Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.704
Filtrar
1.
Environ Monit Assess ; 196(6): 539, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733446

RESUMEN

Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3-, PO43-, and SiO44-) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3-, PO43-, SiO44-), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.


Asunto(s)
Monitoreo del Ambiente , Fósforo , Agua de Mar , Oligoelementos , Contaminantes Químicos del Agua , Mar del Norte , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Agua de Mar/química , Fósforo/análisis , Nutrientes/análisis , Nitrógeno/análisis , Metales/análisis , Eutrofización
2.
Environ Monit Assess ; 196(6): 516, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710964

RESUMEN

Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.


Asunto(s)
Monitoreo del Ambiente , Metales , Tecnología de Sensores Remotos , Contaminantes del Suelo , Suelo , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Análisis Multivariante , Suelo/química , Metales/análisis , Sistemas de Información Geográfica , Oligoelementos/análisis
3.
Environ Geochem Health ; 46(6): 205, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695945

RESUMEN

The eastern coastline of Gresik, located in East Java, Indonesia, experienced significant industrialization, leading to the development of numerous diverse sectors. These diverse industrial activities, in addition to other human activities, result in the contamination of sediment across the eastern coast of Gresik with a variety of metals. Metals like arsenic (As), cadmium (Cd), copper (Cu), and zinc (Zn) have exceeded the international standards for sediment quality, potentially causing significant harm to the aquatic ecosystem in this coastal region. The results of the multivariate analysis indicate that the metals found in the sediment are related to a combination of anthropogenic inputs, specifically those originating from industrial effluents in the area under study. Based on the assessment of enrichment factor, contamination factor, geo-accumulation index, degree of contamination, ecological risk index, and pollution load index, it can be concluded that the metals examined displayed different degrees of sediment contamination, ranging from minimal to severely contaminated.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Indonesia , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Medición de Riesgo , Desarrollo Industrial , Metales/análisis
4.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773003

RESUMEN

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Brasil , Ríos/química , Biomarcadores/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/metabolismo , Metales/análisis , Characidae , Bifenilos Policlorados/análisis , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peces/metabolismo
5.
Environ Int ; 187: 108697, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696979

RESUMEN

Road dust is a demonstrated source of urban air pollution. Given this, the implementation of street sweeping strategies that effectively limit road dust accumulation and resuspension should be a public health priority. Research examining the effectiveness of street sweeping for road dust removal in support of good air quality has been limited to date. To address this, the study aimed to assess the use of a regenerative-air street sweeper to efficiently remove road dust particles and metal(loid)s in size fractions relevant for respiratory exposure in Toronto, Canada. As part of this, the mass amounts, particle size distribution and elemental concentrations of bulk road dust before and after sweeping at five arterial sites were characterized. Sweeping reduced the total mass amount of thoracic-sized (<10 µm) road dust particles by 76 % on average. A shift in the size distribution of remaining particles toward finer fractions was observed in post-sweeping samples, together with an enrichment in many metal(loid)s such as Co, Ti and S. Overall, the mass amounts of metal(loid)s of respiratory health concern like Cu and Zn were greatly reduced with sweeping. Traffic volume and road surface quality were predictors of dust loadings and elemental concentrations. Road surface quality was also found to impact street sweeping efficiencies, with larger mass amounts per unit area collected post-sweeping where street surfaces were distressed. This study demonstrates that street sweeping using advanced technology can be highly effective for road dust removal, highlighting its potential to support air quality improvement efforts. The importance of tailoring sweeping service levels and technologies locally as per the quality of road surface and traffic patterns is emphasized. Continued efforts to mitigate non-exhaust emissions that pose a respiratory health risk at their source is essential.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Metales , Tamaño de la Partícula , Polvo/análisis , Contaminantes Atmosféricos/análisis , Metales/análisis , Contaminación del Aire/prevención & control , Ciudades , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/análisis , Emisiones de Vehículos/análisis
6.
Sci Total Environ ; 932: 173038, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719055

RESUMEN

Despite global concerns about metal(loid)s in atmospheric particulate matter (PM), the presence of metal(loid) resistance genes (MRGs) in PM remains unknown. Therefore, we conducted a comprehensive investigation of the metal(loid)s and associated MRGs in PMs in two seasons (summer and winter) in Xiamen, China. According to the geoaccumulation index (Igeo), most metal(loid)s, except for V and Mn, exhibited enrichment in PM, suggesting potential anthropogenic sources. By employing Positive Matrix Factorization (PMF) model, utilizing a dataset encompassing both total and bioaccessible metal(loid)s, along with backward trajectory simulations, traffic emissions were determined to be the primary potential contributor of metal(loid)s in summer, whereas coal combustion was observed to have a dominant contribution in winter. The major contributor to the carcinogenic risk of metal(loid)s in both summer and winter was predominantly attributed to coal combustion, which serves as the main source of bioaccessible Cr. Bacterial communities within PMs showed lower diversity and network complexity in summer than in winter, with Pseudomonadales being the dominant order. Abundant MRGs, including the As(III) S-adenosylmethionine methyltransferase gene (arsM), Cu(I)-translocating P-type ATPase gene (copA), Zn(II)/Cd(II)/Pb(II)-translocating P-type ATPase gene (zntA), and Zn(II)-translocating P-type ATPase gene (ziaA), were detected within the PMs. Seasonal variations were observed for the metal(loid) concentration, bacterial community structure, and MRG abundance. The bacterial community composition and MRG abundance within PMs were primarily influenced by temperature, rather than metal(loid)s. This research offers novel perspectives on the occurrence of metal(loid)s and MRGs in PMs, thereby contributing to the control of air pollution.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , China , Metales/análisis , Estaciones del Año , Atmósfera/química
7.
Environ Sci Technol ; 58(15): 6736-6743, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564367

RESUMEN

Acidity is an important property of particulate matter (PM) in the atmosphere, but its association with PM toxicity remains unclear. Here, this study quantitively reports the effect of the acidity level on PM toxicity via pH-control experiments and cellular analysis. Oxidative stress and cytotoxicity potencies of acidified PM samples at pH of 1-2 were up to 2.8-5.2 and 2.1-13.2 times higher than those at pH of 8-11, respectively. The toxic potencies of PM samples from real-world smoke plumes at the pH of 2.3 were 9.1-18.2 times greater than those at the pH of 5.6, demonstrating a trend similar to that of acidified PM samples. Furthermore, the impact of acidity on PM toxicity was manifested by promoting metal dissolution. The dramatic increase by 2-3 orders of magnitude in water-soluble metal content dominated the variation in PM toxicity. The significant correlation between sulfate, the pH value, water-soluble Fe, IC20, and EC1.5 (p < 0.05) suggested that acidic sulfate could enhance toxic potencies by dissolving insoluble metals. The findings uncover the superficial association between sulfate and adverse health outcomes in epidemiological research and highlight the control of wet smoke plume emissions to mitigate the toxicity effects of acidity.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Metales/toxicidad , Metales/análisis , Humo/análisis , Sulfatos/análisis , Agua , Monitoreo del Ambiente
8.
Environ Sci Process Impacts ; 26(5): 843-857, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38597352

RESUMEN

Inhalation of welding fumes (WFs) containing high levels of transition metals (Cr, Cu, Fe, Mn, Ni…) is associated with numerous health effects including oxidative stress. However, the measurements of the oxidative potential (OP) and bioaccessibility of WF transition metals depend on several physicochemical parameters and may be subject to several experimental artifacts. In this work, we investigated the influence of the experimental conditions that may affect the bioaccessibility of transition metals and their OP on stainless-steel WF extracts. WFs were produced using a generation bench and sampled on filters. The soluble fraction of the metals was analysed. Two different extraction fluids mimicking physiological pulmonary conditions were studied: phosphate buffer and Hatch's solution. Three extraction times were tested to determine the optimal time for a significant OPDTT using the dithiothreitol (DTT) method. The storage conditions of WFs after filter sampling such as duration, temperature and atmospheric conditions were investigated. The results indicate that experimental conditions can significantly affect the OPDTT and metal bioaccessibility analyses. Cr, Cu and Ni show higher solubility in Hatch's solution than in the phosphate buffer. Mn is highly sensitive to DTT and shows close solubility in the two fluids. An extraction time of 0.5 h in phosphate buffer allows a better sensitivity to OPDTT, probably by limiting complexations, interactions between metals and precipitation. Storage time and temperature can influence the physical or chemical evolution of the WFs, which can affect their OPDTT and Mn solubility. However, storage under N2(g) limits these changes. On-line measurements of OPDTT could provide an alternative to filter sampling to overcome these artifacts.


Asunto(s)
Contaminantes Ocupacionales del Aire , Oxidación-Reducción , Soldadura , Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/análisis , Humanos , Exposición por Inhalación/análisis , Metales/análisis , Metales/química , Elementos de Transición/química , Monitoreo del Ambiente/métodos
9.
J Environ Sci (China) ; 143: 60-70, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644024

RESUMEN

Abandoned chemical smelting sites containing toxic substances can seriously threaten and pose a risk to the surrounding ecological environment. Soil samples were collected from different depths (0 to 13 m) and analyzed for metal(loid)s content and fractionation, as well as microbial activities. The potential ecological risk indices for the different soil depths (ordered from high to low) were: 1 m (D-1) > surface (S-0) > 5 m (D-5) > 13 m (D-13) > 9 m (D-9), ranging between 1840.65-13,089.62, and representing extremely high environmental risks, of which Cd (and probably not arsenic) contributed to the highest environmental risk. A modified combined pollution risk index (MCR) combining total content and mobile proportion of metal(loid)s, and relative toxicities, was used to evaluate the degree of contamination and potential environmental risks. For the near-surface samples (S-0 and D-1 layers), the MCR considered that As, Cd, Pb, Sb, and Zn achieved high and alarming degrees of contamination, whereas Fe, Mn, and Ti were negligible or low to moderate pollution degrees. Combined microcalorimetry and enzymatic activity measurements of contaminated soil samples were used to assess the microbial metabolic activity characteristics. Correlation analysis elucidated the relationship between metal(loid)s exchangeable fraction or content and microbial activity characteristics (p < 0.05). The microbial metabolic activity in the D-1 layer was low presumably due to heavy metal stress. Enzyme activity indicators and microcalorimetric growth rate (k) measurements were considered sensitive indicators to reflect the soil microbial activities in abandoned chemical smelting sites.


Asunto(s)
Monitoreo del Ambiente , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Suelo/química , Medición de Riesgo , Metales Pesados/análisis , Metales Pesados/toxicidad , Metalurgia , Metales/toxicidad , Metales/análisis
10.
Sci Total Environ ; 927: 172373, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604356

RESUMEN

Wastewater treatment wetlands are cost-effective strategies for remediating trace metals in industrial effluent. However, biogeochemical exchange between wastewater treatment wetlands and adjacent environments provides opportunities for trace metals to cycle in surrounding ecosystems. The transfer of trace metals to wildlife inhabiting treatment wetlands must be considered when evaluating wetland success. Using passerine birds as bioindicators, we conducted a multi-tissue analysis to investigate the mobilization of zinc, copper, and lead derived from wastewater to terrestrial wildlife in treatment wetlands and surrounding habitat. In addition, we evaluate the strength of relationships between metal concentrations in non-lethal (blood and feathers) and lethal (muscle and liver) sample types for estimation of toxicity risk. From July 2020 to August 2021, 177 passerines of seven species were captured at two wetlands constructed to treat industrial wastewater and two reference wetlands in the coastal plain of South Carolina. Feather, blood, liver, and muscle samples from each bird were analyzed for fourteen metals using inductively coupled plasma mass spectrometry and direct mercury analysis. Passerines inhabiting wastewater treatment wetlands accumulated higher concentrations of zinc in liver, copper in blood, and lead in feathers than passerines in reference wetlands, but neither blood nor feather concentrations were correlated with internal tissue concentrations. Of all the detected metals, only mercury in the blood showed a strong predictive relationship with mercury in internal tissues. This study indicates that trace metals derived from wastewater are bioavailable and exported to terrestrial wildlife and that passerine biomonitoring is a valuable tool for assessing metal transfer from treatment wetlands. Regular blood sampling can reveal proximate trace metal exposure but cannot predict internal body burdens for most metals.


Asunto(s)
Monitoreo del Ambiente , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Animales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Metales/análisis , Passeriformes/metabolismo
11.
Food Chem ; 448: 139112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569404

RESUMEN

Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.


Asunto(s)
Fumigación , Ginsenósidos , Panax , Control de Calidad , Azufre , Ginsenósidos/química , Ginsenósidos/análisis , Panax/química , Azufre/química , Sulfitos/química , Sulfitos/análisis , Metales/química , Metales/análisis , Extractos Vegetales/química
12.
Sci Total Environ ; 927: 172169, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582126

RESUMEN

A large amount of metal tailings causes many environmental issues. Thus, the techniques for their ecological restoration have garnered extensive attention. However, they are still in the exploratory stage. Biological soil crusts (BSCs) are a coherent layer comprising photoautotrophic organisms, heterotrophic organisms and soil particles. They are crucial in global terrestrial ecosystems and play an equal importance in metal tailings. We summarized the existing knowledge on BSCs growing on metal tailings. The main photosynthetic organisms (cyanobacteria, eukaryotic algae, lichens, and mosses) of BSCs exhibit a high heavy metal(loid) (HM) tolerance. BSCs also have a strong adaptability to other adverse conditions in tailings, such as poor structure, acidification, and infertility. The literature about tailing BSCs has been rapidly increasing, particularly after 2022. The extensive literature confirms that the BSCs distributed on metal tailings, including all major types of metal tailings in different climatic regisions, are common. BSCs perform various ecological functions in tailings, including HM stress reduction, soil structure improvement, soil nutrient increase, biogeochemical cycle enhancement, and microbial community restoration. They interact and accelerate revegetation of tailings (at least in the temperate zone) and soil formation. Restoring tailings by accelerating/inducing BSC formation (e.g., resource augmentation and inoculation) has also attracted attention and achieved small-scale on-site application. However, some knowledge gaps still exist. The potential areas for further research include the relation between BSCs and HMs, large-scale quantification of tailing BSCs, application of emerging biological techniques, controlled laboratory experiments, and other restoration applications.


Asunto(s)
Restauración y Remediación Ambiental , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Ecosistema , Metales/análisis , Minería
13.
J Hazard Mater ; 470: 134224, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583198

RESUMEN

This study employs a combination of bibliometric and epidemiological methodologies to investigate the relationship between metal exposure and glucose homeostasis. The bibliometric analysis quantitatively assessed this field, focusing on study design, predominant metals, analytical techniques, and citation trends. Furthermore, we analyzed cross-sectional data from Beijing, examining the associations between 14 blood metals and 6 glucose homeostasis markers using generalized linear models (GLM). Key metals were identified using LASSO-PIPs criteria, and Bayesian kernel machine regression (BKMR) was applied to assess metal mixtures, introducing an "Overall Positive/Negative Effect" concept for deeper analysis. Our findings reveal an increasing research interest, particularly in selenium, zinc, cadmium, lead, and manganese. Urine (27.6%), serum (19.0%), and whole blood (19.0%) were the primary sample types, with cross-sectional studies (49.5%) as the dominant design. Epidemiologically, significant associations were found between 9 metals-cobalt, copper, lithium, manganese, nickel, lead, selenium, vanadium, zinc-and glucose homeostasis. Notably, positive-metal mixtures exhibited a significant overall positive effect on insulin levels, and notable interactions involving nickel were identified. These finding not only map the knowledge landscape of research in this domain but also introduces a novel perspective on the analysis strategies for metal mixtures.


Asunto(s)
Bibliometría , Glucemia , Homeostasis , Humanos , Glucemia/análisis , Metales/análisis , Estudios Transversales , Estudios Epidemiológicos , Teorema de Bayes
14.
Food Chem Toxicol ; 188: 114664, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636597

RESUMEN

The aim of this study was to evaluate the inorganic elemental composition (49 elements) of 29 botanical preparations obtained from fruits, leaves, peels, seeds, roots, fungi, and spirulina by using inductively coupled-mass spectrometry and a mercury analyzer. Simultaneously, the risk associated with the chronic dietary exposure to 12 toxic metals and metalloids among the European population was evaluated by using a probabilistic approach based on Monte Carlo simulations. The analysis revealed worrying intake levels of Al, As, and Ni, primarily stemming from the consumption of spirulina-, peel-, and leaf-based botanicals by younger age groups. The intake of As from all analyzed botanicals posed a significant risk for infants, yielding margins of exposure (MOEs) below 1, while those deriving from peel-based botanicals raised concerns across all age groups (MOEs = 0.04-2.3). The consumption of peel-based botanicals contributed substantially (13-130%) also to the tolerable daily intake of Ni for infants, toddlers, and children, while that of spirulina-based botanicals raised concerns related to Al intake also among adults, contributing to 11-176% of the tolerable weekly intake of this element. The findings achieved underscore the importance of implementing a monitoring framework to address chemical contamination of botanicals, thus ensuring their safety for regular consumers.


Asunto(s)
Exposición Dietética , Contaminación de Alimentos , Metaloides , Humanos , Lactante , Metaloides/análisis , Metaloides/toxicidad , Niño , Preescolar , Contaminación de Alimentos/análisis , Adulto , Metales/análisis , Metales/toxicidad , Método de Montecarlo , Adolescente , Medición de Riesgo , Adulto Joven , Preparaciones de Plantas/química , Preparaciones de Plantas/análisis
15.
Mar Pollut Bull ; 202: 116336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583218

RESUMEN

The main objectives of this study were to determine the mercury concentration in four species of valuable and widely consumed fish from the Caspian Sea, to assess the health risk due to their consumption. The average mercury concentrations for Chelon saliens, Chelon auratus, Acipenser persicus and Acipenser stellatus were 32.72, 39.51, 166.87 and 81.87 µg g-1 dw, respectively. There were correlations between the mercury concentrations in the muscle of Chelon saliens and morphological parameters, but these correlations were not observed in Chelon auratus. Our comparison of the mercury values obtained in all the samples with the recommended international standards, as well as the Hazard Quotients values, indicated that there is no potential risk for the health of consumers due to exposure to mercury from consuming these fish.


Asunto(s)
Peces , Mercurio , Contaminantes Químicos del Agua , Animales , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Humanos , Mercurio/análisis , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Alimentos Marinos , Océanos y Mares , Metales/análisis
16.
Environ Sci Pollut Res Int ; 31(21): 30427-30439, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607483

RESUMEN

In southeastern Brazil, the city of Ipatinga is inserted in the Steel Valley Metropolitan Region, which hosts the largest industrial complex for flat-steel production in Latin America, while also having one of the largest vehicle fleets in the entire country. Since potentially toxic elements (PTEs) are not emitted solely by industries, yet also by vehicular activity, the predominant emission source can be determined by evaluating the ratio between different elements, which are called technogenic tracers. We performed a biomonitoring assay using two tropical legumes, Paubrasilia echinata and Libidibia ferrea var. leiostachya, aiming to assess chemical markers for the origin of emissions in the region, distinguishing between different anthropogenic sources. Plants were exposed for 90 days in four urban sites and in a neighboring park which served as reference. After the experimental period, plants were evaluated for trace-metal accumulation. L. ferrea var. leiostachya retained lower amounts of metals associated with vehicular and industrial emission. The opposite was found with P. echinata, a species which should be recommended for biomonitoring of air pollution as a bioaccumulator. Plants of P. echinata were enriched with Fe, Al, Ni, Cr, and Ba, whereas plants of L. ferrea var. leiostachya were enriched with Fe, Cu, and Co. In both species, Fe was the element with which plants were enriched the most. Plants showed highest iron enrichment at Bom Retiro, the site downwind to the steel industry, which has shown to be the main particle emission source in the region.


Asunto(s)
Monitoreo del Ambiente , Brasil , Monitoreo del Ambiente/métodos , Metales/análisis , Acero , Plantas , Contaminantes Atmosféricos/análisis , Contaminación del Aire
17.
Chemosphere ; 357: 141974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615955

RESUMEN

The former mining district of Salsigne is situated in the Orbiel valley. Until the 20th century, it was the first gold mine in Europe and the first arsenic mine in the world. Rehabilitation has been performed during the 20 years that followed closure of the mines and factories, which led to the accumulation of storage of several million tons of waste in this valley. Nevertheless, a detailed description of the air quality of this area is still missing. The goal of the present study is to evaluate atmospheric contamination in the valley and identify the potential sources of this contamination. Active monitors (particulate matter samplers) and passive bioindicators (Tillandsia usneoides) were placed in strategic sites including remote areas. Over the year 2022, we assessed the air quality using microscopic and spectroscopic techniques, as well as environmental risk indicators to report the level of contamination. Results indicate that the overall air quality in the valley is good with PM10 levels in accordance with EU standards. Elemental concentrations in the exposed plants were lower than reported in the literature. Among the different sites studied, Nartau and La Combe du Saut, corresponding to waste storage and former mining industry sites, were the most affected. Chronic exposure over 1 year was highlighted for Fe, Ni, Cu, Pb, Sb and As. Pollution Load Index and Enrichment Factors, which provided valuable information to assess the environmental condition of the valley's air, suggested that dust and resuspension of anthropogenic materials were the principle sources for most of the elements. Finally, this study also highlights that using T. usneoides could be a convenient approach for biomonitoring of metal (loid)-rich particles in the atmosphere within a former mining area, for at least one year. These results in turn allow to better understand the effects of chronic exposure on the ecosystem.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Minería , Material Particulado , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Francia , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Metales/análisis , Arsénico/análisis , Metales Pesados/análisis
18.
J Hazard Mater ; 471: 134411, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677117

RESUMEN

The spatial patterns of pollutants produced by industrial parks are affected by many factors, but the interactions among polycyclic aromatic hydrocarbons (PAHs), metals, and soil microorganisms in the valley landforms of the Tibetan Plateau are poorly understood. Thus, this study systematically investigated the distribution and pollution of metals and PAHs in soil around an industrial park in the typical valley landform of the Tibetan Plateau and analyzed and clarified the interaction among metals, PAHs, and microorganisms. The results were as follows: metal and PAH concentrations were affected by wind direction, especially WN-ES and S-N winds; Cd (2.86-54.64 mg·kg-1) had the highest soil concentrations of the metals screened, followed by variable concentrations of Cu, Pb, and Zn; the pollution levels of metals and PAHs in the S-N wind direction were lower than those in the WN-ES wind direction; the Cd content of Avena sativa in the agricultural soil around the factory exceeded its enrichment ability and food safety standards; the closer to the center of the park, the higher the ecological risk of PAHs; and the TEQ and MEQ values of the PAHs were consistent with their concentration distributions. The results of the soil microbial diversity and co-occurrence network in the dominant wind direction showed that metal and PAH pollution weakened the robustness of soil microbial communities. Additionally, the diversity and robustness of soil microbial communities at the S wind site were higher than those at the ES wind site, which might be attributed to the lower metal content of the former than the latter, which plays a negative role in the biodegradation of PAHs. The results of this study provide insights into the site selection, pollutant supervision, and environmental remediation of industrial parks in typical landforms.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Microbiología del Suelo , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Tibet , Viento , Metales/análisis , Suelo/química , Metales Pesados/análisis
19.
Sci Total Environ ; 929: 172298, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615778

RESUMEN

A 30-month pilot study was conducted to evaluate the potential of in-situ metal(loid) removal through biostimulation of sulfate-reducing processes. The study took place at an industrial site in Flanders, Belgium, known for metal(loid) contamination in soil and groundwater. Biostimulation involved two incorporations of an organic substrate (emulsified vegetable oil) as electron donor and potassium bicarbonate to raise the pH of the groundwater by 1-1.5 units. The study focused on the most impacted permeable fine sand aquifer (8-9 m below groundwater level) confined by layers of non-permeable clay. The fine sands exhibited initially oxic conditions (50-200 mV), an acidic pH of 4.5 and sulfate concentrations ranging from 600 to 800 mg/L. At the central monitoring well, anoxic conditions (-200 to -400 mV) and a pH of 5.9 established shortly after the second substrate and reagent injection. Over the course of 12 months, there was a significant decrease in the concentration of arsenic (from 2500 to 12 µg/L), nickel (from 360 to <2 µg/L), zinc (from 78,000 to <2 µg/L), and sulfate (from 930 to 450 mg/L). Low levels of metal(loid)s were still present after 34 months (end of study). Mineralogical analysis indicated that the precipitates formed were amorphous in nature. Evidence for biologically driven metal(loid) precipitation was provided by compound specific stable isotope analysis of sulfate. In addition, changes in microbial populations were assessed using next-generation sequencing, revealing stimulation of native sulfate-reducing bacteria. These results highlight the potential of biostimulation for long-term in situ metal(loid) plume treatment/containment.


Asunto(s)
Sulfatos , Contaminantes Químicos del Agua , Bélgica , Sulfatos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Agua Subterránea/química , Metales/química , Metales/análisis , Contaminantes del Suelo/análisis , Proyectos Piloto , Biodegradación Ambiental , Precipitación Química
20.
Mar Pollut Bull ; 202: 116367, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621353

RESUMEN

This study reports, for the first time, the baseline levels for fifteen trace metals in M. galloprovincialis tissue from around the Mediterranean, Marmara and Black Seas. The environmental quality in the surrounding seawater was assessed i.e., a mussel farm was investigated by using CF and DC indices, and the water quality was qualified as good for the aquacultural activities. A strong Cu-regulation in the transplanted mussels was observed and it ranged between 3.20 and 3.60 µg/g d.w. The highest bioavailability and bioconcentration of the particulate Fe fraction could present a health risk to consumers with a low risk level (1 < THQ < 9.9). Cr is considered the limiting metal for mussel consumption (< 2 kg/day). The metal contamination gradient was assessed using TEPI and TESVI indices that identified seven reference stations on the large scale and revealed that Cd is the most investigated metal in the literature databases, and found that Pb was the most bioavailable contaminant in the areas examined.


Asunto(s)
Monitoreo del Ambiente , Metales , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Mar Mediterráneo , Metales/análisis , Mar Negro , Bivalvos , Mytilus , Agua de Mar/química , Metales Pesados/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...