Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.006
Filtrar
1.
Curr Top Dev Biol ; 159: 232-271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729677

RESUMEN

The anterior-to-posterior (head-to-tail) body axis is extraordinarily diverse among vertebrates but conserved within species. Body axis development requires a population of axial progenitors that resides at the posterior of the embryo to sustain elongation and is then eliminated once axis extension is complete. These progenitors occupy distinct domains in the posterior (tail-end) of the embryo and contribute to various lineages along the body axis. The subset of axial progenitors with neuromesodermal competency will generate both the neural tube (the precursor of the spinal cord), and the trunk and tail somites (producing the musculoskeleton) during embryo development. These axial progenitors are called Neuromesodermal Competent cells (NMCs) and Neuromesodermal Progenitors (NMPs). NMCs/NMPs have recently attracted interest beyond the field of developmental biology due to their clinical potential. In the mouse, the maintenance of neuromesodermal competency relies on a fine balance between a trio of known signals: Wnt/ß-catenin, FGF signalling activity and suppression of retinoic acid signalling. These signals regulate the relative expression levels of the mesodermal transcription factor Brachyury and the neural transcription factor Sox2, permitting the maintenance of progenitor identity when co-expressed, and either mesoderm or neural lineage commitment when the balance is tilted towards either Brachyury or Sox2, respectively. Despite important advances in understanding key genes and cellular behaviours involved in these fate decisions, how the balance between mesodermal and neural fates is achieved remains largely unknown. In this chapter, we provide an overview of signalling and gene regulatory networks in NMCs/NMPs. We discuss mutant phenotypes associated with axial defects, hinting at the potential significant role of lesser studied proteins in the maintenance and differentiation of the progenitors that fuel axial elongation.


Asunto(s)
Tipificación del Cuerpo , Mesodermo , Animales , Tipificación del Cuerpo/genética , Mesodermo/metabolismo , Mesodermo/citología , Mesodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Diferenciación Celular , Cabeza/embriología
2.
Curr Top Dev Biol ; 159: 372-405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729682

RESUMEN

The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Mesodermo , Somitos , Animales , Tipificación del Cuerpo/genética , Somitos/embriología , Somitos/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Mesodermo/citología , Pez Cebra/embriología , Pez Cebra/genética , Transducción de Señal , Relojes Biológicos/genética
3.
Int J Oral Sci ; 16(1): 33, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654018

RESUMEN

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.


Asunto(s)
Regeneración Ósea , Andamios del Tejido , Transcriptoma , Animales , Regeneración Ósea/fisiología , Poliésteres , Cráneo/cirugía , Células Madre Mesenquimatosas , Mesodermo/citología , Diferenciación Celular , Ingeniería de Tejidos/métodos , Suturas Craneales , Materiales Biocompatibles
4.
FASEB J ; 38(9): e23632, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686936

RESUMEN

The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.


Asunto(s)
Conductos Paramesonéfricos , Oviductos , Análisis de la Célula Individual , Transcriptoma , Útero , Animales , Femenino , Ratones , Útero/metabolismo , Útero/citología , Conductos Paramesonéfricos/metabolismo , Oviductos/metabolismo , Oviductos/citología , Perfilación de la Expresión Génica , Animales Recién Nacidos , Diferenciación Celular , Mesodermo/metabolismo , Mesodermo/citología , Células Epiteliales/metabolismo , Ratones Endogámicos C57BL , Regulación del Desarrollo de la Expresión Génica
5.
Stem Cell Reports ; 19(5): 618-628, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38579708

RESUMEN

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.


Asunto(s)
Elementos de Facilitación Genéticos , Mesodermo , Células-Madre Neurales , Factores de Transcripción SOXB1 , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Animales , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mesodermo/citología , Mesodermo/metabolismo , Neurogénesis , Regulación del Desarrollo de la Expresión Génica , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Diferenciación Celular/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Linaje de la Célula/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Cromatina/metabolismo , Unión Proteica
6.
PLoS Biol ; 22(4): e3002590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683849

RESUMEN

Brain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.1 develop into brain pericytes. We identify the gene signature of these precursors and show that an nkx3.1-, foxf2a-, and cxcl12b-expressing pericyte precursor population is present around the basilar artery prior to artery formation and pericyte recruitment. The precursors later spread throughout the brain and differentiate to express canonical pericyte markers. Cxcl12b-Cxcr4 signaling is required for pericyte attachment and differentiation. Further, both nkx3.1 and cxcl12b are necessary and sufficient in regulating pericyte number as loss inhibits and gain increases pericyte number. Through genetic experiments, we have defined a precursor population for brain pericytes and identified genes critical for their differentiation.


Asunto(s)
Encéfalo , Diferenciación Celular , Pericitos , Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra , Pericitos/metabolismo , Pericitos/citología , Animales , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Encéfalo/metabolismo , Encéfalo/embriología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diferenciación Celular/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/metabolismo , Cresta Neural/citología , Mesodermo/metabolismo , Mesodermo/citología , Transducción de Señal , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética
7.
PLoS Biol ; 22(4): e3002611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683880

RESUMEN

As tissues grow and change shape during animal development, they physically pull and push on each other, and these mechanical interactions can be important for morphogenesis. During Drosophila gastrulation, mesoderm invagination temporally overlaps with the convergence and extension of the ectodermal germband; the latter is caused primarily by Myosin II-driven polarised cell intercalation. Here, we investigate the impact of mesoderm invagination on ectoderm extension, examining possible mechanical and mechanotransductive effects on Myosin II recruitment and polarised cell intercalation. We find that the germband ectoderm is deformed by the mesoderm pulling in the orthogonal direction to germband extension (GBE), showing mechanical coupling between these tissues. However, we do not find a significant change in Myosin II planar polarisation in response to mesoderm invagination, nor in the rate of junction shrinkage leading to neighbour exchange events. We conclude that the main cellular mechanism of axis extension, polarised cell intercalation, is robust to the mesoderm invagination pull. We find, however, that mesoderm invagination slows down the rate of anterior-posterior cell elongation that contributes to axis extension, counteracting the tension from the endoderm invagination, which pulls along the direction of GBE.


Asunto(s)
Drosophila melanogaster , Ectodermo , Gastrulación , Mesodermo , Miosina Tipo II , Animales , Mesodermo/embriología , Mesodermo/citología , Gastrulación/fisiología , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Miosina Tipo II/metabolismo , Drosophila melanogaster/embriología , Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero , Morfogénesis , Tipificación del Cuerpo/fisiología , Drosophila/embriología
8.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646822

RESUMEN

The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.


Asunto(s)
División Celular , Movimiento Celular , Proteínas de Drosophila , Regulación del Desarrollo de la Expresión Génica , Animales , Movimiento Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , División Celular/genética , Mesodermo/metabolismo , Mesodermo/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Embrión no Mamífero/metabolismo , Embrión no Mamífero/citología , Drosophila/genética , Drosophila/metabolismo , Drosophila/embriología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
9.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451105

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/citología , Humanos , Células Madre Embrionarias/citología , Células Madre Mesenquimatosas , Mesodermo/citología , Células Cultivadas
10.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355799

RESUMEN

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Asunto(s)
Animales Recién Nacidos , Embrión de Mamíferos , Desarrollo Embrionario , Gástrula , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Animales , Femenino , Ratones , Embarazo , Animales Recién Nacidos/embriología , Animales Recién Nacidos/genética , Diferenciación Celular/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/embriología , Gastrulación/genética , Riñón/citología , Riñón/embriología , Mesodermo/citología , Mesodermo/enzimología , Neuronas/citología , Neuronas/metabolismo , Retina/citología , Retina/embriología , Somitos/citología , Somitos/embriología , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , Especificidad de Órganos/genética
11.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38421638

RESUMEN

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Asunto(s)
Diferenciación Celular , Mesodermo , Transducción de Señal , Proteína Smad4 , Humanos , Mesodermo/metabolismo , Mesodermo/citología , Diferenciación Celular/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Cromatina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Endodermo/citología , Endodermo/metabolismo , Línea Celular , Histonas/metabolismo
12.
Nature ; 626(7998): 367-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092041

RESUMEN

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Hematopoyesis , Saco Vitelino , Humanos , Implantación del Embrión , Endodermo/citología , Endodermo/embriología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Saco Vitelino/citología , Saco Vitelino/embriología , Mesodermo/citología , Mesodermo/embriología , Células Madre Pluripotentes Inducidas/citología , Amnios/citología , Amnios/embriología , Cuerpos Embrioides/citología , Linaje de la Célula , Biología Evolutiva/métodos , Biología Evolutiva/tendencias
13.
J Biol Chem ; 299(2): 102804, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529290

RESUMEN

Fibroblast growth factor (FGF) is a multifunctional protein that exhibits a wide range of biological effects. Most commonly, it acts as a mitogen, but it also has regulatory, morphological, and endocrine effects. The four receptor subtypes of FGF are activated by more than 20 different FGF ligands. FGF2, one of the FGF ligands, is an essential factor for cell culture in stem cells for regenerative medicine; however, recombinant FGF2 is extremely unstable. Here, we successfully generated homobivalent agonistic single-domain antibodies (variable domain of heavy chain of heavy chain antibodies referred to as VHHs) that bind to domain III and induce activation of the FGF receptor 1 and thus transduce intracellular signaling. This agonistic VHH has similar biological activity (EC50) as the natural FGF2 ligand. Furthermore, we determined that the agonistic VHH could support the proliferation of human-induced pluripotent stem cells (PSCs) and human mesenchymal stem cells, which are PSCs for regenerative medicine. In addition, the agonistic VHH could maintain the ability of mesenchymal stem cells to differentiate into adipocytes or osteocytes, indicating that it could maintain the properties of PSCs. These results suggest that the VHH agonist may function as an FGF2 mimetic in cell preparation of stem cells for regenerative medicine with better cost effectiveness.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Dominios Proteicos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Anticuerpos de Dominio Único , Humanos , Adipocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ligandos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Osteocitos/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/agonistas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Medicina Regenerativa , Transducción de Señal/efectos de los fármacos , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/farmacología
14.
Biochimie ; 207: 33-48, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36427681

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are multipotent somatic cells that have been widely explored in the field of regenerative medicine. MSCs possess the ability to secrete soluble factors as well as lipid bound extracellular vesicles (EVs). MSCs have gained increased interest and attention as a result of their therapeutic properties, which are thought to be attributed to their secretome. However, while the use of MSCs as whole cells pose heterogeneity concerns and survival issues post-transplantation, such limitations are absent in cell-free EV-based treatments. EVs derived from MSCs are promising therapeutic agents for a range of clinical conditions and disorders owing to their immunomodulatory, pro-regenerative, anti-inflammatory, and antifibrotic activity. Recent successes with preclinical studies using EVs for repair and regeneration of damaged tissues such as cardiac tissue, lung, liver, pancreas, bone, skin, cornea, and blood diseases are discussed in this review. We also discuss delivery strategies of EVs using biomaterials as delivery vehicles through systemic or local administration. Despite its effectiveness in preclinical investigations, the application of MSC-EV in clinical settings will necessitate careful consideration surrounding issues such as: i) scalability and isolation, ii) biodistribution, iii) targeting specific tissues, iv) quantification and characterization, and v) safety and efficacy of dosage. The future of EVs in regenerative medicine is promising yet still needs further investigation on enhancing the efficacy, scalability, and potency for clinical applications.


Asunto(s)
Vesículas Extracelulares , Mesodermo , Regeneración , Medicina Regenerativa , Células Madre , Vesículas Extracelulares/clasificación , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Medicina Regenerativa/métodos , Medicina Regenerativa/normas , Medicina Regenerativa/tendencias , Mesodermo/citología , Células Madre/citología , Humanos , Animales , Biotecnología/métodos , Biotecnología/normas , Biotecnología/tendencias
15.
Nature ; 612(7941): 732-738, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517595

RESUMEN

Our understanding of human early development is severely hampered by limited access to embryonic tissues. Due to their close evolutionary relationship with humans, nonhuman primates are often used as surrogates to understand human development but currently suffer from a lack of in vivo datasets, especially from gastrulation to early organogenesis during which the major embryonic cell types are dynamically specified. To fill this gap, we collected six Carnegie stage 8-11 cynomolgus monkey (Macaca fascicularis) embryos and performed in-depth transcriptomic analyses of 56,636 single cells. Our analyses show transcriptomic features of major perigastrulation cell types, which help shed light on morphogenetic events including primitive streak development, somitogenesis, gut tube formation, neural tube patterning and neural crest differentiation in primates. In addition, comparative analyses with mouse embryos and human embryoids uncovered conserved and divergent features of perigastrulation development across species-for example, species-specific dependency on Hippo signalling during presomitic mesoderm differentiation-and provide an initial assessment of relevant stem cell models of human early organogenesis. This comprehensive single-cell transcriptome atlas not only fills the knowledge gap in the nonhuman primate research field but also serves as an invaluable resource for understanding human embryogenesis and developmental disorders.


Asunto(s)
Gastrulación , Macaca fascicularis , Organogénesis , Análisis de la Célula Individual , Animales , Humanos , Ratones , Gastrulación/genética , Macaca fascicularis/embriología , Macaca fascicularis/genética , Organogénesis/genética , Cuerpos Embrioides , Perfilación de la Expresión Génica , Línea Primitiva/citología , Línea Primitiva/embriología , Tubo Neural/citología , Tubo Neural/embriología , Cresta Neural/citología , Cresta Neural/embriología , Vía de Señalización Hippo , Mesodermo/citología , Mesodermo/embriología , Células Madre
16.
Development ; 149(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156681

RESUMEN

Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3'UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced.


Asunto(s)
MicroARNs/metabolismo , Regeneración de la Medula Espinal/genética , Médula Espinal/metabolismo , Regiones no Traducidas 3' , Ambystoma mexicanum/metabolismo , Animales , Antagomirs/metabolismo , Diferenciación Celular , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/fisiología , Vía de Señalización Wnt , beta Catenina/antagonistas & inhibidores , beta Catenina/química , beta Catenina/metabolismo
17.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35179180

RESUMEN

Specification of primordial germ cells requires a proportion of the cells in the posterior of the epiblast to reacquire pluripotency. A new paper in Development describes how OVOL2 is involved in regulating the balance between mesodermal fate and germ cell fate during gastrulation. We caught up with the first author, Yuki Naitou, and corresponding author, Katsuhiko Hayashi (Osaka University), to find out more about the paper and their future research.


Asunto(s)
Células Germinativas/metabolismo , Investigadores/psicología , Factores de Transcripción/metabolismo , Animales , Autoria , Transición Epitelial-Mesenquimal , Gastrulación , Células Germinativas/citología , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
18.
Dev Cell ; 57(3): 398-414.e5, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35134346

RESUMEN

The postnatal development and maturation of the liver, the major metabolic organ, are inadequately understood. We have analyzed 52,834 single-cell transcriptomes and identified 31 cell types or states in mouse livers at postnatal days 1, 3, 7, 21, and 56. We observe unexpectedly high levels of hepatocyte heterogeneity in the developing liver and the progressive construction of the zonated metabolic functions from pericentral to periportal hepatocytes, which is orchestrated with the development of sinusoid endothelial, stellate, and Kupffer cells. Trajectory and gene regulatory analyses capture 36 transcription factors, including a circadian regulator, Bhlhe40, in programming liver development. Remarkably, we identified a special group of macrophages enriched at day 7 with a hybrid phenotype of macrophages and endothelial cells, which may regulate sinusoidal construction and Treg-cell function. This study provides a comprehensive atlas that covers all hepatic cell types and is instrumental for further dissection of liver development, metabolism, and disease.


Asunto(s)
Perfilación de la Expresión Génica , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Análisis de la Célula Individual , Animales , Animales Recién Nacidos , Comunicación Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Hematopoyesis , Hepatocitos/citología , Hepatocitos/metabolismo , Macrófagos/metabolismo , Mesodermo/citología , RNA-Seq , Factores de Tiempo , Factores de Transcripción/metabolismo
19.
Cell Mol Life Sci ; 79(3): 158, 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35220463

RESUMEN

Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-ß, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.


Asunto(s)
Diferenciación Celular , Redes Reguladoras de Genes/genética , Osteogénesis , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
20.
Stem Cell Reports ; 17(2): 427-442, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35090587

RESUMEN

Elucidating regulatory relationships between transcription factors (TFs) and target genes is fundamental to understanding how cells control their identity and behavior. Unfortunately, existing computational gene regulatory network (GRN) reconstruction methods are imprecise, computationally burdensome, and fail to reveal dynamic regulatory topologies. Here, we present Epoch, a reconstruction tool that uses single-cell transcriptomics to accurately infer dynamic networks. We apply Epoch to identify the dynamic networks underpinning directed differentiation of mouse embryonic stem cells (ESCs) guided by multiple signaling pathways, and we demonstrate that modulating these pathways drives topological changes that bias cell fate potential. We also find that Peg3 rewires the pluripotency network to favor mesoderm specification. By integrating signaling pathways with GRNs, we trace how Wnt activation and PI3K suppression govern mesoderm and endoderm specification, respectively. Finally, we identify regulatory circuits of patterning and axis formation that distinguish in vitro and in vivo mesoderm specification.


Asunto(s)
Redes Reguladoras de Genes/genética , Estratos Germinativos/metabolismo , Animales , Diferenciación Celular , Endodermo/citología , Endodermo/metabolismo , Estratos Germinativos/citología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...