Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Parasitol Res ; 123(4): 190, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647704

RESUMEN

The intracellular protozoan Eimeria tenella is responsible for avian coccidiosis which is characterized by host intestinal damage. During developmental cycle, E. tenella undergoes versatile transitional stages such as oocyst, sporozoites, merozoites, and gametocytes. These developmental transitions involve changes in cell shape and cell size requiring cytoskeletal remodeling and changes in membrane proteins, which may require transcriptional and translational regulations as well as post-translational modification of proteins. Palmitoylation is a post-translational modification (PTM) of protein that orchestrates protein targeting, folding, stability, regulated enzymatic activity and even epigenetic regulation of gene expression. Previous research revealed that protein palmitoylation play essential role in Toxoplasma gondii, Trypanosoma cruzi, Trichomonas vaginalis, and several Plasmodium parasites. Until now, there is little information on the enzymes related to palmitoylation and role of protein acylation or palmitoylation in E. tenella. Therefore, palmitome of the second-generation merozoite of E. tenella was investigated. We identified a total of 2569 palmitoyl-sites that were assigned to 2145 palmitoyl-peptides belonging to 1561 protein-groups that participated in biological processes including parasite morphology, motility and host cell invasion. In addition, RNA biosynthesis, protein biosynthesis, folding, proteasome-ubiquitin degradation, and enzymes involved in PTMs, carbohydrate metabolism, glycan biosynthesis, and mitochondrial respiratory chain as well as vesicle trafficking were identified. The study allowed us to decipher the broad influence of palmitoylation in E. tenella biology, and its potential roles in the pathobiology of E. tenella infection. Raw data are publicly available at iProX with the dataset identifier PXD045061.


Asunto(s)
Eimeria tenella , Lipoilación , Merozoítos , Proteínas Protozoarias , Eimeria tenella/genética , Eimeria tenella/metabolismo , Merozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Animales , Procesamiento Proteico-Postraduccional , Coccidiosis/parasitología , Coccidiosis/veterinaria
2.
Mol Microbiol ; 121(5): 940-953, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38419272

RESUMEN

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Asunto(s)
Hígado , Malaria , Merozoítos , Biogénesis de Organelos , Plasmodium berghei , Esporozoítos , Estearoil-CoA Desaturasa , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Plasmodium berghei/enzimología , Animales , Ratones , Hígado/parasitología , Merozoítos/crecimiento & desarrollo , Merozoítos/metabolismo , Malaria/parasitología , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Esporozoítos/crecimiento & desarrollo , Esporozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Anopheles/parasitología , Femenino , Retículo Endoplásmico/metabolismo
3.
Nat Commun ; 15(1): 793, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278808

RESUMEN

Sexual development in Toxoplasma gondii is a multistep process that culminates in the production of oocysts, constituting approximately 50% of human infections. However, the molecular mechanisms governing sexual commitment in this parasite remain poorly understood. Here, we demonstrate that the transcription factors AP2XI-2 and AP2XII-1 act as negative regulators, suppressing merozoite-primed pre-sexual commitment during asexual development. Depletion of AP2XI-2 in type II Pru strain induces merogony and production of mature merozoites in an alkaline medium but not in a neutral medium. In contrast, AP2XII-1-depleted Pru strain undergoes several rounds of merogony and produces merozoites in a neutral medium, with more pronounced effects observed under alkaline conditions. Additionally, we identified two additional AP2XI-2-interacting proteins involved in repressing merozoite programming. These findings underscore the intricate regulation of pre-sexual commitment by a network of factors and suggest that AP2XI-2 or AP2XII-1-depleted Pru parasites can serve as a model for studying merogony in vitro.


Asunto(s)
Toxoplasma , Animales , Humanos , Toxoplasma/metabolismo , Merozoítos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
Microb Pathog ; 186: 106484, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052278

RESUMEN

Sexual reproduction plays a crucial role in the transmission and life cycle of toxoplasmosis. The merozoites are the only developmental stage capable of differentiation into male and female gametes, thereby initiating sexual reproduction to form oocysts that are excreted into the environment. Hence, our study aimed to perform proteomic analyses of T. gondii Pru strain merozoites, a pre-sexual developmental stage in cat IECs, and tachyzoites, an asexual developmental stage, using the tandem mass tag (TMT) method in order to identify the differentially expressed proteins (DEPs) of merozoites. Proteins functions were subjected to cluster analysis, and DEPs were validated through the qPCR method. The results showed that a total of 106 proteins were identified, out of which 85 proteins had quantitative data. Among these, 15 proteins were differentially expressed within merozoites, with four exhibiting up-regulation and being closely associated with the material and energy metabolism as well as the cell division of T. gondii. Two novel DEPs, namely S8GHL5 and A0A125YP41, were identified, and their homologous family members have been demonstrated to play regulatory roles in oocyte maturation and spermatogenesis in other species. Therefore, they may potentially exhibit regulatory functions during the differentiation of micro- and macro-gametophytes at the initiation stage of sexual reproduction in T. gondii. In conclusion, our results showed that the metabolic and divisional activities in the merozoites surpass those in the tachyzoites, thereby providing structural, material, and energetic support for gametophytes development. The discovery of two novel DEPs associated with sexual reproduction represents a significant advancement in understanding Toxoplasma sexual reproduction initiation and oocyst formation.


Asunto(s)
Parásitos , Toxoplasma , Animales , Masculino , Femenino , Toxoplasma/genética , Toxoplasma/química , Merozoítos/química , Merozoítos/metabolismo , Proteómica/métodos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Oocistos , Reproducción , Factores de Transcripción/metabolismo
5.
Nature ; 625(7995): 578-584, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123677

RESUMEN

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Asunto(s)
Eritrocitos , Malaria Falciparum , Complejos Multiproteicos , Parásitos , Plasmodium falciparum , Proteínas Protozoarias , Animales , Humanos , Anticuerpos Neutralizantes/inmunología , Antígenos de Protozoos/química , Antígenos de Protozoos/inmunología , Microscopía por Crioelectrón , Disulfuros/química , Disulfuros/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Merozoítos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/inmunología , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Parásitos/metabolismo , Parásitos/patogenicidad , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura
6.
Parasit Vectors ; 16(1): 277, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563696

RESUMEN

BACKGROUND: Malaria caused by Plasmodium species is a prominent public health concern worldwide, and the infection of a malarial parasite is transmitted to humans through the saliva of female Anopheles mosquitoes. Plasmodium invasion is a rapid and complex process. A critical step in the blood-stage infection of malarial parasites is the adhesion of merozoites to red blood cells (RBCs), which involves interactions between parasite ligands and receptors. The present study aimed to investigate a previously uncharacterized protein, PbMAP1 (encoded by PBANKA_1425900), which facilitates Plasmodium berghei ANKA (PbANKA) merozoite attachment and invasion via the heparan sulfate receptor. METHODS: PbMAP1 protein expression was investigated at the asexual blood stage, and its specific binding activity to both heparan sulfate and RBCs was analyzed using western blotting, immunofluorescence, and flow cytometry. Furthermore, a PbMAP1-knockout parasitic strain was established using the double-crossover method to investigate its pathogenicity in mice. RESULTS: The PbMAP1 protein, primarily localized to the P. berghei membrane at the merozoite stage, is involved in binding to heparan sulfate-like receptor on RBC surface of during merozoite invasion. Furthermore, mice immunized with the PbMAP1 protein or passively immunized with sera from PbMAP1-immunized mice exhibited increased immunity against lethal challenge. The PbMAP1-knockout parasite exhibited reduced pathogenicity. CONCLUSIONS: PbMAP1 is involved in the binding of P. berghei to heparan sulfate-like receptors on RBC surface during merozoite invasion.


Asunto(s)
Merozoítos , Plasmodium berghei , Humanos , Femenino , Animales , Ratones , Plasmodium berghei/genética , Merozoítos/metabolismo , Proteínas Protozoarias , Eritrocitos/parasitología , Proteínas Portadoras/metabolismo , Plasmodium falciparum
7.
Nat Commun ; 14(1): 4619, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528099

RESUMEN

Invasion of red blood cells (RBCs) by Plasmodium merozoites is critical to their continued survival within the host. Two major protein families, the Duffy binding-like proteins (DBPs/EBAs) and the reticulocyte binding like proteins (RBLs/RHs) have been studied extensively in P. falciparum and are hypothesized to have overlapping, but critical roles just prior to host cell entry. The zoonotic malaria parasite, P. knowlesi, has larger invasive merozoites and contains a smaller, less redundant, DBP and RBL repertoire than P. falciparum. One DBP (DBPα) and one RBL, normocyte binding protein Xa (NBPXa) are essential for invasion of human RBCs. Taking advantage of the unique biological features of P. knowlesi and iterative CRISPR-Cas9 genome editing, we determine the precise order of key invasion milestones and demonstrate distinct roles for each family. These distinct roles support a mechanism for phased commitment to invasion and can be targeted synergistically with invasion inhibitory antibodies.


Asunto(s)
Malaria , Parásitos , Plasmodium knowlesi , Animales , Humanos , Proteínas Portadoras/metabolismo , Parásitos/metabolismo , Malaria/parasitología , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Proteínas Protozoarias/metabolismo , Eritrocitos/parasitología , Merozoítos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
8.
Epigenetics Chromatin ; 16(1): 25, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322481

RESUMEN

Gene expression in malaria parasites is subject to various layers of regulation, including histone post-translational modifications (PTMs). Gene regulatory mechanisms have been extensively studied during the main developmental stages of Plasmodium parasites inside erythrocytes, from the ring stage following invasion to the schizont stage leading up to egress. However, gene regulation in merozoites that mediate the transition from one host cell to the next is an understudied area of parasite biology. Here, we sought to characterize gene expression and the corresponding histone PTM landscape during this stage of the parasite lifecycle through RNA-seq and ChIP-seq on P. falciparum blood stage schizonts, merozoites, and rings, as well as P. berghei liver stage merozoites. In both hepatic and erythrocytic merozoites, we identified a subset of genes with a unique histone PTM profile characterized by a region of H3K4me3 depletion in their promoter. These genes were upregulated in hepatic and erythrocytic merozoites and rings, had roles in protein export, translation, and host cell remodeling, and shared a DNA motif. These results indicate that similar regulatory mechanisms may underlie merozoite formation in the liver and blood stages. We also observed that H3K4me2 was deposited in gene bodies of gene families encoding variant surface antigens in erythrocytic merozoites, which may facilitate switching of gene expression between different members of these families. Finally, H3K18me and H2K27me were uncoupled from gene expression and were enriched around the centromeres in erythrocytic schizonts and merozoites, suggesting potential roles in the maintenance of chromosomal organization during schizogony. Together, our results demonstrate that extensive changes in gene expression and histone landscape occur during the schizont-to-ring transition to facilitate productive erythrocyte infection. The dynamic remodeling of the transcriptional program in hepatic and erythrocytic merozoites makes this stage attractive as a target for novel anti-malarial drugs that may have activity against both the liver and blood stages.


Asunto(s)
Parásitos , Plasmodium , Animales , Merozoítos/genética , Merozoítos/metabolismo , Parásitos/genética , Parásitos/metabolismo , Histonas/metabolismo , Código de Histonas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Hígado/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Esquizontes/metabolismo , Procesamiento Proteico-Postraduccional , Expresión Génica
9.
Microbiol Spectr ; 11(3): e0143423, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37249423

RESUMEN

Cyclic invasion of red blood cells (RBCs) by Plasmodium merozoites is associated with the symptoms and pathology of malaria. Merozoite invasion is powered actively and rapidly by a parasite actomyosin motor called the glideosome. The ability of the glideosome to generate force to support merozoite entry into the host RBCs is thought to rely on its stable anchoring within the inner membrane complex (IMC) through membrane-resident proteins, such as GAP50 and GAP40. Using a conditional knockdown (KD) approach, we determined that PfGAP40 was required for asexual blood-stage replication. PfGAP40 is not needed for merozoite egress from host RBCs or for the attachment of merozoites to new RBCs. PfGAP40 coprecipitates with PfGAP45 and PfGAP50. During merozoite invasion, PfGAP40 is associated strongly with stabilizing the expression levels of PfGAP45 and PfGAP50 in the schizont stage. Although PfGAP40 KD did not influence IMC integrity, it impaired the maturation of gametocytes. In addition, PfGAP40 is phosphorylated, and mutations that block phosphorylation of PfGAP40 at the C-terminal serine residues S370, S372, S376, S405, S409, S420, and S445 reduced merozoite invasion efficiency. Overall, our findings implicate PfGAP40 as an important regulator for the gliding activity of merozoites and suggest that phosphorylation is required for PfGAP40 function. IMPORTANCE Red blood cell invasion is central to the pathogenesis of the malaria parasite, and the parasite proteins involved in this process are potential therapeutic targets. Gliding motility powers merozoite invasion and is driven by a unique molecular motor termed the glideosome. The glideosome is stably anchored to the parasite inner membrane complex (IMC) through membrane-resident proteins. In the present study, we demonstrate the importance of an IMC-resident glideosome component, PfGAP40, that plays a critical role in stabilizing the expression levels of glideosome components in the schizont stage. We determined that phosphorylation of PfGAP40 at C-terminal residues is required for efficient merozoite invasion.


Asunto(s)
Malaria , Plasmodium falciparum , Animales , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Merozoítos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de la Membrana/metabolismo , Malaria/parasitología
10.
Nat Commun ; 14(1): 2219, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37072430

RESUMEN

Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Animales , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos , Cisteína/metabolismo , Malaria Falciparum/parasitología , Eritrocitos/parasitología , Merozoítos/metabolismo
11.
Int J Med Microbiol ; 313(3): 151579, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030083

RESUMEN

Plasmodium falciparum-related malaria represents a serious worldwide public health problem due to its high mortality rates. P. falciparum expresses rhoptry neck protein 4 (PfRON4) in merozoite and sporozoite rhoptries, it participates in tight junction-TJ formation via the AMA-1/RON complex and is refractory to complete genetic deletion. Despite this, which PfRON4 key regions interact with host cells remain unknown; such information would be useful for combating falciparum malaria. Thirty-two RON4 conserved region-derived peptides were chemically synthesised for determining and characterising PfRON4 regions having high host cell binding affinity (high activity binding peptides or HABPs). Receptor-ligand interaction/binding assays determined their specific binding capability, the nature of their receptors and their ability to inhibit in vitro parasite invasion. Peptides 42477, 42479, 42480, 42505 and 42513 had greater than 2% erythrocyte binding activity, whilst peptides 42477 and 42480 specifically bound to HepG2 membrane, both of them having micromolar and submicromolar range dissociation constants (Kd). Cell-peptide interaction was sensitive to treating erythrocytes with trypsin and/or chymotrypsin and HepG2 with heparinase I and chondroitinase ABC, suggesting protein-type (erythrocyte) and heparin and/or chondroitin sulphate proteoglycan receptors (HepG2) for PfRON4. Erythrocyte invasion inhibition assays confirmed HABPs' importance during merozoite invasion. PfRON4 800-819 (42477) and 860-879 (42480) regions specifically interacted with host cells, thereby supporting their inclusion in a subunit-based, multi-antigen, multistage anti-malarial vaccine.


Asunto(s)
Malaria , Plasmodium falciparum , Animales , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Portadoras/metabolismo , Péptidos , Eritrocitos/parasitología , Unión Proteica , Merozoítos/metabolismo , Hepatocitos/metabolismo , Antígenos de Protozoos
12.
Int J Parasitol ; 53(1): 27-41, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400305

RESUMEN

Plasmodium falciparum exerts strong temporal control of gene expression across its lifecycle. Proteins expressed exclusively during late schizogony of blood stages, for example, often have a role in facilitating merozoite invasion of the host red blood cell (RBC), through merozoite development, egress, invasion or early establishment of infection in the RBC. Here, we characterise P. falciparum C3H1 zinc finger 1 (PfCZIF1, Pf3D7_1468400) and P. falciparum C3H1 zinc finger 2 (PfCZIF2, Pf3D7_0818100) which we identified as the only C3H1-type zinc finger proteins with peak expression at schizogony. Previous studies reported that antibodies against PfCZIF1 inhibit merozoite invasion, suggesting this protein may have a potential role during RBC invasion. We show using C-terminal truncations and gene knockouts of each of Pfczif1 and Pfczif2 that neither are essential for blood stage growth. However, they could not both be knocked out simultaneously, suggesting that at least one is needed for parasite growth in vitro. Immunofluorescence localisation of PfCZIF1 and PfCZIF2 indicated that both proteins occur in discrete foci on the periphery of the parasite's cytosol and biochemical assays suggest they are peripherally associated to a membrane. Transcriptomic analyses for the C-terminal truncation mutants reveal no significant expression perturbations with PfCZIF1 truncation. However, modification of PfCZIF2 appears to modify the expression for some exported proteins including PfKAHRP. This study does not support a role for PfCZIF1 or PfCZIF2 in merozoite invasion of the RBC and suggests that these proteins may help regulate the expression of proteins exported into the RBC cytosol after merozoite invasion.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Humanos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Merozoítos/metabolismo , Proteínas de la Membrana/genética , Eritrocitos/parasitología
13.
Parasitol Res ; 122(1): 195-200, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36378331

RESUMEN

Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the invasion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 haplotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.


Asunto(s)
Malaria , Plasmodium knowlesi , Humanos , Variación Genética , Malaria/parasitología , Malasia , Merozoítos/metabolismo , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
14.
J Microbiol Immunol Infect ; 56(1): 139-149, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35995671

RESUMEN

BACKGROUND: Invasion of red blood cells by Plasmodium falciparum merozoites is governed by multiple receptor-ligand interactions which are critical for bridging the two cells together. The critical function of these ligands for invasion and their direct exposure to the host immune system makes them lucrative vaccine candidates. This necessitates the discovery of new adhesins with less redundancy that mediates the binding of merozoite to the red cell, and furthermore invasion into it. Here we have identified a novel membrane associated antigen (PfC2DMA) that is conserved throughout the Plasmodium species and has a membrane targeting C2 domain at its extreme N-terminal region. METHODS: Recombinant C2dom was expressed heterologously in bacteria and purified to homogeneity. Mice antisera against C2dom was raised and used to check the expression and intraparasitic localization of the protein. RBC and Ca2+ ion binding activity of C2dom was also checked. RESULTS: C2dom exhibited specific binding to Ca2+ ions and not to Mg2+ ions. PfC2DMA localized to the surface of merozoite and recombinant C2dom bound to the surface of human RBCs. RBC receptor modification by treatment with different enzymes showed that binding of C2dom to RBC surface is neuraminidase sensitive. Mice antisera raised against C2dom of Pf C2DMA showed invasion inhibitory effects. CONCLUSION: Our findings suggest that C2dom of PfC2DMA binds to surface of red cell in a Ca2+-dependent manner, advocating a plausible role in invasion and can serve as a potential novel blood stage vaccine candidate.


Asunto(s)
Merozoítos , Plasmodium falciparum , Humanos , Animales , Ratones , Merozoítos/metabolismo , Calcio/metabolismo , Calcio/farmacología , Proteínas Protozoarias/genética , Dominios C2 , Proteínas de la Membrana/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Unión Proteica
15.
Genes (Basel) ; 13(11)2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36360181

RESUMEN

The simian malaria parasite Plasmodium knowlesi causes a high number of zoonotic infections in Malaysia. The thrombospondin-related apical merozoite protein (TRAMP) is an essential ligand for binding to the erythrocyte cell surface, whereby it facilitates the invasion. This study is the first attempt to determine the genetic diversity, phylogeography, natural selection and population structure from 97 full-length PkTRAMP gene sequences originating from Malaysia. We found low levels of nucleotide diversity (π~0.0065) for the full-length gene despite samples originating from geographically separated regions (i.e., Peninsular Malaysia and Malaysian Borneo). The rate of synonymous substitutions was significantly higher than that of non-synonymous substitutions, indicating a purifying selection for the full-length gene within the clinical samples. The population genetic analysis revealed that the parasite population is undergoing a significant population expansion. The analysis of the amino acid sequence alignment of 97 PkTRAMP sequences identified 15 haplotypes, of which a major shared haplotype was noted Hap 1 (n = 68, Sarawak; n = 34, Sabah; n = 12, Peninsular Malaysia; n = 22). The phylogenetic analysis using DNA sequences identified two clusters that separated due to geographical distance and three mixed clusters with samples from both Peninsular Malaysia and Malaysian Borneo. Population structure analyses indicated two distinct sub-populations (K = 2). Our findings point to the potential for independent parasite evolution, which could make zoonotic malaria control and elimination even more challenging.


Asunto(s)
Malaria , Plasmodium knowlesi , Animales , Humanos , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Merozoítos/metabolismo , Filogenia , Trombospondinas/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Variación Genética/genética , Análisis de Secuencia de ADN , Malaria/parasitología , Genética de Población
16.
Int J Parasitol ; 52(13-14): 829-841, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36270547

RESUMEN

Parasites of the order Coccidia (phylum: Alveolata, subphylum: Apicomplexa) have sophisticated life cycles that include a switch from asexual to sexual development, characterised by distinct cell types. During the development of gametes (gamogony), substantial changes occur at the cellular and subcellular levels, leading to cell fusion of micro- and microgametes, and the development of a zygote that forms a protective outer layer for environmental survival as an oocyst, the transmissible stage. Studies on the porcine coccidian Cystoisospora suis already identified changes in transcription profiles during different time points in the parasite's development and identified proteins with potential roles in the sexual development of this parasite. Here, we focus on three proteins that are possibly involved in the sexual development of C. suis. Enkurin and hapless protein 2 (HAP2) play important roles in signal transduction and gamete fusion during the fertilisation process, and oocyst wall forming protein 1 (OWP1) is a homologue of oocyst wall forming proteins of related parasites. We evaluated their locations in the different life cycle stages of C. suis and their inhibition by specific antibodies in vitro. Immunolocalization detected enkurin in merozoites and sporulated oocysts, HAP2 in merozoites and microgamonts, and OWP2 in merozoites, macrogamonts, oocysts and sporozoites. Up to 100% inhibition of the development of sexual stages and oocyst formation with purified chicken immunoglobulin IgY sera against recombinant enkurin, HAP2, and especially OWP1, were demonstrated. We conclude that the three investigated sexual stage-specific proteins constitute targets for in vivo intervention strategies to interrupt parasite development and transmission to susceptible hosts.


Asunto(s)
Coccidios , Sarcocystidae , Porcinos , Animales , Coccidios/fisiología , Oocistos , Sarcocystidae/genética , Merozoítos/metabolismo , Estadios del Ciclo de Vida
17.
ACS Infect Dis ; 8(10): 2106-2118, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044540

RESUMEN

Phosphorylation and other post-translational modifications of red blood cell (RBC) proteins govern membrane function and have a role in the invasion of RBCs by the malaria parasite, Plasmodium falciparum. Furthermore, a percentage of RBC proteins are palmitoylated, although the functional consequences are unknown. We establish dynamic palmitoylation of 118 RBC membrane proteins using click chemistry and acyl biotin exchange (ABE)-coupled LC-MS/MS and characterize their involvement in controlling membrane organization and parasite invasion. RBCs were treated with a generic palmitoylation inhibitor, 2-bromopalmitate (2-BMP), and then analyzed using ABE-coupled LC-MS/MS. Only 42 of the 118 palmitoylated proteins detected were palmitoylated in the 2-BMP-treated sample, indicating that palmitoylation is dynamically regulated. Interestingly, membrane receptors such as semaphorin 7A, CR1, and ABCB6, which are known to be involved in merozoite interaction with RBCs and parasite invasion, were found to be dynamically palmitoylated, including the blood group antigen, Kell, whose antigenic abundance was significantly reduced following 2-BMP treatment. To investigate the involvement of Kell in merozoite invasion of RBCs, a specific antibody to its extracellular domain was used. The antibody targeting Kell inhibited merozoite invasion of RBCs by 50%, implying a role of Kell, a dynamically palmitoylated potent host-derived receptor, in parasite invasion. Furthermore, a significant reduction in merozoite contact with the RBC membrane and a consequent decrease in parasite invasion following 2-BMP treatment demonstrated that palmitoylation does indeed regulate RBC susceptibility to parasite invasion. Taken together, our findings revealed the dynamic palmitoylome of RBC membrane proteins and its role in P. falciparum invasion.


Asunto(s)
Antígenos de Grupos Sanguíneos , Malaria Falciparum , Parásitos , Semaforinas , Animales , Biotina/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Cromatografía Liquida , Lipoilación , Proteínas de la Membrana/metabolismo , Merozoítos/metabolismo , Parásitos/metabolismo , Plasmodium falciparum/metabolismo , Semaforinas/metabolismo , Espectrometría de Masas en Tándem
18.
Methods Mol Biol ; 2470: 101-120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881342

RESUMEN

Synchronisation of Plasmodium cultures is essential to investigate the complexities of time-dependent events associated with the asexual blood stage of the malaria parasite life cycle. Here we describe a procedure using ML10, a highly specific inhibitor of the parasite cyclic GMP-dependent protein kinase (PKG), to attain high synchronicity of Plasmodium falciparum and P. knowlesi asexual blood-stage cultures and to obtain high levels of arrested mature schizonts as well as viable released merozoites. Additionally, we describe how to use ML10 to improve the transfection efficiency of P. falciparum parasites and also how to derive the half maximal effective concentration (EC50) of ML10 in other P. falciparum laboratory lines and clinical isolates.


Asunto(s)
Malaria Falciparum , Parásitos , Plasmodium , Animales , Eritrocitos/metabolismo , Humanos , Malaria Falciparum/parasitología , Merozoítos/metabolismo , Parásitos/metabolismo , Plasmodium falciparum , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Protozoarias/metabolismo
19.
Sci Rep ; 12(1): 12710, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882887

RESUMEN

A fungal metabolite, FR235222, specifically inhibits a histone deacetylase of the apicomplexan parasite Toxoplasma gondii and TgHDAC3 has emerged as a key factor regulating developmental stage transition in this species. Here, we exploited FR235222 to ask if changes in histone acetylation regulate developmental stage transition of Theileria annulata, another apicomplexan species. We found that FR235222 treatment of T. annulata-infected transformed leukocytes induced a proliferation arrest. The blockade in proliferation was due to drug-induced conversion of intracellular schizonts to merozoites that lack the ability to maintain host leukocyte cell division. Induction of merogony by FR235222 leads to an increase in expression of merozoite-marker (rhoptry) proteins. RNA-seq of FR235222-treated T. annulata-infected B cells identified deregulated expression of 468 parasite genes including a number encoding parasite ApiAP2 transcription factors. Thus, similar to T. gondii, FR235222 inhibits T. annulata HDAC (TaHDAC1) activity and places parasite histone acetylation as a major regulatory event of the transition from schizonts to merozoites.


Asunto(s)
Theileria annulata , Theileria , Animales , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Merozoítos/metabolismo , Esquizontes/metabolismo , Theileria/metabolismo
20.
PLoS Pathog ; 18(6): e1010643, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35731833

RESUMEN

Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies.


Asunto(s)
Anopheles , Plasmodium , Animales , Femenino , Anopheles/parasitología , Mamíferos , Merozoítos/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...