Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.412
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732164

RESUMEN

Cold atmospheric pressure plasma (CAP) offers a variety of therapeutic possibilities and induces the formation of reactive chemical species associated with oxidative stress. Mesenchymal stem/stromal cells (MSCs) play a central role in tissue regeneration, partly because of their antioxidant properties and ability to migrate into regenerating areas. During the therapeutic application, MSCs are directly exposed to the reactive species of CAP. Therefore, the investigation of CAP-induced effects on MSCs is essential. In this study, we quantified the amount of ROS due to the CAP activation of the culture medium. In addition, cell number, metabolic activity, stress signals, and migration were analyzed after the treatment of MSCs with a CAP-activated medium. CAP-activated media induced a significant increase in ROS but did not cause cytotoxic effects on MSCs when the treatment was singular and short-term (one day). This single treatment led to increased cell migration, an essential process in wound healing. In parallel, there was an increase in various cell stress proteins, indicating an adaptation to oxidative stress. Repeated treatments with the CAP-activated medium impaired the viability of the MSCs. The results shown here provide information on the influence of treatment frequency and intensity, which could be necessary for the therapeutic application of CAP.


Asunto(s)
Presión Atmosférica , Movimiento Celular , Medios de Cultivo , Células Madre Mesenquimatosas , Estrés Oxidativo , Gases em Plasma , Especies Reactivas de Oxígeno , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Humanos , Gases em Plasma/farmacología , Movimiento Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Estrés Oxidativo/efectos de los fármacos , Células Cultivadas , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
2.
Jt Dis Relat Surg ; 35(2): 299-304, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727108

RESUMEN

OBJECTIVES: This study aimed to investigate whether adding tissue samples directly into thioglycolate (TG) broth yielded a greater number of anaerobic organisms than freshly sampled tissue in suspected hip and knee prosthetic joint infections (PJIs). PATIENTS AND METHODS: Between January 2017 and December 2020, a total of 90 patients (46 males, 44 females; median age: 71.7 years; range, 50.8 and 87.8 years) who underwent revision hip or knee arthroplasty were included. Intraoperative samples were taken, with five placed in TG broth and five in standard containers (PC) with subsequent aerobic and anaerobic culturing conducted. Demographic and baseline data of the patients were recorded. The primary outcome was positive bacterial growth from a PJI specimen inoculated directly into TG broth at the time of collection or standard PJI specimen processing. Secondary outcomes investigated were the presence of Cutibacterium acnes (C. acnes) and the curative success of revision procedure. RESULTS: A total of 900 samples (450 PC and 450 TG) were taken from 90 revision arthroplasty patients (47 knees and 43 hips). There was no statistically significant difference in the number of positive bacterial growth samples between TG broth and standard processing (p=0.742). This was consistent with subgroup analysis analyzing C. acnes (p=0.666). CONCLUSION: In hip and knee arthroplasty, there is no benefit in substituting or adding TG broth as a culture medium to better identify both general bacterial species and C. acnes infections specifically. However, the use of TG may be useful in confirming a true positive result for infection.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Infecciones Relacionadas con Prótesis , Tioglicolatos , Humanos , Infecciones Relacionadas con Prótesis/diagnóstico , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Femenino , Masculino , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Artroplastia de Reemplazo de Rodilla/efectos adversos , Artroplastia de Reemplazo de Cadera/efectos adversos , Tioglicolatos/farmacología , Prótesis de la Rodilla/efectos adversos , Prótesis de la Rodilla/microbiología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Reoperación , Prótesis de Cadera/efectos adversos , Prótesis de Cadera/microbiología , Manejo de Especímenes/métodos , Estudios Retrospectivos
3.
Biomolecules ; 14(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38672430

RESUMEN

Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Albúmina Sérica Bovina , Humanos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Albúmina Sérica Bovina/farmacología , Albúmina Sérica Bovina/química , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 35-39, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678630

RESUMEN

Preparing a suitable cell culture medium that supports the biological needs of the growing cells is crucial to enhancing the success rate of any in vitro and in vivo experiments and minimizing undesirable interferences.  Mesenchymal stem cells ( MSCs) which are powerful regenerative stem cells require being grown in proper culture media to preserve their stemness and therapeutic properties. MSCs are usually grown in Dulbecco's Modified Eagle low glucose Medium (DMEM low glucose) which contains 5.6 mmol/L of glucose and is supplemented with Fetal Bovine Serum (FBS), antibiotics, and 2-Mercaptoethanol. The addition of 2-Mercaptoethanol to the cell culture medium was proposed long ago and has continued to be used until now. Despite the positive effects of adding 2-Mercaptoethanol in the cell culture medium, its use is still controversial and needs continuous updates to limit its interference with experimental treatments. Herein, we found that 2-Mercaptoethanol is beneficial to enhancing the proliferation and survival of MSCs at higher passage numbers while its effect is negligible for earlier passages. This concise study provides updates regarding the suitable time to add 2-Mercaptoethanol which can minimize its intermeddling with the experimental design and treatments.


Asunto(s)
Proliferación Celular , Medios de Cultivo , Mercaptoetanol , Células Madre Mesenquimatosas , Mercaptoetanol/farmacología , Mercaptoetanol/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos
5.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673767

RESUMEN

The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and ß-glycerophosphate (ßGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 µg.mL-1/2 mM Asc/ßGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.


Asunto(s)
Metabolismo Energético , Osteoblastos , Osteogénesis , Estrés Oxidativo , Animales , Ratones , Osteogénesis/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Línea Celular , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacología , Calcificación Fisiológica , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología
6.
Sci Rep ; 14(1): 7081, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528099

RESUMEN

In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.


Asunto(s)
Medios de Cultivo , Factor 2 de Crecimiento de Fibroblastos , Factor I del Crecimiento Similar a la Insulina , Factor Inhibidor de Leucemia , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Fertilización In Vitro , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor Inhibidor de Leucemia/farmacología , Oocitos , Proteómica , Porcinos/embriología , Porcinos/genética , Factor I del Crecimiento Similar a la Insulina/farmacología
7.
In Vitro Cell Dev Biol Anim ; 60(3): 300-306, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506940

RESUMEN

The culture of preimplantation embryos in vitro is an important method for human and mouse reproductive technology. This study aims to investigate the influence of different conditions of culture media on the preimplantation stage of mouse embryos cultured in vitro, and monitor the post-implantation development of new mice after embryo transfer to surrogate females. We demonstrated here that mouse embryos cultured in vitro in fresh M16, KSOM, Global, and HTF embryo culture media from one cell to the blastocyst stage and the subsequent embryo transfer to surrogate females are able to proceed through post-implantation development and, after birth, develop into healthy mice. However, culture of embryos in differently aged media shows various (often unpredictable) results. To find the optimal storage conditions of culture media, we suggest that the freezing and long-term storage of these media at - 80°C will not influence the quality of the media. To test this hypothesis, we grew embryos from one cell to blastocysts in vitro in the selected media after thawing and subsequently transferring them to surrogate females. Embryo culture in these four media after thawing does not affect preimplantation and postnatal mouse development. Thus, we have shown that storage of embryo culture media at low temperature (- 80°C) does not impact the quality of the media, and subsequently, it can be used for the culture of embryos for the full preimplantation period, the same as in fresh media.


Asunto(s)
Técnicas de Cultivo de Embriones , Transferencia de Embrión , Femenino , Ratones , Humanos , Animales , Medios de Cultivo/farmacología , Técnicas de Cultivo de Embriones/métodos , Transferencia de Embrión/métodos , Embrión de Mamíferos , Desarrollo Embrionario , Blastocisto
8.
PLoS One ; 19(3): e0298262, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547234

RESUMEN

MCF7 cells have been used as an experimental model for breast cancer for decades. Typically, a culture medium is designed to supply cells with the nutrients essential for their continuous proliferation. Each medium has a specific nutritional composition. Therefore, cells cultured in different media may exhibit differences in their metabolism. However, only a few studies have investigated the effects of media on cells. In this study, we compared the effects of Dulbecco's modified Eagle medium (DMEM) and minimum essential medium alpha modification (αMEM) on MCF7 cells. The two media differentially affected the morphology, cell cycle, and proliferation of MCF7 cells, but had no effect on cell death. Replacement of DMEM with αMEM led to a decrease in ATP production and an increase in reactive oxygen species production, but did not affect the cell viability. RNA-sequencing and bioinformatic analyses revealed 721 significantly upregulated and 1247 downregulated genes in cells cultured in αMEM for 48 h compared with that in cells cultured in DMEM. The enriched gene ontology terms were related to mitosis and cell proliferation. Kyoto encyclopedia of genes and genomes analysis revealed cell cycle and DNA replication as the top two significant pathways. MCF7 cells were hypoxic when cultured in αMEM. These results show that the culture medium considerably affects cultured cells. Thus, the stability of the culture system in a study is very important to obtain reliable results.


Asunto(s)
Transcriptoma , Humanos , Células MCF-7 , Células Cultivadas , Proliferación Celular , Supervivencia Celular , Medios de Cultivo/farmacología
9.
Sci Rep ; 14(1): 4775, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413790

RESUMEN

In the quest to unravel the mysteries of neurological diseases, comprehending the underlying mechanisms is supreme. The SH-SY5Y human neuroblastoma cell line serves as a crucial tool in this endeavor; however, the cells are known for its sensitivity and slow proliferation rates. Typically, this cell line is cultured with 10% Fetal Bovine Serum (FBS) supplement. Nu-Serum (NuS), a low-protein alternative to FBS, is promising to advance cell culture practices. Herein, we evaluated the substitution of NuS for FBS to test the hypothesis that an alternative serum supplement can aid and promote SH-SY5Y cell proliferation and differentiation. Our findings revealed that the NuS-supplemented group exhibited a notable increase in adhered cells compared to both the FBS and serum-free (SF) groups. Importantly, cell viability remained high in both sera treated groups, with the NuS-supplemented cells displaying significantly larger cell sizes compared to the SF-treated group. Furthermore, cell proliferation rates were higher in the NuS-treated group, and neuroblast-like morphology was observed earlier than FBS group. Notably, both FBS and NuS supported the differentiation of these cells into mature neurons. Our data supports NuS as an alternative for SH-SY5Y cell culture, with the potential to elevate the quality of research in the neuroscience field.


Asunto(s)
Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Diferenciación Celular , Proliferación Celular , Medios de Cultivo/farmacología
10.
Cells ; 13(2)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38247858

RESUMEN

Among the available therapeutics for the conservative treatment of osteoarthritis (OA), mesenchymal stromal cells (MSCs)-based products appear to be the most promising. Alongside minimally manipulated cell-based orthobiologics, where MSCs are the engine of the bioactive properties, cell expansion under good manufacturing practice (GMP) settings is actively studied to obtain clinical-grade pure populations able to concentrate the biological activity. One of the main characteristics of GMP protocols is the use of clinical-grade reagents, including the recently released serum-free/xeno-free (SFM/XFM) synthetic media, which differ significantly from the traditional reagents like those based on fetal bovine serum (FBS). As SFM/XFM are still poorly characterized, a main lack is the notion of reliable housekeeping genes (HKGs) for molecular studies, either standalone or in combination with standard conditions. Indeed, the aim of this work was to test the stability of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) in adipose-derived MSCs (ASCs) cultivated in two commercially available SFM/XFM and to compare outcomes with those obtained in FBS. Four different applets widely recognized by the scientific community (NormFinder, geNorm, comparative ΔCt method, and BestKeeper) were used and data were merged to obtain a final stability order. The analysis showed that cells cultured in both synthetic media had a similar ranking for HKGs stability (GAPDH being best), albeit divergent from FBS expanded products (EF1A at top). Moreover, it was possible to identify specific HKGs for side by side studies, with EF1A/TBP being the most reliable normalizers for single SFM/XFM vs. FBS cultured cells and TBP the best one for a comprehensive analysis of all samples. In addition, stability of HKGs was donor-dependent. The normalization effect on selected genes coding for factors known to be involved in OA pathology, and whose amount should be carefully considered for the selection of the most appropriate MSC-based treatment, showed how HKGs choice might affect the perceived amount for the different media or donor. Overall, this work confirms the impact of SFM/XFM conditions on HKGs stability performance, which resulted similarly for both synthetic media analyzed in the study.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Humanos , Genes Esenciales , Medio de Cultivo Libre de Suero , Adiposidad , Obesidad , Medios de Cultivo/farmacología , Osteoartritis/genética , Osteoartritis/terapia
11.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255823

RESUMEN

The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Melatonina , Femenino , Humanos , Embarazo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Citocinas , Factor I del Crecimiento Similar a la Insulina , Melatonina/farmacología
12.
J R Soc Interface ; 21(210): 20230603, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38228184

RESUMEN

Methodologies for culturing muscle tissue are currently lacking in terms of quality and quantity of mature cells produced. We analyse images from in vitro experiments to quantify the effects of culture media composition on mouse-derived myoblast behaviour and myotube quality. Metrics of early indicators of cell quality were defined. Images of muscle cell differentiation reveal that altering culture media significantly affects quality indicators and myoblast migratory behaviours. To study the effects of early-stage cell behaviours on mature cell quality, metrics drawn from experimental images or inferred by approximate Bayesian computation (ABC) were applied as inputs to an agent-based model (ABM) of skeletal muscle cell differentiation with quality indicator metrics as outputs. Computational modelling was used to inform further in vitro experiments to predict the optimum media composition for culturing muscle cells. Our results suggest that myonuclei production in myotubes is inversely related to early-stage nuclei fusion index and that myonuclei density and spatial distribution are correlated with residence time of fusing myoblasts, the age at which myotube-myotube fusion ends and the repulsion force between myonuclei. Culture media with 5% serum was found to produce the optimum cell quality and to make muscle cells cultured in a neuron differentiation medium viable.


Asunto(s)
Fibras Musculares Esqueléticas , Mioblastos , Ratones , Animales , Teorema de Bayes , Fibras Musculares Esqueléticas/fisiología , Diferenciación Celular , Medios de Cultivo/farmacología , Músculo Esquelético/fisiología , Células Cultivadas
13.
PLoS One ; 18(12): e0295076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38051739

RESUMEN

Mesenchymal stromal/stem cell derived-extracellular vesicles (MSC-EVs) have gained interest as drug delivery nanoparticles, having immunoregulatory and potentiating tissue repair property. To maintain growth of MSCs and obtain pure MSC-derived EVs, the culture media should contain fetal bovine serum (FBS) devoid of EVs, as the presence of FBS EVs confounds the properties of MSC-EVs. Therefore, we tested three methods: 18h ultracentrifugation (UC) and ultrafiltration (UF), which are common FBS EV depletion methods in current MSC-EV research, and polyethylene glycol (PEG) precipitation to obtain three EV depleted FBS (EVdFBS) batches, and compared them to FBS and commercial (Com) EVdFBS on human adipose stem cell (hADSC) growth, differentiation, enrichment of EVs in hADSC supernatant and their biological function on collagen metabolism. Our comparative study showed UC and UF vary in terms of depletion efficiency and do not completely deplete EVs and affects the growth-promoting quality of FBS. Specifically, FBS EV depletion was comparable between PEG (95.6%) and UF (96.6%) but less by UC (82%), as compared to FBS. FBS protein loss was markedly different among PEG (47%), UF (87%), and UC (51%), implying the ratio of EV depletion over protein loss was PEG (2.03), UF (1.11), and UC (1.61). A significant decrease of TGFß/Smad signaling, involving in MSC growth and physiology, was observed by UF. After 96 hours of exposure to 5% FBS or 5% four different EVdFBS cell growth media, the osteogenesis ability of hADSCs was not impaired but slightly lower mRNA expression level of Col2a observed in EVdFBS media during chondrogenesis. In consistent with low confluency of hADSCs observed by optical microscope, cell proliferation in response to 5% UF EVdFBS media was inhibited significantly. Importantly, more and purer ADSCs EVs were obtained from ADSCs cultured in 5% PEG EVdFBS media, and they retained bioactive as they upregulated the expression of Col1a1, TIMP1 of human knee synovial fibroblast. Taken together, this study showed that PEG precipitation is the most efficient method to obtain EV depleted FBS for growth of MSCs, and to obtain MSC EVs with minimal FBS EV contamination.


Asunto(s)
Vesículas Extracelulares , Albúmina Sérica Bovina , Humanos , Albúmina Sérica Bovina/metabolismo , Vesículas Extracelulares/metabolismo , Diferenciación Celular , Medios de Cultivo/farmacología , Medios de Cultivo/metabolismo , Polietilenglicoles/farmacología , Polietilenglicoles/metabolismo
14.
Stem Cell Res Ther ; 14(1): 363, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087388

RESUMEN

BACKGROUND: Despite a long history of investigation and sustained efforts in clinical testing, the number of market authorisations for mesenchymal stromal cell (MSC) therapies remains limited, with none approved by the United States Food and Drug Administration. Several barriers are impeding the clinical progression of MSC therapies, to the forefront of these is a lack of standardised manufacturing protocols which is further compounded by an absence of biologically meaningful characterisation and release assays. A look at clinical trial registries demonstrates the diversity of MSC expansion protocols with variabilities in cell source, isolation method and expansion medium, among other culture variables, making it extraordinarily difficult to compare study outcomes. Current identification and characterisation standards are insufficient; they are not specific to MSCs and do not indicate cell function or therapeutic action. METHODS: This work analysed the influence of five widely used culture media formulations on the colony-forming potential, proliferation kinetics, trilineage differentiation potential and immunomodulatory potential of human bone marrow-derived MSCs (BM-MSCs). The surface marker expression profiles were also characterised using a high-content flow cytometry screening panel of 243 markers. RESULTS: Significant differences in the biological attributes of BM-MSCs including clonogenicity, proliferation, differentiation propensity and immunomodulatory capacity were revealed in response to the composition of the culture medium. Despite their biological differences, all cell preparations uniformly and strongly expressed the standard positive markers proposed for BM-MSCs: CD73, CD90 and CD105. Immunophenotypic profiling revealed that the culture medium also had a significant influence on the surface proteome, with one-third of tested markers exhibiting variable expression profiles. Principal component analysis demonstrated that BM-MSCs isolated and expanded in a proprietary xeno- and serum-free medium displayed the most consistent cell phenotypes with little variability between donors compared to platelet lysate and foetal bovine serum-containing media. CONCLUSIONS: These data suggest that media composition has a highly significant impact on the biological attributes of MSCs, but standard surface marker tests conceal these differences. The results indicate a need for (1) standardised approaches to manufacturing, with an essential focus on defined media and (2) new biologically relevant tests for MSC characterisation and product release.


Asunto(s)
Células Madre Mesenquimatosas , Humanos , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Citometría de Flujo , Fenotipo , Células de la Médula Ósea , Células Cultivadas , Medios de Cultivo/farmacología , Medios de Cultivo/metabolismo
15.
Sci Rep ; 13(1): 22279, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097757

RESUMEN

This study proposes the use of vinasse, an inexpensive and readily available waste biopolymer, as a fundamental component of a waste culture medium that can enhance the effectiveness and cost-efficiency of the microbial-induced calcite precipitation (MICP) method for sustainable soil improvement. Vinasse enriched with urea, sodium caseinate, or whey protein concentrate is employed to optimize bacterial growth and urease activity of Sporosarcina pasteurii (S. pasteurii) bacterium. The best culture medium is analyzed using Taguchi design of experiments (TDOE) and statistical analysis, considering the concentration of vinasse and urea as effective parameters during growth time. To test the best culture medium for bio-treated soil, direct shear tests were performed on loose and bio-treated sand. The results demonstrate a substantial cost reduction from $0.455 to $0.005 per liter when using the new culture medium (vinasse and urea) compared to the conventional Nutrient Broth (NB) culture medium. Additionally, the new medium enhances soil shear strength, increasing the friction angle by 2.5 degrees and cohesion to 20.7 kPa compared to the conventional medium. Furthermore, the recycling of vinasse as a waste product can promote the progress of a circular economy and reduce environmental pollution. As ground improvement is essential for many construction projects, especially those that require high shear strength or are built on loose soil, this study provides a promising approach to achieving cost-effective and sustainable soil microbial improvement using enriched vinasse.


Asunto(s)
Microbiología del Suelo , Suelo , Carbonato de Calcio/metabolismo , Bacterias/metabolismo , Urea/metabolismo , Medios de Cultivo/farmacología
16.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 24-30, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38158693

RESUMEN

We focus on this study in designing an alternative technique for obtaining mesenchymal stem cells (MSCs) from residual tissue, Hoffa fat, in arthroscopic procedures. Two males and two females were included, and underwent knee arthroscopy; a sample of infrapatellar adipose tissue was obtained with basket forceps. The primary culture was made using the explant method and the culture media: DMEM-high glucose, supplemented with 10% of inactivated human allogeneic serum. All the cellular cultures remained under culture conditions for three weeks, after that by flow cytometry the cells were characterized by MSCs antibody panel: CD105, CD73 and CD90. Subsequently, in the first pass, the MSCs were cultured in commercial human chondrogenic, osteogenic and adipogenic mediums, respectively. After primary culture, we obtained on average 95,600.00 ± 7,233.26 cells/cm2, and the duplication time of MSCs isolate from Hoffa fat pad was established in 39 hours. By flow cytometry, we found that surface markers percentage for expanded MSCs (CD105, CD73, CD90) in primary culture significantly increased and its morphology was fibroblastic-like. After differentiation culture which was made in the first pass, by immunofluorescence, we obtained positive cell markers for three lineages of differentiation, adipocytes: LPL protein, osteocytes: RUNX2, Osteopontin, chondrocytes: SOX9, Aggrecan and COL2A1. We managed to isolate a significant number of MSCs from this source using an easy method to implement and minimal nutrient supplementation, with high potential for differentiation to mature mesenchymal tissues and potential use in basic experimental, preclinical and even clinical research.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Masculino , Femenino , Humanos , Células Cultivadas , Diferenciación Celular , Medios de Cultivo/farmacología , Medios de Cultivo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular
17.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38003612

RESUMEN

Therapies utilizing autologous mesenchymal cell delivery are being investigated as anti-inflammatory and regenerative treatments for a broad spectrum of age-related diseases, as well as various chronic and acute pathological conditions. Easily available allogeneic full-term human placenta mesenchymal stromal cells (pMSCs) were used as a potential pro-regenerative, cell-based therapy in degenerative diseases, which could be applied also to elderly individuals. To explore the potential of allogeneic pMSCs transplantation for pro-regenerative applications, such cells were isolated from five different term-placentas, obtained from the dissected maternal, endometrial (mpMSCs), and fetal chorion tissues (fpMSCs), respectively. The proliferation rate of the cells in the culture, as well as their shape, in vitro differentiation potential, and the expression of mesenchymal lineage and stem cell markers, were investigated. Moreover, we studied the expression of immune checkpoint antigen CD276 as a possible modulation of the rejection of transplanted non-HLA-matched homologous or even xeno-transplanted pMSCs. The expression of the cell surface markers was also explored in parallel in the cryosections of the relevant intact placenta tissue samples. The expansion of pMSCs in a clinical-grade medium complemented with 5% human platelet lysate and 5% human serum induced a significant expression of CD276 when compared to mpMSCs expanded in a commercial medium. We suggest that the expansion of mpMSCs, especially in a medium containing platelet lysate, elevated the expression of the immune-regulatory cell surface marker CD276. This may contribute to the immune tolerance towards allogeneic pMSC transplantations in clinical situations and even in xenogenic animal models of human diseases. The endurance of the injected comparably young human-term pMSCs may promote prolonged effects in clinical applications employing non-HLA-matched allogeneic cell therapy for various degenerative disorders, especially in aged adults.


Asunto(s)
Antígenos B7 , Células Madre Mesenquimatosas , Humanos , Enfermedad Aguda , Antígenos B7/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/metabolismo
18.
Zygote ; 31(6): 582-587, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955189

RESUMEN

Traditionally, in vitro oocyte and embryo culture progresses through a series of varying culture medium. To investigate simplifying the in vitro production of bovine cumulus-oocyte complexes (COCs), this study used synthetic oviductal fluid (SOF) supplemented with conjugated linoleic acid (CLA). Special interest was placed on gene expression linked to lipid metabolism and oocyte maturation. COCs were matured in different media: Medium 199 (M199 group), M199 with 100 µM CLA (M199 + CLA group), SOF (SOF group), and SOF with 100 µM CLA (SOF + CLA group). COCs matured with SOF showed a higher relative abundance of mRNA of quality indicators gremlin 1 (GREM1) and prostaglandin-endoperoxide synthase 2 (PTGS2) in oocytes, and GREM1 in cumulus cells compared with in the M199 group. SOF medium COCs had a higher relative abundance of fatty acid desaturase 2 (FADS2) compared with the M199 group, which is essential for lipid metabolism in oocytes. Furthermore, the abundance of stearoyl-coenzyme A desaturase 1 (SCD1) in oocytes matured with SOF was not influenced by the addition of CLA, whereas the relative abundance of SCD1 was reduced in M199 medium with CLA. We concluded that maturation in SOF medium results in a greater abundance of genes linked to quality and lipidic metabolism in oocytes, regardless of the addition of CLA.


Asunto(s)
Fertilización In Vitro , Metabolismo de los Lípidos , Femenino , Animales , Bovinos , Metabolismo de los Lípidos/genética , Oocitos/metabolismo , Oogénesis , Medios de Cultivo/farmacología , Medios de Cultivo/metabolismo , Expresión Génica , Técnicas de Maduración In Vitro de los Oocitos/métodos
19.
Lasers Med Sci ; 38(1): 274, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993626

RESUMEN

The aim of this study was to investigate whether antimicrobial blue light (aBL) can cause the death of Aggregatibacter actinomycetemcomitans (A.a) and to determine the influence of different culture media, specifically brain heart infusion and blood agar, on bacterial survival fraction. An LED emitting at 403 ± 15 nm, with a radiant power of 1W, irradiance of 588.2 mW/cm2, and an irradiation time of 0 min, 1 min, 5 min, 10 min, 30 min, and 60 min, was used. The plates were incubated in microaerophilic conditions at 37 °C for 48 h, and the colony-forming units were counted. The photosensitizers were investigated using spectroscopy and fluorescence microscopy. There was no significant difference between the culture media (p > 0.05). However, a statistical reduction in both media was observed at 30 min (1058 J/cm2) (p < 0.05). The findings of this study suggest that aBL has the potential to kill bacteria regardless of the culture media used. Light therapy could be a promising and cost-effective strategy for preventing periodontal disease when used in combination with mechanical plaque control.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Fotoquimioterapia/métodos , Aggregatibacter actinomycetemcomitans/efectos de la radiación , Luz , Fármacos Fotosensibilizantes/farmacología , Medios de Cultivo/farmacología
20.
Cells ; 12(16)2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37626914

RESUMEN

The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFß, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Humanos , Medios de Cultivo/farmacología , Suplementos Dietéticos , Ácido Láctico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...