genética , Genómica , Branquias/microbiología , Glicósido Hidrolasas/genética , Metagenoma , Microbiota , Familia de Multigenes , Filogenia , Metabolismo Secundario , Madera/metabolismo , Madera/parasitología
14.
PLoS One ; 13(3): e0188773, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29584732

RESUMEN

Naivasha thorn tree, Acacia xanthophloea, is grown for foliage, timber, shade and rehabilitation of soils in areas with high water tables in Kenya. Its production is threatened by insect pests, which cause major losses. Very little is documented on wood-boring beetles which cause considerable economic damage to lumber used in a variety of applications, and little is known about their natural enemies in Kenya. We conducted the study to evaluate the occurrence of wood-boring beetles on A. xanthophloea in two different regions of Kenya. Infested wood samples of A. xanthophloea with fresh exit holes were collected from three sites in Kenyatta University (KU), Nairobi and Mitaboni in Machakos, Kenya. The samples were placed in clear plastic buckets and kept at ambient temperatures 23±2°C, 65±10% relative humidity and 12L: 12D in a laboratory where they were observed daily for adult emergence. Adult beetles were collected every three days for identification and data recording. The experiment was replicated four times and data collected twice a week for 6 months. Data on abundance was subjected to analysis of variance using SAS software. A total of 5,850 and 4,691 beetles were collected where 2,187 and 3,097 were Bostrichidae, accounting for 37% and 66% in KU and Mitaboni, respectively. A total of 12 bostrichid species was identified, including Sinoxylon ruficorne, S. doliolum, Xylion adustus, Xyloperthodes nitidipennis, Xyloperthella picea, Xylopsocus castanoptera, Lyctus brunneus, Heterbostrychus brunneus, Xylopsocus sp., and Dinoderus gabonicus. The most abundant species in KU was Xylion adustus with 1,915 beetles accounting for 88.4%, and Sinoxylon ruficorne in Mitaboni with 1,050 beetles accounting for 33.9% of the total. Sinoxylon ruficorne was only recorded in Mitaboni while only 2 specimens of D. gabonicus were found in KU. The mean number of exit holes on A. xanthophloea differed significantly between sites, which corresponded approximately to the amount of economic damage caused by the beetles to the structural integrity of the lumber. In addition, a number of predators in the family Cerambycidae, Cleridae, Histeridae and parasitoids from Braconidae, Ichneumonidae, and Chalcididae were recovered, suggesting a need to conduct further studies to document these species' diversity, parasitism rates and efficacy for possible biological control.


Asunto(s)
Acacia/parasitología , Escarabajos , Árboles/parasitología , Madera/parasitología , Análisis de Varianza , Animales , Herbivoria , Kenia
15.
Int J Biol Macromol ; 112: 258-263, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29382581

RESUMEN

Pine wood nematode disease is a most devastating disease of pine trees. Avermectin (AVM) is a widely used bio-nematocide which can effectively to kill the pine wood nematode (PWN). However, its poor solubility in water and rapid photolysis are responsible for its poor bioavailability, which causes environmental pollution because of excessive applied rates. Here, a simple electrostatic interaction method was used to encapsulate AVM within nanoparticles composed of poly-γ-glutamic acid (γ-PGA) and chitosan (CS). The loading capacity of the resulting AVM-CS/γ-PGA nanoparticles was as much as 30.5%. The encapsulation of AVM within these nanoparticles reduced its losses by more than 20.0% through photolysis. An in vitro test showed that the rate of release of AVM from the nanoparticles was dependent on the ambient pH, with rapid release occurring in an alkaline environment. The mortality rate of nematodes which were treated with 1ppm of AVM content of AVM-CS/γ-PGA was 98.6% after 24h, while one of free AVM was only 69.9%. In addition, FITC-labeled CS/γ-PGA nanoparticles (FITC-CS/γ-PGA) showed that the nanoparticles could enrich in intestines and head of nematodes. All of these results showed that those nanoparticles of AVM are a potential multifunctional formulation to control the pest and reduce environment pollution.


Asunto(s)
Quitosano/química , Ivermectina/análogos & derivados , Pinus/efectos de los fármacos , Madera/efectos de los fármacos , Animales , Quitosano/farmacología , Ivermectina/química , Ivermectina/farmacología , Nanopartículas/administración & dosificación , Nanopartículas/química , Nematodos/efectos de los fármacos , Nematodos/patogenicidad , Control de Plagas , Pinus/parasitología , Madera/parasitología
16.
J Econ Entomol ; 111(2): 707-715, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29365175

RESUMEN

The use of wood packaging materials (WPMs) in international trade is recognized as a pathway for the movement of invasive pests and as the origin of most introductions of Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) in Europe and North America. Following several pest interceptions on WPM associated with stone imports from China, the European Union (EU) agreed to survey certain categories of imports based on the EU Combined Nomenclature Codes for imports, which are based on the international Harmonized System. Between April 2013 and March 2015, 72,263 relevant consignments were received from China in the EU and 26,008 were inspected. Harmful organisms were detected in 0.9% of the consignments, and 1.1% of the imports did not have markings compliant with the international standard for treating WPM, ISPM 15. There were significant differences between the detection rates of harmful organisms among EU member states. In member states that inspected at least 500 consignments, the rate of detection ranged from 6.9% in Austria and France to 0.0% in Spain and Poland. If this difference in detection rate is the result of differences in the methods and intensity of inspection in different member states then an approximate sevenfold increase in the interception of harmful organisms may be achieved if all states were to achieve detection rates achieved by Austria and France. The EU data from 1999 to 2014 indicated an increasing number of interceptions of Bostrichidae and Cerambycidae since 2010. This study demonstrates that there is an ongoing threat of non-native forest pests being imported on WPM.


Asunto(s)
Comercio/estadística & datos numéricos , Control de Insectos/estadística & datos numéricos , Especies Introducidas , Embalaje de Productos , Madera/parasitología , Animales , Escarabajos , Europa (Continente) , Nematodos
17.
Eur J Protistol ; 62: 43-55, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29202309

RESUMEN

Ciliates represent a diversified group of protists known to establish symbioses with prokaryotic micro-organisms. They are mainly phagotrophs and symbiotic relationships with bacteria can give them an important advantage in chemosynthetic environments. The aim of this study is to describe the thiotrophic association that occurs between the peritrich ciliate Pseudovorticella sp. and potential sulfur-oxidizing bacteria. Investigations at microscopic scale (LM, SEM, TEM) showed ectosymbiotic bacteria covering the surface of the body of Pseudovorticella sp. According to 16S rDNA phylogenetic analysis, these ectosymbiotic bacteria belong to γ-proteobacteria and are phylogenetically close to the symbiont of the recently described Zoothamnium ignavum, which inhabits shallow-water wood falls. FISH experiments, using symbiont specific probes, clearly indicate that these ectosymbiotic bacteria are also ingested into food vacuoles. Electron lucent granules observed in TEM in the cytoplasm of the ectosymbiotic bacteria have been identified as sulfur granules by Raman microspectrometry analyses. Raman microspectrometry analyses confirmed the thiotrophic nature of this relationship already suggested by the results obtained by TEM and phylogeny. A complete sulfur map was then performed to investigate the sulfur distribution in the zooid. Results show that the relationship between this protist and its bacterial partner is a thiotrophic ectosymbiosis.


Asunto(s)
Organismos Acuáticos/fisiología , Fenómenos Fisiológicos Bacterianos , Oligohimenóforos/microbiología , Simbiosis , Organismos Acuáticos/genética , Bacterias/genética , Bacterias/ultraestructura , ADN Ribosómico/genética , Oligohimenóforos/genética , Oligohimenóforos/fisiología , Oligohimenóforos/ultraestructura , Filogenia , ARN Ribosómico 16S/genética , Madera/microbiología , Madera/parasitología
19.
Int J Mol Sci ; 18(11)2017 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-29137151

RESUMEN

In this study, the complete mitochondrial genome of Cryptocercus meridianus was sequenced. The circular mitochondrial genome is 15,322 bp in size and contains 13 protein-coding genes, two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes, and one D-loop region. We compare the mitogenome of C. meridianus with that of C. relictus and C. kyebangensis. The base composition of the whole genome was 45.20%, 9.74%, 16.06%, and 29.00% for A, G, C, and T, respectively; it shows a high AT content (74.2%), similar to the mitogenomes of C. relictus and C. kyebangensis. The protein-coding genes are initiated with typical mitochondrial start codons except for cox1 with TTG. The gene order of the C. meridianus mitogenome differs from the typical insect pattern for the translocation of tRNA-SerAGN, while the mitogenomes of the other two Cryptocercus species, C. relictus and C. kyebangensis, are consistent with the typical insect pattern. There are two very long non-coding intergenic regions lying on both sides of the rearranged gene tRNA-SerAGN. The phylogenetic relationships were constructed based on the nucleotide sequence of 13 protein-coding genes and two ribosomal RNA genes. The mitogenome of C. meridianus is the first representative of the order Blattodea that demonstrates rearrangement, and it will contribute to the further study of the phylogeny and evolution of the genus Cryptocercus and related taxa.


Asunto(s)
Cucarachas/clasificación , Cucarachas/genética , Conducta Alimentaria , Genoma Mitocondrial , Filogenia , Madera/parasitología , Animales , Composición de Base/genética , Secuencia de Bases , Mapeo Cromosómico , Codón/genética , ADN Intergénico , Anotación de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética , ARN Ribosómico/genética , ARN de Transferencia/química , ARN de Transferencia/genética
20.
Nat Commun ; 8(1): 556, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916787

RESUMEN

Beetles are the most diverse group of macroscopic organisms since the mid-Mesozoic. Much of beetle speciosity is attributable to myriad life habits, particularly diverse-feeding strategies involving interactions with plant substrates, such as wood. However, the life habits and early evolution of wood-boring beetles remain shrouded in mystery from a limited fossil record. Here we report new material from the upper Permian (Changhsingian Stage, ca. 254-252 million-years ago) of China documenting a microcosm of ecological associations involving a polyphagan wood-borer consuming cambial and wood tissues of the conifer Ningxiaites specialis. This earliest evidence for a component community of several trophically interacting taxa is frozen in time by exceptional preservation. The combination of an entry tunnel through bark, a cambium mother gallery, and up to 11 eggs placed in lateral niches-from which emerge multi-instar larval tunnels that consume cambium, wood and bark-is ecologically convergent with Early Cretaceous bark-beetle borings 120 million-years later.Numerous gaps remain in our knowledge of how groups of organisms interacted in ancient ecosystems. Here, Feng and colleagues describe a late Permian fossil wood-boring beetle microcosm, with the oldest known example of complex tunnel geometry, host tissue response, and the presence of fungi within.


Asunto(s)
Escarabajos/fisiología , Tracheophyta/parasitología , Madera/parasitología , Animales , China , Escarabajos/crecimiento & desarrollo , Ecosistema , Conducta Alimentaria , Larva/crecimiento & desarrollo , Larva/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...