Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.886
Filtrar
1.
Carbohydr Polym ; 338: 122218, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763705

RESUMEN

Here, biogenic and multifunctional active food coatings and packaging with UV shielding and antimicrobial properties were structured from the aqueous dispersion of an industrial byproduct, suberin, which was stabilized with amphiphilic cellulose nanofibers (CNF). The dual-functioning CNF, synthesized in a deep eutectic solvent, functioned as an efficient suberin dispersant and reinforcing agent in the packaging design. The nanofibrillar percolation network of CNF provided a steric hindrance against the coalescence of the suberin particles. The low CNF dosage of 0.5 wt% resulted in dispersion with optimal viscosity (208.70 Pa.s), enhanced stability (instability index of <0.001), and reduced particle size (9.37 ± 2.43 µm). The dispersion of suberin and CNF was further converted into self-standing films with superior UV-blocking capability, good thermal stability, improved hydrophobicity (increase in water contact angle from 61° ± 0.15 to 83° ± 5.11), and antimicrobial properties against gram-negative bacteria. Finally, the synergistic bicomponent dispersions were demonstrated as fruit coatings for bananas and packaging for strawberries to promote their self-life. The coatings and packaging considerably mitigated fruit deterioration and improved their freshness by preventing moisture loss and microbial attack. This sustainable approach is expected to pave the way toward advanced, biogenic, and active food packaging based on widely available bioresources.


Asunto(s)
Celulosa , Embalaje de Alimentos , Lípidos , Nanofibras , Madera , Nanofibras/química , Celulosa/química , Embalaje de Alimentos/métodos , Madera/química , Lípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Antibacterianos/química , Antibacterianos/farmacología , Viscosidad , Musa/química , Agua/química , Bacterias Gramnegativas/efectos de los fármacos , Frutas/química
2.
Sci Rep ; 14(1): 11469, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769392

RESUMEN

Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.


Asunto(s)
Biomasa , Carbón Orgánico , Pirólisis , Carbón Orgánico/química , Fósforo/química , Fósforo/análisis , Madera/química , Concentración de Iones de Hidrógeno , Suelo/química , Temperatura , Acacia/química , Carbono/química , Carbono/análisis
3.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732191

RESUMEN

Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.


Asunto(s)
Acacia , Regulación de la Expresión Génica de las Plantas , Madera , Acacia/metabolismo , Acacia/genética , Madera/metabolismo , Madera/química , Flavonoides/metabolismo , Lignina/metabolismo , Transcriptoma , Fenoles/metabolismo , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos
4.
Rapid Commun Mass Spectrom ; 38(14): e9716, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738638

RESUMEN

RATIONALE: This study overcomes traditional biomass analysis limitations by introducing a pioneering matrix-free laser desorption/ionization (LDI) approach in mass spectrometry imaging (MSI) for efficient lignin evaluation in wood. The innovative acetic acid-peracetic acid (APA) treatment significantly enhances lignin detection, enabling high-throughput, on-site analysis. METHODS: Wood slices, softwood from a conifer tree (Japanese cypress) and hardwood from a broadleaf tree (Japanese beech), were analyzed using MSI with a Fourier transform ion cyclotron resonance mass spectrometer. The developed APA treatment demonstrated effectiveness for MSI analysis of biomass. RESULTS: Our imaging technique successfully distinguishes between earlywood and latewood and enables the distinct visualization of lignin in these and other wood tissues, such as the radial parenchyma. This approach reveals significant contrasts in MSI. It has identified intense ions from ß-O-4-type lignin, specifically in the radial parenchyma of hardwood, highlighting the method's precision and utility in wood tissue analysis. CONCLUSIONS: The benefits of matrix-free LDI include reduced peak overlap, consistent sample quality, preservation of natural sample properties, enhanced analytical accuracy, and reduced operational costs. This innovative approach is poised to become a standard method for rapid and precise biomass evaluation and has important applications in environmental research and sustainable resource management and is crucial for the effective management of diverse biomass, paving the way towards a sustainable, circular society.


Asunto(s)
Biomasa , Lignina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Madera , Madera/química , Lignina/análisis , Lignina/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fagus/química
5.
Int J Biol Macromol ; 268(Pt 1): 131619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692998

RESUMEN

The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: ß-O-4, ß-ß, and ß-5. Furthermore, the C-O bond (ß-O-4) signals of lignin decreased while the C-C bonds (ß-ß and ß-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.


Asunto(s)
Pared Celular , Celulosa , Lignina , Pinus , Polisacáridos , Lignina/química , Pinus/química , Pared Celular/química , Polisacáridos/química , Celulosa/química , Peso Molecular , Árboles/química , Espectroscopía de Resonancia Magnética/métodos , Madera/química
6.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710545

RESUMEN

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Asunto(s)
Celulosa , Embalaje de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompuestos , Nanofibras , Resistencia a la Tracción , Madera , Xilanos , Embalaje de Alimentos/métodos , Lignina/química , Nanocompuestos/química , Celulosa/química , Celulosa/análogos & derivados , Madera/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
7.
PLoS One ; 19(5): e0302528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753717

RESUMEN

The analysis of critical states during fracture of wood materials is crucial for wood building safety monitoring, wood processing, etc. In this paper, beech and camphor pine are selected as the research objects, and the acoustic emission signals during the fracture process of the specimens are analyzed by three-point bending load experiments. On the one hand, the critical state interval of a complex acoustic emission signal system is determined by selecting characteristic parameters in the natural time domain. On the other hand, an improved method of b_value analysis in the natural time domain is proposed based on the characteristics of the acoustic emission signal. The K-value, which represents the beginning of the critical state of a complex acoustic emission signal system, is further defined by the improved method of b_value in the natural time domain. For beech, the analysis of critical state time based on characteristic parameters can predict the "collapse" time 8.01 s in advance, while for camphor pines, 3.74 s in advance. K-value can be analyzed at least 3 s in advance of the system "crash" time for beech and 4 s in advance of the system "crash" time for camphor pine. The results show that compared with traditional time-domain acoustic emission signal analysis, natural time-domain acoustic emission signal analysis can discover more available feature information to characterize the state of the signal. Both the characteristic parameters and Natural_Time_b_value analysis in the natural time domain can effectively characterize the time when the complex acoustic emission signal system enters the critical state. Critical state analysis can provide new ideas for wood health monitoring and complex signal processing, etc.


Asunto(s)
Acústica , Madera , Madera/química , Fagus , Pinus
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731960

RESUMEN

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Asunto(s)
Carbono , Carbón Orgánico , Purificación del Agua , Madera , Purificación del Agua/métodos , Carbón Orgánico/química , Catálisis , Madera/química , Carbono/química , Contaminantes Químicos del Agua/química , Procesos Fotoquímicos , Adsorción
9.
Ying Yong Sheng Tai Xue Bao ; 35(3): 587-596, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646745

RESUMEN

To investigate the longitudinal variation patterns of sapwood, heartwood, bark and stem moisture content along the trunk of artificial Larix olgensis, we constructed mixed effect models of moisture content based on beta regression by combining the effects of sampling plot and sample trees. We used two sampling schemes to calibrate the model, without limiting the relative height (Scheme Ⅰ) and with a limiting height of less than 2 m (Scheme II). The results showed that sapwood and stem moisture content increased gradually along the trunk, heartwood moisture content decreased slightly and then increased along the trunk, and bark moisture content increased along the trunk and then levelled off before increasing. Relative height, height to crown base, stand area at breast height per hectare, age, and stand dominant height were main factors driving moisture content of L. olgensis. Scheme Ⅰ showed the stable prediction accuracy when randomly sampling moisture content measurements from 2-3 discs to calibrate the model, with the mean absolute percentage error (MAPE) of up to 7.2% for stem moisture content (randomly selected 2 discs), and the MAPE of up to 7.4%, 10.5% and 10.5% for sapwood, heartwood and bark moisture content (randomly selected 3 discs), respectively. Scheme Ⅱ was appropriate when sampling moisture content measurements from discs of 1.3 and 2 m height and the MAPE of sapwood, heartwood, bark and stem moisture content reached 7.8%, 11.0%, 10.4% and 7.1%, respectively. The prediction accuracies of all mixed effect beta regression models were better than the base model. The two-level mixed effect beta regression models, considering both plot effect and tree effect, would be suitable for predicting moisture content of each part of L. olgensis well.


Asunto(s)
Larix , Tallos de la Planta , Agua , Larix/crecimiento & desarrollo , Larix/química , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Agua/análisis , Agua/química , Análisis de Regresión , Madera/química , Modelos Teóricos , Predicción
10.
Environ Int ; 186: 108629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582060

RESUMEN

Recently, extreme wildfires occur frequently around the world and emit substantial brown carbon (BrC) into the atmosphere, whereas the molecular compositions and photochemical evolution of BrC remain poorly understood. In this work, primary smoke aerosols were generated from wood smoldering, and secondary smoke aerosols were formed by the OH radical photooxidation in an oxidation flow reactor, where both primary and secondary smoke samples were collected on filters. After solvent extraction of filter samples, the molecular composition of dissolved organic carbon (DOC) was determined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The molecular composition of dissolved BrC was obtained based on the constraints of DOC formulae. The proportion of dissolved BrC fractions accounted for approximately 1/3-1/2 molecular formulae of DOC. The molecular characteristics of dissolved BrC showed higher levels of carbon oxidation state, double bond equivalents, and modified aromaticity index than those of DOC, indicating that dissolved BrC fractions were a class of organic structures with relatively higher oxidation state, unsaturated and aromatic degree in DOC fractions. The comparative analysis suggested that aliphatic and olefinic structures dominated DOC fractions (contributing to 70.1%-76.9%), while olefinic, aromatic, and condensed aromatic structures dominated dissolved BrC fractions (contributing to 97.5%-99.9%). It is worth noting that dissolved BrC fractions only contained carboxylic-rich alicyclic molecules (CRAMs)-like structures, unsaturated hydrocarbons, aromatic structures, and highly oxygenated compounds. CRAMs-like structures were the most abundant species in both DOC and dissolved BrC fractions. Nevertheless, the specific molecular characteristics for DOC and dissolved BrC fractions varied with subgroups after aging. The results highlight the similarities and differences in the molecular compositions and characteristics of DOC and dissolved BrC fractions with aging. This work will provide insights into understanding the molecular composition of DOC and dissolved BrC in smoke.


Asunto(s)
Aerosoles , Carbono , Humo , Madera , Carbono/análisis , Carbono/química , Humo/análisis , Madera/química , Aerosoles/análisis , Aerosoles/química , Oxidación-Reducción , Incendios Forestales , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Procesos Fotoquímicos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38613163

RESUMEN

Heavy metal ions are considered to be the most prevalent and toxic water contaminants. The objective of thois work was to investigate the effectiveness of employing the adsorption technique in a laboratory-size reactor to remove copper (II) ions from an aqueous medium. An adaptive neuro-fuzzy inference system (ANFIS) and a feed-forward artificial neural network (ANN) were used in this study. Four operational factors were chosen to examine their influence on the adsorption study: pH, contact duration, initial Cu (II) ions concentration, and adsorbent dosage. Using sawdust from wood, prediction models of copper (II) ions adsorption were optimized, created, and developed using the ANN and ANFIS models for tests. The result indicates that the determination coefficient for copper (II) metal ions in the training dataset was 0.987. Additionally, the ANFIS model's R2 value for both pollutants was 0.992. The findings demonstrate that the models presented a promising predictive approach that can be applied to successfully and accurately anticipate the simultaneous elimination of copper (II) and dye from the aqueous solution.


Asunto(s)
Cobre , Lógica Difusa , Redes Neurales de la Computación , Contaminantes Químicos del Agua , Madera , Cobre/química , Adsorción , Contaminantes Químicos del Agua/química , Madera/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Modelos Químicos
12.
Waste Manag ; 182: 142-163, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653043

RESUMEN

Owing to the diversity of biomasses and many variables in pyrolysis process, the property of biochar from varied biomass feedstock or even same biomass could differ significantly. Since the property of biochar governs the further application of biochar, this review paid particular attention to the correlation between the nature of biomass feedstock and the specifications of biochar in terms of yield, elemental composition, pH, functionalities, heating value, pore structures, morphologies, etc. The property of the biochar from the pyrolysis of cellulose, hemicellulose, lignin, woody biomass (pine, mallee, poplar, acacia, oak, eucalyptus and beech), bark of woody biomass, leaves of woody biomass, straw, algae, fruit peels, tea waste was compared and summarized. In addition, the differences of the biochar of these varied origins were also analyzed. The remaining questions, about the correlation of biomass nature with biochar characteristics, to be further investigated are analyzed in detail. The deduced information about the relationship of the nature of biochar and biomass feedstock as well as key pyrolysis parameters is of importance for further development of the methods for tailoring or production of the biochar of desirable properties. The results from this study could be interesting technically and commercially for the technology developer using biochar as the source of carbon in different applications.


Asunto(s)
Biomasa , Carbón Orgánico , Pirólisis , Carbón Orgánico/química , Madera/química , Celulosa/química , Lignina/química , Polisacáridos
13.
Bioresour Technol ; 401: 130711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641302

RESUMEN

Lithium carboxymethyl cellulose (CMC-Li) is a promising novel water-based binder for lithium-ion batteries. The direct synthesis of CMC-Li was innovatively developed using abundant wood dissolving pulp materials from hardwood (HW) and softwood (SW). The resulting CMC-Li-HW and CMC-Li-SW binders possessed a suitable degree of substitutions and excellent molecular weight distributions with an appropriate quantity of long- and short-chain celluloses, which facilitated the construction of a reinforced concrete-like bonding system. When used as cathode binders in LiFePO4 batteries, they uniformly coated and dispersed the electrode materials, formed a compact and stable conductive network with high mechanical strength and showed sufficient lithium replenishment. The prepared LiFePO4 batteries exhibited good mechanical stability, low charge transfer impedance, high initial discharge capacity (∼180 mAh/g), high initial Coulombic efficiency (99 %), excellent cycling performance (<3% loss over 200 cycles) and good rate capability, thereby outperforming CMC-Na and the widely used cathode binder polyvinylidene fluoride.


Asunto(s)
Carboximetilcelulosa de Sodio , Suministros de Energía Eléctrica , Electrodos , Litio , Madera , Litio/química , Madera/química , Carboximetilcelulosa de Sodio/química , Fosfatos/química , Iones , Hierro
14.
Int J Biol Macromol ; 268(Pt 1): 131620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631578

RESUMEN

Transparent wood (TW) has attracted much attention in the field of energy saving building structural materials because of its high light transmittance, good thermal insulation performance and good toughness. However, the polymeric resins used in the present study to impregnate lignin-based wood templates are usually derived from petroleum-based chemical resources, which pose a fatal threat to human beings both in terms of consuming large amounts of resources and causing environmental pollution problems. It is therefore important to develop alternatives to petroleum-derived chemicals in renewable natural resources. Here, we report a green and sustainable TW production process based on the bio-recycling concept. Lignin-based sustainable resin (LSR) was prepared from waste lignin produced during delignification by polymerization of guaiacol. At the same time, according to FT-IR and NMR data analysis combined with previous studies, the synthesis mechanism of LSR was proposed, and this result provided a reference for bio-based resins made from biomass materials. The prepared lignin-based sustainable transparent wood (LSTW) has good light transmittance and good dimensional stability. In addition, the LSTW also shows good thermal insulation and indoor temperature regulation capabilities compared with the common glass.


Asunto(s)
Lignina , Madera , Lignina/química , Madera/química , Reciclaje , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier , Biomasa
15.
Int J Biol Macromol ; 268(Pt 1): 131686, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643923

RESUMEN

Despite a fair amount of lignin conversion during mycelial growth, previous structural analyses have not yet revealed how lignin changes continuously and what the relationship is between lignin and ligninolytic enzymes. To clarify these aspects, Quercus acutissima sawdust attaching Ganoderma lucidum mycelium collected from different growth stage was subjected to analysis of lignin structure and ligninolytic enzyme activity. Two key periods of lignin degradation are found during the cultivation of G. lucidum: hypha rapid growth period and primordium formation period. In the first stage, laccase activity is associated with the opening of structures such as methoxyls, ß-O-4' substructures and guaiacyl units in lignin, as well as the shortening of lignin chains. Manganese peroxidases and lignin peroxidases are more suitable for degrading short chain lignin. The structure of phenylcoumarans and syringyl changes greatly in the second stage. The results from sawdust attaching mycelium provide new insights to help improve the cultivation substrate formulation of G. lucidum and understand biomass valorization better.


Asunto(s)
Lignina , Micelio , Quercus , Reishi , Lignina/metabolismo , Lignina/química , Quercus/metabolismo , Quercus/química , Quercus/crecimiento & desarrollo , Micelio/metabolismo , Micelio/crecimiento & desarrollo , Reishi/metabolismo , Reishi/crecimiento & desarrollo , Madera/química , Lacasa/metabolismo , Peroxidasas/metabolismo , Biomasa
16.
Chemosphere ; 358: 142134, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677609

RESUMEN

Soil cracking can significantly alter the water and nutrient migration pathways in the soil, influencing plant growth and development. While biochar usage has effectively addressed soil cracking, the feasibility of using less energy-intensive hydrochars in desiccating soils remains unexplored. This study investigates the impact of wood and peanut shell hydrochars on the desiccation cracking characteristics of clayey soil. A series of controlled environmental laboratory incubations with regular imaging was conducted to determine crack development's dynamic in unamended and hydrochar-amended soils. The results reveal that the addition of wood hydrochar at 2% and 4% dosage reduced the crack intensity factor (CIF) by 22% and 43%, respectively, compared to the unamended control soil. Similarly, the inclusion of peanut shell hydrochar at 2% and 4% lowered the CIF by 22% and 51%, respectively. The presence of hydrophilic groups on the surface of hydrochars, such as O-H, CH, and C-O-C, enhanced the water retention capacity, as confirmed by Fourier-transform infrared analysis. The CIF decrease is attributed to mitigated water evaporation rates, enabled by enhanced water retention within the hydrochar pore spaces. These findings are supported by scanning electron microscopy analyses of the hydrochar morphology. Despite CIF reduction with hydrochar incorporation, the crack length density (CLD) increased across all hydrochar-amended series. In contrast to unamended soil which exhibited pronounced widening of large cracks and extensive inter-pore voids, the incorporation of hydrochar resulted in higher CLD due to the formation of finer interconnecting crack meshes. Consequently, the unamended control soil suffered greater water loss due to heightened evaporation rates. This study sheds new light on the potential of hydrochars in addressing desiccation-induced soil cracking and its implications for water conservation.


Asunto(s)
Arachis , Arcilla , Desecación , Suelo , Madera , Madera/química , Suelo/química , Arcilla/química , Agua/química , Carbón Orgánico/química
17.
Chemosphere ; 358: 142160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685330

RESUMEN

Recent research has found biochar to be a cost-effective adsorbent for removal of perfluoroalkyl substances in water. To promote cleaner production and sustainable waste management, this study explored the potential to produce activated biochars by co-pyrolyzing sawdust with iron-rich biosolids and polyaluminum sludge. The maximum capacity to adsorb perfluorooctanesulfonic acid (PFOS) reached 27.2 mg g-1 with biosolids-activated biochar and 19.2 mg g-1 with aluminum sludge-activated biochar, compared to 6.2 mg g-1 with sawdust biochar. The increased adsorption capacities were attributed to electrostatic interactions between the anionic PFOS and metal functionalities on the biochar surface. In contrast, hydrophobic interaction was the dominant adsorption mechanism of sawdust biochar. The presence of dissolved organic matter at 5-50 mg L-1 was found to inhibit adsorption of PFOS in water, while pH as low as 3.0 and sodium chloride concentrations up to 100 mM enhanced removal of PFOS by all the three adsorbents. In batch adsorption tests at environmentally relevant PFOS dosages and adsorbent dosage of 0.25 g L-1, the biosolids-sawdust biochar and Al sludge-sawdust biochar removed 71.4% and 66.9% of PFOS from drinking water and 77.9% and 87.9% of PFOS from filtrate of sludge digestate, respectively. The biosolids-sawdust biochar additionally removed Fe, although the Al sludge-sawdust biochar released Al into the alkaline drinking water and filtrate. Overall, this study proved co-pyrolyzing sawdust and Fe-rich biosolids to be an effective approach to activate sawdust biochar for enhanced removal of PFOS while recycling wastewater treatment residuals and sawdust.


Asunto(s)
Ácidos Alcanesulfónicos , Carbón Orgánico , Fluorocarburos , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Fluorocarburos/química , Ácidos Alcanesulfónicos/química , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Purificación del Agua/métodos , Madera/química , Eliminación de Residuos Líquidos/métodos
18.
Chem Res Toxicol ; 37(5): 675-684, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38598786

RESUMEN

Air pollution consists of complex mixtures of chemicals with serious deleterious health effects from acute and chronic exposure. To help understand the mechanisms by which adverse effects occur, the present work examines the responses of cultured human epidermal keratinocytes to specific chemicals commonly found in woodsmoke. Our earlier findings with liquid smoke flavoring (aqueous extract of charred wood) revealed that such extracts stimulated the expression of genes associated with oxidative stress and proinflammatory response, activated the aryl hydrocarbon receptor, thereby inducing cytochrome P4501A1 activity, and induced cross-linked envelope formation, a lethal event ordinarily occurring during terminal differentiation. The present results showed that furfural produced transcriptional responses resembling those of liquid smoke, cyclohexanedione activated the aryl hydrocarbon receptor, and several chemicals induced envelope formation. Of these, syringol permeabilized the cells to the egress of lactate dehydrogenase at a concentration close to that yielding envelope formation, while furfural induced envelope formation without permeabilization detectable in this way. Furfural (but not syringol) stimulated the incorporation of amines into cell proteins in extracts in the absence of transglutaminase activity. Nevertheless, both chemicals substantially increased the amount of cellular protein incorporated into envelopes and greatly altered the envelope protein profile. Moreover, the proportion of keratin in the envelopes was dramatically increased. These findings are consistent with the chemically induced protein cross-linking in the cells. Elucidating mechanisms by which this phenomenon occurs may help understand how smoke chemicals interact with proteins to elicit cellular responses, interpret bioassays of complex pollutant mixtures, and suggest additional sensitive ways to monitor exposures.


Asunto(s)
Queratinocitos , Madera , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Madera/química , Humo/efectos adversos , Furaldehído/análogos & derivados , Furaldehído/farmacología , Células Cultivadas , Receptores de Hidrocarburo de Aril/metabolismo
19.
Bioresour Technol ; 400: 130667, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583674

RESUMEN

Due to the complexity of biomass structures, the conversion of raw biomass into value-added chemicals is challenging and often requires efficient pretreatment of the biomass. In this paper, a simple and green pre-oxidation method, which was conducted under the conditions of 2 wt% H2O2, 80 min, and 150 °C, was reported to significantly increase the production of levoglucosan (LG) from biomass pyrolysis. The result showed that the LG yield significantly increased from 2.3 wt% (without pre-oxidation) to 23.1 wt% when pine wood was employed as a sample for pyrolysis at 400 °C, resulting from the removal of hemicellulose fraction and the in-situ acid catalysis of lignin carboxyl groups formed during the pre-oxidation. When the conditions for pre-oxidation became harsher than the above, the LG yield reduced because the decomposition of cellulose fraction in biomass. The study supplies an effective method for utilization of biomass as chemicals.


Asunto(s)
Biomasa , Glucosa , Glucosa/análogos & derivados , Peróxido de Hidrógeno , Oxidación-Reducción , Pirólisis , Peróxido de Hidrógeno/química , Glucosa/química , Madera/química , Pinus/química , Lignina/química , Lignina/análogos & derivados
20.
J Vis Exp ; (206)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647320

RESUMEN

Fuel treatments and other forest restoration thinning practices aim to reduce wildfire risk while building forest resilience to drought, insects, and diseases and increasing aboveground carbon (C) sequestration. However, fuel treatments generate large amounts of unmerchantable woody biomass residues that are often burned in open piles, releasing significant quantities of greenhouse gases and particulates, and potentially damaging the soil beneath the pile. Air curtain burners offer a solution to mitigate these issues, helping to reduce smoke and particulates from burning operations, more fully burn biomass residues compared to pile burning, and eliminate the direct and intense fire contact that can harm soil beneath the slash pile. In an air curtain burner, burning takes place in a controlled environment. Smoke is contained and recirculated by the air curtain, and therefore burning can be conducted under a variety of climatic conditions (e.g., wind, rain, snow), lengthening the burning season for disposal of slash material. The mobile pyrolysis unit that continuously creates biochar was specifically designed to dispose of residual woody biomass at log landings, green wood at landfills, or salvaged logged materials and create biochar in the process. This high-carbon biochar output can be used to enhance soil resilience by improving its chemical, physical, and biological properties and has potential applications in remediating contaminated soils, including those at abandoned mine sites. Here, we describe the general use of this equipment, appropriate siting, loading methods, quenching requirements, and lessons learned about operating this new technology.


Asunto(s)
Carbón Orgánico , Madera , Madera/química , Carbón Orgánico/química , Pirólisis , Agricultura Forestal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...