Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 604
Filtrar
1.
Curr Biol ; 34(8): 1705-1717.e6, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38574729

RESUMEN

Plants establish symbiotic associations with arbuscular mycorrhizal fungi (AMF) to facilitate nutrient uptake, particularly in nutrient-limited conditions. This partnership is rooted in the plant's ability to recognize fungal signaling molecules, such as chitooligosaccharides (chitin) and lipo-chitooligosaccharides. In the legume Medicago truncatula, chitooligosaccharides trigger both symbiotic and immune responses via the same lysin-motif-receptor-like kinases (LysM-RLKs), notably CERK1 and LYR4. The nature of plant-fungal engagement is opposite according to the outcomes of immunity or symbiosis signaling, and as such, discrimination is necessary, which is challenged by the dual roles of CERK1/LYR4 in both processes. Here, we describe a LysM-RLK, LYK8, that is functionally redundant with CERK1 for mycorrhizal colonization but is not involved in chitooligosaccharides-induced immunity. Genetic mutation of both LYK8 and CERK1 blocks chitooligosaccharides-triggered symbiosis signaling, as well as mycorrhizal colonization, but shows no further impact on immunity signaling triggered by chitooligosaccharides, compared with the mutation of CERK1 alone. LYK8 interacts with CERK1 and forms a receptor complex that appears essential for chitooligosaccharides activation of symbiosis signaling, with the lyk8/cerk1 double mutant recapitulating the impact of mutations in the symbiosis signaling pathway. We conclude that this novel receptor complex allows chitooligosaccharides activation specifically of symbiosis signaling and helps the plant to differentiate between activation of these opposing signaling processes.


Asunto(s)
Quitina , Quitosano , Medicago truncatula , Micorrizas , Proteínas de Plantas , Simbiosis , Micorrizas/fisiología , Quitina/metabolismo , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Medicago truncatula/inmunología , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Inmunidad de la Planta , Oligosacáridos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo
2.
New Phytol ; 242(5): 2195-2206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571285

RESUMEN

Legume nodulation requires the detection of flavonoids in the rhizosphere by rhizobia to activate their production of Nod factor countersignals. Here we investigated the flavonoids involved in nodulation of Medicago truncatula. We biochemically characterized five flavonoid-O-methyltransferases (OMTs) and a lux-based nod gene reporter was used to investigate the response of Sinorhizobium medicae NodD1 to various flavonoids. We found that chalcone-OMT 1 (ChOMT1) and ChOMT3, but not OMT2, 4, and 5, were able to produce 4,4'-dihydroxy-2'-methoxychalcone (DHMC). The bioreporter responded most strongly to DHMC, while isoflavones important for nodulation of soybean (Glycine max) showed no activity. Mutant analysis revealed that loss of ChOMT1 strongly reduced DHMC levels. Furthermore, chomt1 and omt2 showed strongly reduced bioreporter luminescence in their rhizospheres. In addition, loss of both ChOMT1 and ChOMT3 reduced nodulation, and this phenotype was strengthened by the further loss of OMT2. We conclude that: the loss of ChOMT1 greatly reduces root DHMC levels; ChOMT1 or OMT2 are important for nod gene activation in the rhizosphere; and ChOMT1/3 and OMT2 promote nodulation. Our findings suggest a degree of exclusivity in the flavonoids used for nodulation in M. truncatula compared to soybean, supporting a role for flavonoids in rhizobial host range.


Asunto(s)
Chalconas , Medicago truncatula , Nodulación de la Raíz de la Planta , Rizosfera , Medicago truncatula/genética , Medicago truncatula/microbiología , Medicago truncatula/metabolismo , Chalconas/metabolismo , Nodulación de la Raíz de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sinorhizobium/fisiología , Sinorhizobium/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética
3.
Arch Microbiol ; 206(4): 147, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462552

RESUMEN

Legumes can establish a mutual association with soil-derived nitrogen-fixing bacteria called 'rhizobia' forming lateral root organs called root nodules. Rhizobia inside the root nodules get transformed into 'bacteroids' that can fix atmospheric nitrogen to ammonia for host plants in return for nutrients and shelter. A substantial 200 million tons of nitrogen is fixed annually through biological nitrogen fixation. Consequently, the symbiotic mechanism of nitrogen fixation is utilized worldwide for sustainable agriculture and plays a crucial role in the Earth's ecosystem. The development of effective nitrogen-fixing symbiosis between legumes and rhizobia is very specialized and requires coordinated signaling. A plethora of plant-derived nodule-specific cysteine-rich (NCR or NCR-like) peptides get actively involved in this complex and tightly regulated signaling process of symbiosis between some legumes of the IRLC (Inverted Repeat-Lacking Clade) and Dalbergioid clades and nitrogen-fixing rhizobia. Recent progress has been made in identifying two such peptidases that actively prevent bacterial differentiation, leading to symbiotic incompatibility. In this review, we outlined the functions of NCRs and two nitrogen-fixing blocking peptidases: HrrP (host range restriction peptidase) and SapA (symbiosis-associated peptidase A). SapA was identified through an overexpression screen from the Sinorhizobium meliloti 1021 core genome, whereas HrrP is inherited extra-chromosomally. Interestingly, both peptidases affect the symbiotic outcome by degrading the NCR peptides generated from the host plants. These NCR-degrading peptidases can shed light on symbiotic incompatibility, helping to elucidate the reasons behind the inefficiency of nitrogen fixation observed in certain groups of rhizobia with specific legumes.


Asunto(s)
Medicago truncatula , Rhizobium , Péptido Hidrolasas/genética , Rhizobium/genética , Rhizobium/metabolismo , Simbiosis , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Ecosistema , Péptidos/metabolismo , Verduras , Nitrógeno , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/microbiología
4.
New Phytol ; 242(5): 2207-2222, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481316

RESUMEN

In terrestrial ecosystems, most plant species can form beneficial associations with arbuscular mycorrhizal (AM) fungi. Arbuscular mycorrhizal fungi benefit plant nutrient acquisition and enhance plant tolerance to drought. The high osmolarity glycerol 1 mitogen-activated protein kinase (HOG1-MAPK) cascade genes have been characterized in Rhizophagus irregularis. However, the upstream receptor of the HOG1-MAPK cascade remains to be investigated. We identify the receptor kinase RiSho1 from R. irregularis, containing four transmembrane domains and one Src homology 3 (SH3) domain, corresponding to the homologue of Saccharomyces cerevisiae. Higher expression levels of RiSho1 were detected during the in planta phase in response to drought. RiSho1 protein was localized in the plasma membrane of yeast, and interacted with the HOG1-MAPK module RiPbs2 directly by protein-protein interaction. RiSho1 complemented the growth defect of the yeast mutant ∆sho1 under sorbitol conditions. Knock-down of RiSho1 led to the decreased expression of downstream HOG1-MAPK cascade (RiSte11, RiPbs2, RiHog1) and drought-resistant genes (RiAQPs, RiTPSs, RiNTH1 and Ri14-3-3), hampered arbuscule development and decreased plants antioxidation ability under drought stress. Our study reveals the role of RiSho1 in regulating arbuscule development and drought-resistant genes via the HOG1-MAPK cascade. These findings provide new perspectives on the mechanisms by which AM fungi respond to drought.


Asunto(s)
Sequías , Micorrizas , Simbiosis , Micorrizas/fisiología , Simbiosis/genética , Simbiosis/fisiología , Adaptación Fisiológica/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Medicago truncatula/genética , Medicago truncatula/enzimología , Resistencia a la Sequía , Hongos
5.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365913

RESUMEN

The soil bacterium Sinorhizobium meliloti can establish a nitrogen-fixing symbiosis with the model legume Medicago truncatula. The rhizobia induce the formation of a specialized root organ called nodule, where they differentiate into bacteroids and reduce atmospheric nitrogen into ammonia. Little is known on the mechanisms involved in nodule senescence onset and in bacteroid survival inside the infected plant cells. Although toxin-antitoxin (TA) systems have been shown to promote intracellular survival within host cells in human pathogenic bacteria, their role in symbiotic bacteria was rarely investigated. S. meliloti encodes several TA systems, mainly of the VapBC family. Here we present the functional characterization, through a multidisciplinary approach, of the VapBC10 TA system of S. meliloti. Following a mapping by overexpression of an RNase in Escherichia coli (MORE) RNA-seq analysis, we demonstrated that the VapC10 toxin is an RNase that cleaves the anticodon loop of two tRNASer. Thereafter, a bioinformatics approach was used to predict VapC10 targets in bacteroids. This analysis suggests that toxin activation triggers a specific proteome reprogramming that could limit nitrogen fixation capability and viability of bacteroids. Accordingly, a vapC10 mutant induces a delayed senescence in nodules, associated to an enhanced bacteroid survival. VapBC10 TA system could contribute to S. meliloti adaptation to symbiotic lifestyle, in response to plant nitrogen status.


Asunto(s)
Medicago truncatula , Sinorhizobium meliloti , Humanos , Sinorhizobium meliloti/genética , ARN de Transferencia de Serina , Medicago truncatula/genética , Medicago truncatula/microbiología , Bacterias , Fijación del Nitrógeno/fisiología , Estilo de Vida , Nitrógeno , Ribonucleasas , Simbiosis/fisiología
6.
Cell Rep ; 43(2): 113747, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38329875

RESUMEN

Legumes establish a symbiotic relationship with nitrogen-fixing rhizobia by developing nodules. Nodules are modified lateral roots that undergo changes in their cellular development in response to bacteria, but the transcriptional reprogramming that occurs in these root cells remains largely uncharacterized. Here, we describe the cell-type-specific transcriptome response of Medicago truncatula roots to rhizobia during early nodule development in the wild-type genotype Jemalong A17, complemented with a hypernodulating mutant (sunn-4) to expand the cell population responding to infection and subsequent biological inferences. The analysis identifies epidermal root hair and stele sub-cell types associated with a symbiotic response to infection and regulation of nodule proliferation. Trajectory inference shows cortex-derived cell lineages differentiating to form the nodule primordia and, posteriorly, its meristem, while modulating the regulation of phytohormone-related genes. Gene regulatory analysis of the cell transcriptomes identifies new regulators of nodulation, including STYLISH 4, for which the function is validated.


Asunto(s)
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Transcriptoma/genética , Raíces de Plantas/genética , Linaje de la Célula/genética , Reguladores del Crecimiento de las Plantas
7.
Adv Sci (Weinh) ; 11(12): e2306389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225717

RESUMEN

Vanadium (V) pollution potentially threatens human health. Here, it is found that nsp1 and nsp2, Rhizobium symbiosis defective mutants of Medicago truncatula, are sensitive to V. Concentrations of phosphorus (P), iron (Fe), and sulfur (S) with V are negatively correlated in the shoots of wild-type R108, but not in mutant nsp1 and nsp2 shoots. Mutations in the P transporter PHT1, PHO1, and VPT families, Fe transporter IRT1, and S transporter SULTR1/3/4 family confer varying degrees of V tolerance on plants. Among these gene families, MtPT1, MtZIP6, MtZIP9, and MtSULTR1; 1 in R108 roots are significantly inhibited by V stress, while MtPHO1; 2, MtVPT2, and MtVPT3 are significantly induced. Overexpression of Arabidopsis thaliana VPT1 or M. truncatula MtVPT3 increases plant V tolerance. However, the response of these genes to V is weakened in nsp1 or nsp2 and influenced by soil microorganisms. Mutations in NSPs reduce rhizobacterial diversity under V stress and simplify the V-responsive operational taxonomic unit modules in co-occurrence networks. Furthermore, R108 recruits more beneficial rhizobacteria related to V, P, Fe, and S than does nsp1 or nsp2. Thus, NSPs can modulate the accumulation and tolerance of legumes to V through P, Fe, and S transporters, ion homeostasis, and rhizobacterial community responses.


Asunto(s)
Medicago truncatula , Vanadio , Humanos , Vanadio/metabolismo , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Transducción de Señal
8.
Microbiol Spectr ; 12(2): e0182723, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38236024

RESUMEN

One of the major issues in healthcare today is antibiotic resistance. Antimicrobial peptides (AMPs), a subclass of host defense peptides, have been suggested as a viable solution for the multidrug resistance problem. Legume plants express more than 700 nodule-specific cysteine-rich (NCR) peptides. Three NCR peptides (NCR094, NCR888, and NCR992) were predicted to have antimicrobial activity using in silico AMP prediction programs. This study focused on investigating the roles of the NCRs in antimicrobial activity and antibiofilm activity, followed by in vitro toxicity profiling. Different variants were synthesized, i.e., mutated and truncated derivatives. The effect on the growth of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) was monitored post-treatment, and survived cells were counted using an in vitro and ex vivo killing assay. The antibiofilm assay was conducted using subinhibitory concentrations of the NCRs and monitoring K. pneumoniae biomass, followed by crystal violet staining. The cytotoxicity profile was evaluated using erythrocyte hemolysis and leukemia (K562) cell line toxicity assays. Out of the NCRs, NCR094 and NCR992 displayed mainly in vitro and ex vivo bactericidal activity on K. pneumoniae. NCR094 wild type (WT) and NCR992 eradicated K. pneumoniae at different potency; NCR094 and NCR992 killed K. pneumoniae completely at 25 and 50 µM, respectively. However, both peptides in the wild type showed negligible bactericidal effect on MRSA in vitro and ex vivo. NCR094 and its derivatives relatively retained the antimicrobial activity on K. pneumoniae in vitro and ex vivo. NCR992 WT lost its antimicrobial activity on K. pneumoniae ex vivo, yet the different truncated and mutated variants retained some of the antimicrobial role ex vivo. All the different variants of NCR094 had no effect on MRSA in vitro and ex vivo. Similarly, NCR992's variants had a negligible bactericidal role on MRSA in vitro, yet the truncated variants had a significantly high bactericidal effect on MRSA ex vivo. NCR094.3 (cystine replacement variant) and NCR992.1 displayed significant antibiofilm activity more than 90%. NCR992.3 and NCR992.2 displayed more than 50% of antibiofilm activity. All the NCR094 forms had no toxicity, except NCR094.1 (49.38%, SD ± 3.46) and all NCR992 forms (63%-93%), which were above the cutoff (20%). Only NCR992.2 showed low toxicity on K562 (24.8%, SD ± 3.40), yet above the 20% cutoff. This study provided preliminary antimicrobial and safety data for the potential use of these peptides for therapeutical applications.IMPORTANCEThe discovery of new antibiotics is urgently needed, given the global expansion of antibiotic-resistant bacteria and the rising mortality rate. One of the initial lines of defense against microbial infections is antimicrobial peptides (AMPs). Plants can express hundreds of such AMPs as defensins and defensin-like peptides. The nodule-specific cysteine-rich (NCR) peptides are a class of defensin-like peptides that have evolved in rhizobial-legume symbioses. This study screened the antimicrobial activity of a subset of NCR sequences using online computational AMP prediction algorithms. Two novel NCRs, NCR094 and NCR992, with different variants were identified to exhibit antimicrobial activity with various potency on two problematic pathogens, K. pneumoniae and MRSA, using in vitro and ex vivo killing assays. Yet, one variant, NCR094.3, had no toxicity toward human cells and displayed antibiofilm activity, which make it a promising lead for antimicrobial drug development.


Asunto(s)
Antiinfecciosos , Medicago truncatula , Staphylococcus aureus Resistente a Meticilina , Humanos , Medicago truncatula/química , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Péptidos Antimicrobianos , Cisteína/metabolismo , Staphylococcus aureus Resistente a Meticilina/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Klebsiella pneumoniae , Verduras , Defensinas/farmacología , Pruebas de Sensibilidad Microbiana
9.
Science ; 383(6681): 443-448, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38271524

RESUMEN

The mutualistic association between plants and arbuscular mycorrhizal (AM) fungi requires intracellular accommodation of the fungal symbiont and maintenance by means of lipid provisioning. Symbiosis signaling through lysin motif (LysM) receptor-like kinases and a leucine-rich repeat receptor-like kinase DOES NOT MAKE INFECTIONS 2 (DMI2) activates transcriptional programs that underlie fungal passage through the epidermis and accommodation in cortical cells. We show that two Medicago truncatula cortical cell-specific, membrane-bound proteins of a CYCLIN-DEPENDENT KINASE-LIKE (CKL) family associate with, and are phosphorylation substrates of, DMI2 and a subset of the LysM receptor kinases. CKL1 and CKL2 are required for AM symbiosis and control expression of transcription factors that regulate part of the lipid provisioning program. Onset of lipid provisioning is coupled with arbuscule branching and with the REDUCED ARBUSCULAR MYCORRHIZA 1 (RAM1) regulon for complete endosymbiont accommodation.


Asunto(s)
Quinasas Ciclina-Dependientes , Metabolismo de los Lípidos , Medicago truncatula , Proteínas de la Membrana , Micorrizas , Proteínas de Plantas , Simbiosis , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de la Membrana/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Metabolismo de los Lípidos/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo
10.
New Phytol ; 241(1): 24-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924218

RESUMEN

C-terminally encoded peptides (CEP) signaling peptides are drivers of systemic pathways regulating nitrogen (N) acquisition in different plants, from Arabidopsis to legumes, depending on mineral N availability (e.g. nitrate) and on the whole plant N demand. Recent studies in the Medicago truncatula model legume revealed how root-produced CEP peptides control the root competence for endosymbiosis with N fixing rhizobia soil bacteria through the activity of the Compact Root Architecture 2 (CRA2) CEP receptor in shoots. Among CEP genes, MtCEP7 was shown to be tightly linked to nodulation, and the dynamic temporal regulation of its expression reflects the plant ability to maintain a different symbiotic root competence window depending on the symbiotic efficiency of the rhizobium strain, as well as to reinitiate a new window of root competence for nodulation.


Asunto(s)
Medicago truncatula , Rhizobium , Nódulos de las Raíces de las Plantas/microbiología , Nodulación de la Raíz de la Planta/genética , Simbiosis/fisiología , Raíces de Plantas/metabolismo , Señales de Clasificación de Proteína , Rhizobium/fisiología , Medicago truncatula/microbiología , Péptidos/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Microbiome ; 11(1): 146, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394496

RESUMEN

BACKGROUND: Despite the knowledge that the soil-plant-microbiome nexus is shaped by interactions amongst its members, very little is known about how individual symbioses regulate this shaping. Even less is known about how the agriculturally important symbiosis of nitrogen-fixing rhizobia with legumes is impacted according to soil type, yet this knowledge is crucial if we are to harness or improve it. We asked how the plant, soil and microbiome are modulated by symbiosis between the model legume Medicago truncatula and different strains of Sinorhizobium meliloti or Sinorhizobium medicae whose nitrogen-fixing efficiency varies, in three distinct soil types that differ in nutrient fertility, to examine the role of the soil environment upon the plant-microbe interaction during nodulation. RESULTS: The outcome of symbiosis results in installment of a potentially beneficial microbiome that leads to increased nutrient uptake that is not simply proportional to soil nutrient abundance. A number of soil edaphic factors including Zn and Mo, and not just the classical N/P/K nutrients, group with microbial community changes, and alterations in the microbiome can be seen across different soil fertility types. Root endosphere emerged as the plant microhabitat more affected by this rhizobial efficiency-driven community reshaping, manifested by the accumulation of members of the phylum Actinobacteria. The plant in turn plays an active role in regulating its root community, including sanctioning low nitrogen efficiency rhizobial strains, leading to nodule senescence in particular plant-soil-rhizobia strain combinations. CONCLUSIONS: The microbiome-soil-rhizobial dynamic strongly influences plant nutrient uptake and growth, with the endosphere and rhizosphere shaped differentially according to plant-rhizobial interactions with strains that vary in nitrogen-fixing efficiency levels. These results open up the possibility to select inoculation partners best suited for plant, soil type and microbial community. Video Abstract.


Asunto(s)
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Fijación del Nitrógeno/fisiología , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis/fisiología
12.
New Phytol ; 239(5): 1954-1973, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37416943

RESUMEN

Establishment of symbiosis between plants and arbuscular mycorrhizal (AM) fungi depends on fungal chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs). The latter are also produced by nitrogen-fixing rhizobia to induce nodules on leguminous roots. However, host enzymes regulating structure and levels of these signals remain largely unknown. Here, we analyzed the expression of a ß-N-acetylhexosaminidase gene of Medicago truncatula (MtHEXO2) and biochemically characterized the enzyme. Mutant analysis was performed to study the role of MtHEXO2 during symbiosis. We found that expression of MtHEXO2 is associated with AM symbiosis and nodulation. MtHEXO2 expression in the rhizodermis was upregulated in response to applied chitotetraose, chitoheptaose, and LCOs. M. truncatula mutants deficient in symbiotic signaling did not show induction of MtHEXO2. Subcellular localization analysis indicated that MtHEXO2 is an extracellular protein. Biochemical analysis showed that recombinant MtHEXO2 does not cleave LCOs but can degrade COs into N-acetylglucosamine (GlcNAc). Hexo2 mutants exhibited reduced colonization by AM fungi; however, nodulation was not affected in hexo2 mutants. In conclusion, we identified an enzyme, which inactivates COs and promotes the AM symbiosis. We hypothesize that GlcNAc produced by MtHEXO2 may function as a secondary symbiotic signal.


Asunto(s)
Medicago truncatula , Micorrizas , Simbiosis/fisiología , Medicago truncatula/microbiología , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Micorrizas/fisiología , Quitina/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Environ Entomol ; 52(4): 667-680, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467039

RESUMEN

Plants simultaneously interact with belowground symbionts such as arbuscular mycorrhizal (AM) fungi and aboveground antagonists such as aphids. Generally, plants gain access to valuable resources including nutrients and water through the AM symbiosis and are more resistant to pests. Nevertheless, aphids' performance improves on mycorrhizal plants, and it remains unclear whether a more nutritious food source and/or attenuated defenses are the contributing factors. This study examined the shoot and root transcriptome of barrel medic (Medicago truncatula Gaertn.) plants highly colonized by the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker, and Buscot) C. Walker and A. Schüßler (Glomerales: Glomeraceae) and exposed to 7 days of mixed age pea aphid (Acyrthosiphon pisum (Harris)) herbivory. The RNA-seq samples chosen for this study showed that aphids were heavier when fed mycorrhizal plants compared to nonmycorrhizal plants. We hypothesized that (i) insect-related plant defense pathways will be downregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; (ii) pathways involved in nutrient acquisition, carbohydrate-related and amino acid transport will be upregulated in shoots of mycorrhizal plants with aphids compared to nonmycorrhizal plants with aphids; and (iii) roots of mycorrhizal plants with aphids will exhibit mycorrhiza-induced resistance. The transcriptome data revealed that the gene repertoire related to defenses, nutrient transport, and carbohydrates differs between nonmycorrhizal and mycorrhizal plants with aphids, which could explain the weight gain in aphids. We also identified novel candidate genes that are differentially expressed in nonmycorrhizal plants with aphids, thus setting the stage for future functional studies.


Asunto(s)
Áfidos , Medicago truncatula , Micorrizas , Animales , Micorrizas/fisiología , Áfidos/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Pisum sativum , Transcriptoma , Raíces de Plantas/metabolismo , Simbiosis
14.
Proc Natl Acad Sci U S A ; 120(27): e2301884120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37368927

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can form a mutually beneficial symbiotic relationship with most land plants. They are known to secrete lysin motif (LysM) effectors into host root cells for successful colonization. Intriguingly, plants secrete similar types of LysM proteins; however, their role in plant-microbe interactions is unknown. Here, we show that Medicago truncatula deploys LysM extracellular (LysMe) proteins to facilitate symbiosis with AMF. Promoter analyses demonstrated that three M. truncatula LysMe genes MtLysMe1/2/3, are expressed in arbuscule-containing cells and those adjacent to intercellular hyphae. Localization studies showed that these proteins are targeted to the periarbuscular space between the periarbuscular membrane and the fungal cell wall of the branched arbuscule. M. truncatula mutants in which MtLysMe2 was knocked out via CRISPR/Cas9-targeted mutagenesis exhibited a significant reduction in AMF colonization and arbuscule formation, whereas genetically complemented transgenic plants restored wild-type level AMF colonization. In addition, knocking out the ortholog of MtLysMe2 in tomato resulted in a similar defect in AMF colonization. In vitro binding affinity precipitation assays suggested binding of MtLysMe1/2/3 with chitin and chitosan, while microscale thermophoresis (MST) assays revealed weak binding of these proteins with chitooligosaccharides. Moreover, application of purified MtLysMe proteins to root segments could suppress chitooctaose (CO8)-induced reactive oxygen species production and expression of reporter genes of the immune response without impairing chitotetraose (CO4)-triggered symbiotic responses. Taken together, our results reveal that plants, like their fungal partners, also secrete LysM proteins to facilitate symbiosis establishment.


Asunto(s)
Medicago truncatula , Micorrizas , Simbiosis/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiología , Hifa/metabolismo , Quitina/metabolismo , Medicago truncatula/microbiología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Planta ; 257(6): 118, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173556

RESUMEN

MAIN CONCLUSION: PGPRs: P. fluorescens Ms9N and S. maltophilia Ll4 inhibit in vitro growth of three legume fungal pathogens from the genus Fusarium. One or both trigger up-regulation of some genes (CHIT, GLU, PAL, MYB, WRKY) in M. truncatula roots and leaves in response to soil inoculation. Pseudomonas fluorescens (referred to as Ms9N; GenBank accession No. MF618323, not showing chitinase activity) and Stenotrophomonas maltophilia (Ll4; GenBank accession No. MF624721, showing chitinase activity), previously identified as promoting growth rhizobacteria of Medicago truncatula, were found, during an in vitro experiment, to exert an inhibitory effect on three soil-borne fungi: Fusarium culmorum Cul-3, F. oxysporum 857 and F. oxysporum f. sp. medicaginis strain CBS 179.29, responsible for serious diseases of most legumes including M. truncatula. S. maltophilia was more active than P. fluorescens in suppressing the mycelium growth of two out of three Fusarium strains. Both bacteria showed ß-1,3-glucanase activity which was about 5 times higher in P. fluorescens than in S. maltophilia. Upon soil treatment with a bacterial suspension, both bacteria, but particularly S. maltophilia, brought about up-regulation of plant genes encoding chitinases (MtCHITII, MtCHITIV, MtCHITV), glucanases (MtGLU) and phenylalanine ammonia lyases (MtPAL2, MtPAL4, MtPAL5). Moreover, the bacteria up-regulate some genes from the MYB (MtMYB74, MtMYB102) and WRKY (MtWRKY6, MtWRKY29, MtWRKY53, MtWRKY70) families which encode TFs in M. truncatula roots and leaves playing multiple roles in plants, including a defense response. The effect depended on the bacterium species and the plant organ. This study provides novel information about effects of two M. truncatula growth-promoting rhizobacteria strains and suggests that both have a potential to be candidates for PGPR inoculant products on account of their ability to inhibit in vitro growth of Fusarium directly and indirectly by up-regulation of some defense priming markers such as CHIT, GLU and PAL genes in plants. This is also the first study of the expression of some MYB and WRKY genes in roots and leaves of M. truncatula upon soil treatment with two PGPR suspensions.


Asunto(s)
Quitinasas , Fusarium , Medicago truncatula , Medicago truncatula/microbiología , Expresión Génica , Raíces de Plantas/metabolismo , Quitinasas/genética , Quitinasas/metabolismo
16.
Appl Environ Microbiol ; 89(3): e0181922, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36877040

RESUMEN

The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria: all play significant roles in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen-starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, a bioavailable form. In soil, S. meliloti is often found in biofilms and travels slowly along the roots, leaving developing root hairs at the growing root tips uninfected. Soil protists are an important component of the rhizosphere system, able to travel quickly along roots and water films, who prey on soil bacteria and have been known to egest undigested phagosomes. We show that a soil protist, Colpoda sp., can transport S. meliloti down Medicago truncatula roots. Using model soil microcosms, we directly observed fluorescently labeled S. meliloti along M. truncatula roots and tracked the displacement of the fluorescence signal over time. Two weeks after co-inoculation, this signal extended 52 mm farther down plant roots when Colpoda sp. was also present versus treatments that contained bacteria but not protists. Direct counts also showed protists are required for viable bacteria to reach the deeper sections of our microcosms. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. IMPORTANCE Soil protists are an important part of the microbial community in the rhizosphere. Plants grown with protists fare better than plants grown without protists. Mechanisms through which protists support plant health include nutrient cycling, alteration of the bacterial community through selective feeding, and consumption of plant pathogens. Here, we provide data in support of an additional mechanism: protists act as transport vehicles for bacteria in soil. We show that protist-facilitated transport can deliver plant-beneficial bacteria to the growing tips of roots that may otherwise be sparsely inhabited with bacteria originating from a seed-associated inoculum. By co-inoculating Medicago truncatula roots with both S. meliloti, a nitrogen-fixing legume symbiont, and Colpoda sp., a ciliated protist, we show substantial and statistically significant transport with depth and breadth of bacteria-associated fluorescence as well as transport of viable bacteria. Co-inoculation with shelf-stable encysted soil protists may be employed as a sustainable agriculture biotechnology to better distribute beneficial bacteria and enhance the performance of inoculants.


Asunto(s)
Bacterias , Cilióforos , Medicago truncatula , Raíces de Plantas , Rizosfera , Bacterias/metabolismo , Medicago truncatula/microbiología , Medicago truncatula/parasitología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Sinorhizobium meliloti/fisiología , Suelo/parasitología , Simbiosis , Cilióforos/metabolismo
17.
Mycorrhiza ; 33(1-2): 23-32, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36625901

RESUMEN

Mercury (Hg) pollution of soils is a critical environmental problem. To rehabilitate Hg contaminated soils, arbuscular mycorrhizal (AM) fungi-based phytoremediation may be supportive, yet the functional potential of AM fungi in response to Hg exposure is unclear. In a greenhouse experiment, we assessed the response of Medicago truncatula (Hg tolerance index (TI), Hg partitioning) to different Hg concentrations [0 (Hg0), 25 (Hg25), 50 (Hg50) µg g-1] in treatments with (AM) and without (NM) inoculation of Rhizophagus irregularis. Additionally, zinc (Zn) uptake and the expression of two Zn transporter genes (ZIP2, ZIP6) were examined because Zn is an essential element for plants and shares the same outer electronic configuration as Hg, implying potential competition for the same transporters. The results showed that AM plants had a higher TI than NM plants. Plant roots were identified as dominant Hg reservoirs. AM inoculation reduced the root Hg concentration under Hg50 compared to the NM treatment. There was an interaction between Hg treatment and AM inoculation on Hg stem concentration, i.e., at Hg25, AM inoculation decreased the Hg translocation from roots to stems, while Hg translocation was increased at Hg50 compared to the NM treatment. Zn acquisition was improved by R. irregularis. The negative relationship between Hg and Zn concentrations in the roots of AM and NM plants implied potential competition for the same transporters, although the expression of Zn transporters was upregulated by AM inoculation at all Hg levels. In conclusion, this baseline study demonstrated that R. irregularis may play an important role in Hg tolerance of M. truncatula, suggesting its potential for Hg-contaminated phytoremediation.


Asunto(s)
Medicago truncatula , Micorrizas , Micorrizas/fisiología , Medicago truncatula/microbiología , Zinc/farmacología , Zinc/metabolismo , Suelo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
18.
Environ Microbiol ; 25(4): 867-879, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36588345

RESUMEN

Arbuscular mycorrhizal (AM) fungi form a continuum between roots and soil. One end of this continuum is comprised of the highly intimate plant-fungus interface with intracellular organelles for nutrient exchange, while on the other end the fungus interacts with bacteria to compensate for the AM fungus' inability to take up organic nutrients from soil. How both interfaces communicate in this highly complex tripartite mutualism is widely unknown. Here, the effects of phosphate-solubilizing bacteria (PSB) Rahnella aquatilis dwelling at the surface of the extraradical hyphae of Rhizophagus irregularis was analysed based on the expression of genes involved in C-P exchange at the peri-arbuscular space (PAS) in Medicago truncatula. The interaction between AM fungus and PSB resulted in an increase in uptake and transport of Pi along the extraradical hyphae and its transfer from AM fungus to plant. In return, this was remunerated by a transfer of C from plant to AM fungus, improving the C-P exchange at the PAS. These results demonstrated that a microorganism (i.e., a PSB) developing at the hyphosphere interface can affect the C-P exchange at the PAS between plant and AM fungus, suggesting a fine-tuned communication operated between three organisms via two distantly connected interfaces.


Asunto(s)
Medicago truncatula , Micorrizas , Rahnella , Fósforo/metabolismo , Carbono/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Rahnella/metabolismo , Fosfatos/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Suelo
19.
New Phytol ; 237(6): 2316-2331, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36564991

RESUMEN

The establishment of arbuscular mycorrhiza (AM) between plants and Glomeromycotina fungi is preceded by the exchange of chemical signals: fungal released Myc-factors, including chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCO), activate plant symbiotic responses, while root-exuded strigolactones stimulate hyphal branching and boost CO release. Furthermore, fungal signaling reinforcement through CO application was shown to promote AM development in Medicago truncatula, but the cellular and molecular bases of this effect remained unclear. Here, we focused on long-term M. truncatula responses to CO treatment, demonstrating its impact on the transcriptome of both mycorrhizal and nonmycorrhizal roots over several weeks and providing an insight into the mechanistic bases of the CO-dependent promotion of AM colonization. CO treatment caused the long-lasting regulation of strigolactone biosynthesis and fungal accommodation-related genes. This was mirrored by an increase in root didehydro-orobanchol content, and the promotion of accommodation responses to AM fungi in root epidermal cells. Lastly, an advanced downregulation of AM symbiosis marker genes was observed at the latest time point in CO-treated plants, in line with an increased number of senescent arbuscules. Overall, CO treatment triggered molecular, metabolic, and cellular responses underpinning a protracted acceleration of AM development.


Asunto(s)
Quitosano , Medicago truncatula , Micorrizas , Micorrizas/fisiología , Medicago truncatula/microbiología , Quitosano/farmacología , Quitosano/metabolismo , Simbiosis/fisiología , Quitina/metabolismo , Plantas/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Mol Ecol ; 32(10): 2646-2659, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36161739

RESUMEN

Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.


Asunto(s)
Medicago truncatula , Rhizobium , Genoma Bacteriano/genética , Medicago truncatula/genética , Medicago truncatula/microbiología , Rhizobium/genética , Análisis de Secuencia de ADN , Sinorhizobium meliloti/genética , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...