Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurotox Res ; 39(5): 1524-1542, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34224102

RESUMEN

Sevoflurane postconditioning (SPC) has been widely reported to attenuate brain injury after hypoxia-ischemia encephalopathy (HIE) by inhibiting neural necrosis and autophagy. Moreover, recent reports revealed that sevoflurane facilitated hippocampal reconstruction via regulating migration. Yet, it remains unclear whether the promotion of neural migration by SPC repairs the hippocampal injury after HIE. Here, we hypothesize that SPC exerts a neuroprotective effect by ameliorating neuronal migration disorder after HIE and regulating Reelin expression. Furthermore, the downstream Reelin/Dab1 pathway may be involved. The classical Rice-Vannucci model of hypoxia-ischemia was performed on postnatal day 7 rat pups, which was followed by SPC at 1 minimum alveolar concentration (MAC 2.5%) for 30 min. Piceatannol, causing Reelin aggregation in vivo, was used to detect whether Reelin/Dab1 was involved in the neuroprotection effect of SPC. Hippocampal-dependent learning ability tests were conducted to assess the long-term effects on locomotor activity and spatial learning ability. Our findings suggest that hypoxia-ischemia injury inhibited neurons migrated outward from the basal zone of dentate gyrus, disrupted cytoarchitecture of the dentate gyrus (DG), and led to long-term cognition deficits. However, SPC could relieve the restricted hippocampal neurons and repair the hippocampal-dependent memory function damaged after HIE by attenuating the overactivation of the Reelin/Dab1 pathway. These results demonstrate that SPC plays a pivotal role in ameliorating neuronal migration disorder and maintaining normal cytoarchitecture of the DG via inhibiting overactivated Reelin expression. This process may involve overactivated Reelin/Dab1 signaling pathway and spatial learning ability by regulating the Reelin expression which may associate with its neuroprotection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Cognición/efectos de los fármacos , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Malformaciones del Desarrollo Cortical del Grupo II/tratamiento farmacológico , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteína Reelina/antagonistas & inhibidores , Sevoflurano/administración & dosificación , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Animales , Animales Recién Nacidos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Cognición/fisiología , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Poscondicionamiento Isquémico/métodos , Masculino , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/patología , Proteínas del Tejido Nervioso/biosíntesis , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Inhibidores de Agregación Plaquetaria/administración & dosificación , Ratas , Ratas Sprague-Dawley , Proteína Reelina/biosíntesis , Factores de Tiempo
2.
Dev Neurosci ; 36(6): 477-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247689

RESUMEN

Human neocortical molecular layer heterotopia consist of aggregations of hundreds of neurons and glia in the molecular layer (layer I) and are indicative of neuronal migration defect. Despite having been associated with dyslexia, epilepsy, cobblestone lissencephaly, polymicrogyria, and Fukuyama muscular dystrophy, a complete understanding of the cellular and axonal constituents of molecular layer heterotopia is lacking. Using a mouse model, we identify diverse excitatory and inhibitory neurons as well as glia in heterotopia based on molecular profiles. Using immunocytochemistry, we identify diverse afferents in heterotopia from subcortical neuromodulatory centers. Finally, we document intracortical projections to/from heterotopia. These data are relevant toward understanding how heterotopia affect brain function in diverse neurodevelopmental disorders.


Asunto(s)
Axones/patología , Malformaciones del Desarrollo Cortical del Grupo II/patología , Neocórtex/patología , Neuroglía/patología , Neuronas/patología , Animales , Axones/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neocórtex/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo
3.
Wiley Interdiscip Rev Dev Biol ; 2(2): 229-45, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23495356

RESUMEN

During neocortical development, the extensive migratory movements of neurons from their place of birth to their final location are essential for the coordinated wiring of synaptic circuits and proper neurological function. Failure or delay in neuronal migration causes severe abnormalities in cortical layering, which consequently results in human lissencephaly ('smooth brain'), a neuronal migration disorder. The brains of lissencephaly patients have less-convoluted gyri in the cerebral cortex with impaired cortical lamination of neurons. Since microtubule (MT) and actin-associated proteins play important functions in regulating the dynamics of MT and actin cytoskeletons during neuronal migration, genetic mutations or deletions of crucial genes involved in cytoskeletal processes lead to lissencephaly in human and neuronal migration defects in mouse. During neuronal migration, MT organization and transport are controlled by platelet-activating factor acetylhydrolase isoform 1b regulatory subunit 1 (PAFAH1B1, formerly known as LIS1, Lissencephaly-1), doublecortin (DCX), YWHAE, and tubulin. Actin stress fibers are modulated by PAFAH1B1 (LIS1), DCX, RELN, and VLDLR (very low-density lipoprotein receptor)/LRP8 (low-density lipoprotein-related receptor 8, formerly known as APOER2). There are several important levels of crosstalk between these two cytoskeletal systems to establish accurate cortical patterning in development. The recent understanding of the protein networks that govern neuronal migration by regulating cytoskeletal dynamics, from human and mouse genetics as well as molecular and cellular analyses, provides new insights on neuronal migration disorders and may help us devise novel therapeutic strategies for such brain malformations.


Asunto(s)
Citoesqueleto/patología , Lisencefalia/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/patología , Malformaciones del Sistema Nervioso/patología , Neuronas/metabolismo , Animales , Movimiento Celular , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Citoesqueleto/genética , Citoesqueleto/metabolismo , Proteína Doblecortina , Humanos , Lisencefalia/genética , Lisencefalia/patología , Malformaciones del Desarrollo Cortical del Grupo II/genética , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Malformaciones del Sistema Nervioso/genética , Neuronas/patología , Proteína Reelina
4.
Genes Cells ; 18(3): 176-94, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23294285

RESUMEN

In developing brains, neural progenitors exhibit cell cycle-dependent nuclear movement within the ventricular zone [interkinetic nuclear migration (INM)] and actively proliferate to produce daughter progenitors and/or neurons, whereas newly generated neurons exit from the cell cycle and begin pial surface-directed migration and maturation. Dysregulation of the balance between the proliferation and the cell cycle exit in neural progenitors is one of the major causes of microcephaly (small brain). Recent studies indicate that cell cycle machinery influences not only the proliferation but also INM in neural progenitors. Furthermore, several cell cycle-related proteins, including p27(kip1) , p57(kip2) , Cdk5, and Rb, regulate the migration of neurons in the postmitotic state, suggesting that the growth arrest confers dual functions on cell cycle regulators. Consistently, several types of microcephaly occur in conjunction with neuronal migration disorders, such as periventricular heterotopia and lissencephaly. However, cell cycle re-entry by disturbance of growth arrest in mature neurons is thought to trigger neuronal cell death in Alzheimer's disease. In this review, we introduce the cell cycle protein-mediated regulation of two types of nuclear movement, INM and neuronal migration, during cerebral cortical development, and discuss the roles of growth arrest in cortical development and neurological disorders.


Asunto(s)
Ciclo Celular , Corteza Cerebral/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis
5.
Ann Med ; 41(5): 344-59, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19172427

RESUMEN

While the function of dystrophin in muscle disease has been thoroughly investigated, dystrophin and associated proteins also have important roles in the central nervous system. Many patients with Duchenne and Becker muscular dystrophies (D/BMD) have cognitive impairment, learning disability, and an increased incidence of some neuropsychiatric disorders. Accordingly, dystrophin and members of the dystrophin-associated glycoprotein complex (DGC) are found in the brain where they participate in macromolecular assemblies that anchor receptors to specialized sites within the membrane. In neurons, dystrophin and the DGC participate in the postsynaptic clustering and stabilization of some inhibitory GABAergic synapses. During development, alpha-dystroglycan functions as an extracellular matrix receptor controlling, amongst other things, neuronal migration in the developing cortex and cerebellum. Several types of congenital muscular dystrophy caused by impaired alpha-dystroglycan glycosylation cause neuronal migration abnormalities and mental retardation. In glial cells, the DGC is involved in the organization of protein complexes that target water-channels to the plasma membrane. Finally, mutations in the gene encoding epsilon-sarcoglycan cause the neurogenic movement disorder, myoclonus-dystonia syndrome implicating epsilon-sarcoglycan in dopaminergic neurotransmission. In this review we describe the recent progress in defining the role of the DGC and associated proteins in the brain.


Asunto(s)
Sistema Nervioso Central/metabolismo , Distonía/metabolismo , Complejo de Proteínas Asociado a la Distrofina/metabolismo , Discapacidad Intelectual/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Distrofias Musculares/metabolismo , Neurobiología/métodos , Animales , Humanos
6.
Hum Mol Genet ; 18(7): 1252-65, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19150975

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant, tumor predisposition disorder characterized by significant neurodevelopmental brain lesions, such as tubers and subependymal nodules. The neuropathology of TSC is often associated with seizures and intellectual disability. To learn about the developmental perturbations that lead to these brain lesions, we created a mouse model that selectively deletes the Tsc2 gene from radial glial progenitor cells in the developing cerebral cortex and hippocampus. These Tsc2 mutant mice were severely runted, developed post-natal megalencephaly and died between 3 and 4 weeks of age. Analysis of brain pathology demonstrated cortical and hippocampal lamination defects, hippocampal heterotopias, enlarged dysplastic neurons and glia, abnormal myelination and an astrocytosis. These histologic abnormalities were accompanied by activation of the mTORC1 pathway as assessed by increased phosphorylated S6 in brain lysates and tissue sections. Developmental analysis demonstrated that loss of Tsc2 increased the subventricular Tbr2-positive basal cell progenitor pool at the expense of early born Tbr1-positive post-mitotic neurons. These results establish the novel concept that loss of function of Tsc2 in radial glial progenitors is one initiating event in the development of TSC brain lesions as well as underscore the importance of Tsc2 in the regulation of neural progenitor pools. Given the similarities between the mouse and the human TSC lesions, this model will be useful in further understanding TSC brain pathophysiology, testing potential therapies and identifying other genetic pathways that are altered in TSC.


Asunto(s)
Encéfalo/patología , Neuroglía/metabolismo , Neuroglía/patología , Esclerosis Tuberosa/patología , Proteínas Supresoras de Tumor/deficiencia , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Integrasas/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Proteínas , Células Madre/metabolismo , Células Madre/patología , Serina-Treonina Quinasas TOR , Factores de Transcripción/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa
7.
Neuroscience ; 152(3): 723-33, 2008 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-18313856

RESUMEN

Embryonic knockdown of candidate dyslexia susceptibility gene (CDSG) homologs in cerebral cortical progenitor cells in the rat results in acute disturbances of neocortical migration. In the current report we investigated the effects of embryonic knockdown and overexpression of the homolog of DCDC2, one of the CDSGs, on the postnatal organization of the cerebral cortex. Using a within-litter design, we transfected cells in rat embryo neocortical ventricular zone around embryonic day (E) 15 with either 1) small hairpin RNA (shRNA) vectors targeting Dcdc2, 2) a DCDC2 overexpression construct, 3) Dcdc2 shRNA along with DCDC2 overexpression construct, 4) an overexpression construct composed of the C terminal domain of DCDC2, or 5) an overexpression construct composed of the DCX terminal domain of DCDC2. RNAi of Dcdc2 resulted in pockets of heterotopic neurons in the periventricular region. Approximately 25% of the transfected brains had hippocampal pyramidal cell migration anomalies. Dcdc2 shRNA-transfected neurons migrated in a bimodal pattern, with approximately 7% of the neurons migrating a short distance from the ventricular zone, and another 30% migrating past their expected lamina. Rats transfected with Dcdc2 shRNA along with the DCDC2 overexpression construct rescued the periventricular heterotopia phenotype, but did not affect the percentage of transfected neurons that migrate past their expected laminar location. There were no malformations associated with any of the overexpression constructs, nor was there a significant laminar disruption of migration. These results support the claim that knockdown of Dcdc2 expression results in neuronal migration disorders similar to those seen in the brains of dyslexics.


Asunto(s)
Movimiento Celular/genética , Corteza Cerebral/anomalías , Dislexia/genética , Predisposición Genética a la Enfermedad/genética , Malformaciones del Desarrollo Cortical del Grupo II/genética , Proteínas Asociadas a Microtúbulos/genética , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Coristoma/genética , Coristoma/metabolismo , Coristoma/fisiopatología , Proteína Doblecortina , Regulación hacia Abajo/genética , Dislexia/metabolismo , Dislexia/fisiopatología , Regulación del Desarrollo de la Expresión Génica/genética , Marcación de Gen , Hipocampo/anomalías , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Malformaciones del Desarrollo Cortical del Grupo II/metabolismo , Malformaciones del Desarrollo Cortical del Grupo II/fisiopatología , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Asociadas a Microtúbulos/deficiencia , Células Piramidales/metabolismo , Células Piramidales/patología , Interferencia de ARN , Ratas , Ratas Wistar , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA