Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.230
Filtrar
1.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747953

RESUMEN

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Asunto(s)
Carbono , Aguas del Alcantarillado , Temperatura , Aguas del Alcantarillado/química , Carbono/química , Eliminación de Residuos Líquidos/métodos , Factores de Tiempo , Metales Pesados/química
2.
Chemosphere ; 358: 142236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705409

RESUMEN

This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.


Asunto(s)
Durapatita , Metales Pesados , Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Durapatita/química , Nanocompuestos/química , Metales Pesados/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Catálisis , Purificación del Agua/métodos
3.
J Hazard Mater ; 470: 134221, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615651

RESUMEN

Constructed wetlands (CWs) are a promising approach for treating acid mine drainage (AMD). However, the extreme acidity and high loads of heavy metals in AMD can easily lead to the collapse of CWs without proper pre-treatment. Therefore, it is considered essential to maintain efficient and stable performance for AMD treatment in CWs. In this study, pre-prepared attapulgite-soda residue (ASR) composites were used to improve the substrate of CWs. Compared with CWs filled with gravel (CWs-G), the removal efficiencies of sulfate and Fe, Mn, Cu, Zn Cd and Pb in CWs filled with ASR composites (CWs-ASR) were increased by 30% and 10-70%, respectively. These metals were mainly retained in the substrate in stable forms, such as carbonate-, Fe/Mn (oxide)hydroxide-, and sulfide-bound forms. Additionally, higher levels of photosynthetic pigments and antioxidant enzyme activities in plants, along with a richer microbial community, were observed in CWs-ASR than in CWs-G. The application of ASR composites alleviated the adverse effects of AMD stresses on wetland plants and microorganisms. In return, the increased bacteria abundance, particularly SRB genera (e.g., Thermodesulfovibrionia and Desulfobacca), promoted the formation of metal sulfides, enabling the saturated ASR adsorbed with metals to regenerate and continuously capture heavy metals. The synergistic adsorption of ASR composites and microbial sulfate reduction maintained the stable and efficient operation of CWs. This study contributes to the resource utilization of industrial alkaline by-products and promotes the breakthrough of new techniques for low-cost and passive treatment systems such as CWs.


Asunto(s)
Compuestos de Magnesio , Metales Pesados , Minería , Compuestos de Silicona , Sulfatos , Contaminantes Químicos del Agua , Humedales , Sulfatos/química , Metales Pesados/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Compuestos de Silicona/química , Compuestos de Magnesio/química , Ácidos/química , Oxidación-Reducción , Biodegradación Ambiental , Concentración de Iones de Hidrógeno
4.
Environ Sci Pollut Res Int ; 31(21): 30620-30632, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613749

RESUMEN

PPG-CNTs-nZVI bead was synthesized by polyvinyl alcohol, pumice, carbon nanotube, and guar gum-nanoscale zero-valent iron to be applied on simultaneously removal of polycyclic aromatic hydrocarbons (PAHs; phenanthrene) and heavy metals (Pb2+) via adsorption. The individual and simultaneous removal efficiency of phenanthrene and Pb2+ using the PPG-CNTs-nZVI beads was evaluated with a range of initial concentrations of these two pollutants. The kinetics and isotherms of phenanthrene and Pb2+ adsorption by the PPG-CNTs-nZVI beads were also determined. The PPG-CNTs-nZVI beads show reasonably high phenanthrene adsorption capacities (up to 0.16 mg/g), and they absorbed 85% of the phenanthrene (initial concentration 0.5 mg/L) in 30 min. High Pb2+ adsorption capabilities were also demonstrated by the PPG-CNTs-nZVI beads (up to 11.6 mg/g). The adsorption fits the Langmuir model better than the Freundlich model. The adsorption still remained stable with various ionic strength circumstances and a wide pH range (2-5). Additionally, the co-adsorption of phenanthrene and Pb2+ by the PPG-CNTs-nZVI beads resulted in synergistic effects. Particularly, phenanthrene-Pb2+ complex formation via π-cation interactions demonstrated a greater affinity than phenanthrene or Pb2+ alone. The present findings suggest that PPG-CNTs-nZVI beads may be effective sorbents for the simultaneous removal of PAHs and heavy metals from contaminated waters.


Asunto(s)
Plomo , Fenantrenos , Fenantrenos/química , Adsorción , Plomo/química , Nanotubos de Carbono/química , Cinética , Metales Pesados/química , Contaminantes Químicos del Agua/química
5.
Chemosphere ; 357: 141955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614403

RESUMEN

A novel family of multifunctional nanomaterials called MXenes is quickly evolving, and it has potential applications that are comparable to those of graphene. This article provides a current explanation of the design and performance assessment of MXene-based membranes. The production of MXenes nanosheets are first described, with an emphasis on exfoliation, dispersion stability, and processability, which are essential elements for membrane construction. Further, critical discussion is also given to MXenes potential applications in Vacuum assisted filtration, casting method, Hot press method, electrospinning and electrochemical deposition and layer-by-layer assembly for the creation of MXene and MXene derived nanocomposite membranes. Additionally, the discussion is carried forward to give an insight to the modification methods for the construction of MXene-based membrane are described in the literature, including pure or intercalated nanomaterials, surface modifiers and miscellaneous two-dimensional nanomaterials. Furthermore, the review article highlights the potential utilization of MXene and MXene based membranes in separation and purification processes including removal of small organic molecules, heavy metals, oil-water separation and desalination. Finally, the perspective use of MXenes strong catalytic activity and electrical conductivity for specialized applications that are difficult for other nanomaterials to accomplish are discussed in conclusion and future prospectus section of the manuscript. Overall, important information is given to help the communities of materials science and membranes to better understand the potential of MXenes for creating cutting-edge separation and purification membranes.


Asunto(s)
Membranas Artificiales , Nanoestructuras , Purificación del Agua , Nanoestructuras/química , Purificación del Agua/métodos , Grafito/química , Contaminantes Químicos del Agua/química , Nanocompuestos/química , Metales Pesados/química , Filtración/métodos
6.
Water Res ; 256: 121602, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621315

RESUMEN

Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe0 to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mgMPs·gFe-1. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.


Asunto(s)
Hierro , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Hierro/química , Poliestirenos/química , Contaminantes Químicos del Agua/química , Microplásticos/química , Humectabilidad , Metales Pesados/química , Transporte de Electrón
7.
Water Res ; 256: 121625, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640565

RESUMEN

Hexavalent chromium (Cr(VI)) contamination in groundwater poses a substantial global challenge due to its high toxicity and extensive industrial applications. While the bioelectroremediation of Cr(VI) has attracted huge attention for its eco-friendly attributes, its practical application remains constrained by the hydrogeochemical conditions of groundwater (mainly pH), low electron transfer efficiency, limitations in electrocatalyst synthesis and electrode fabrication. In this study, we developed and investigated the use of N, S co-doped carbon nanofibers (CNFs) integrated on a graphite felt (GF) as a self-standing cathode (NS/CNF-GF) for the comprehensive reduction of Cr(VI) from real contaminated groundwater. The binder free cathode, prepared through electro-polymerization, was employed in a dual-chamber microbial fuel cell (MFC) for the treatment of Cr (VI)-laden real groundwater (40 mg/L) with a pH of 7.4. The electrochemical characterization of the prepared cathode revealed a distinct electroactive surface area, more wettability, facilitating enhanced adsorption and rapid electron transfer, resulting in a commendable Cr(VI) reduction rate of 0.83 mg/L/h. The MFC equipped with NS/CNF-GF demonstrated the lowest charge transfer resistance (Rct) and generated the highest power density (155 ± 0.3 mW/m2) compared to control systems. The favorable electrokinetics for modified cathode led to swift substrate consumption in the anode, releasing more electrons and protons, thereby accelerating Cr(VI) reduction to achieve the highest cathodic coulombic efficiency (C.Eca)of80 ± 1.3 %. A similar temporal trend observed between Cr(VI) removal efficiency, COD removal efficiency, and C.Eca, underscores the effective performance of the modified electrode. The reusability of the binder free cathode, exemption from catholyte preparation and the absence of pH regulation requirements highlighted the potential scalability and applicability of our findings on a larger scale.


Asunto(s)
Cromo , Electrodos , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/química , Cromo/química , Biodegradación Ambiental , Metales Pesados/química , Fuentes de Energía Bioeléctrica , Concentración de Iones de Hidrógeno
8.
Chemosphere ; 357: 141757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583537

RESUMEN

Carbon-based biowaste incorporated with inorganic oxides as a composite is an enticing option to mitigate heavy metal pollution in water resources due to its more economical and efficient performance. With this in mind, we constructed manganese-doped iron oxide microflowers resembling the dandelion-like structure on the surface of cold plasma-treated carbonized rice husk (MnFe2O3/PCRH). The prepared composite exhibited 45% and 19% higher removal rates for Cu2+ and Cd2+, respectively than the pristine CRH. The MnFe2O3/PCRH composite was characterized using XRD, FTIR, FESEM, EDX, HR-TEM, XPS, BET, TGA, and zeta potential, while the adsorption capacities were investigated as a function of pH, time, and initial concentration in batch trials. As for the kinetics, the pseudo-second-order was the rate-limiting over the pseudo-first-order and Elovich model, demonstrating that the chemisorption process governed the adsorption of Cu2+ and Cd2+. Additionally, the maximum adsorption capacities of the MnFe2O3/PCRH were found to be 122.8 and 102.5 mg/g for Cu2+ and Cd2+, respectively. Based on thorough examinations by FESEM-EDS, FTIR, and XPS, the possible mechanisms for the adsorption can be ascribed to surface complexation by oxygen-containing groups, a dissolution-precipitation of the ions with -OH groups, electrostatic attraction between metal ions and the adsorbent's partially charged surface, coordination of Cu2+ and Cd2+ with π electrons by aromatic/graphitic carbon in the MnFe2O3/PCRH, and pore filling and diffusion. Lastly, the adsorption efficiencies were maintained at about 70% of its initial adsorption even after five adsorption-desorption cycles, displaying its remarkable stability and reusability.


Asunto(s)
Carbón Orgánico , Compuestos Férricos , Manganeso , Metales Pesados , Contaminantes Químicos del Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Metales Pesados/química , Compuestos Férricos/química , Manganeso/química , Purificación del Agua/métodos , Cinética , Cobre/química , Cadmio/química
9.
J Hazard Mater ; 471: 134295, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38631253

RESUMEN

There has been increasing attention given to nickel-cobalt tailings (NCT), which pose a risk of heavy metal pollution in the field. In this study, on site tests and sampling analysis were conducted to assess the physical and chemical characteristics, heavy metal toxicity, and microbial diversity of the original NCT, solidified NCT, and the surrounding soil. The research results show that the potential heavy metal pollution species in NCT are mainly Ni, Co, Mn, and Cu. Simultaneous solidification and passivation of heavy metals in NCT were achieved, resulting in a reduction in biological toxicity and a fivefold increase in seed germination rate. The compressive strength of the original tailings was increased by 20 times after solidification. The microbial diversity test showed that the abundance of microbial community in the original NCT was low and the population was monotonous. This study demonstrates, for the first time, that the use of NCT for solidification in ponds can effectively solidification of heavy metals, reduce biological toxicity, and promote microorganism diversity in mining areas (tended to the microbial ecosystem in the surrounding soil). Indeed, this study provides a new perspective for the environmental remediation of metal tailings.


Asunto(s)
Cobalto , Níquel , Microbiología del Suelo , Contaminantes del Suelo , Níquel/toxicidad , Níquel/química , Cobalto/química , Cobalto/toxicidad , Contaminantes del Suelo/metabolismo , Metales Pesados/toxicidad , Metales Pesados/química , Disponibilidad Biológica , Minería , Germinación/efectos de los fármacos , Restauración y Remediación Ambiental/métodos , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Fuerza Compresiva , Residuos Industriales
10.
Environ Pollut ; 350: 124004, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641039

RESUMEN

The Fe(II)/Fe(III) cycle is an important driving force for dissolution and transformation of jarosite. Divalent heavy metals usually coexist with jarosite; however, their effects on Fe(II)-induced jarosite transformation and different repartitioning behavior during mineral dissolution-recrystallization are still unclear. Here, we investigated Fe(II)-induced (1 mM Fe(II)) jarosite conversion in the presence of Cd(II), Mn(II), Co(II), Ni(II) and Pb(II) (denoted as Me(II), 1 mM), respectively, under anaerobic condition at neutral pH. The results showed that all co-existing Me(II) retarded Fe(II)-induced jarosite dissolution. In the Fe(II)-only system, jarosite first rapidly transformed to lepidocrocite (an intermediate product) and then slowly to goethite; lepidocrocite was the main product. In Fe(II)-Cd(II), -Mn(II), and -Pb(II) systems, coexisting Cd(II), Mn(II) and Pb(II) retarded the above process and lepidocrocite was still the dominant conversion product. In Fe(II)-Co(II) system, coexisting Co(II) promoted lepidocrocite transformation into goethite. In Fe(II)-Ni(II) system, jarosite appeared to be directly converted into goethite, although small amounts of lepidocrocite were detected in the final product. In all treatments, the appearance or accumulation of lepidocrocite may be also related to the re-adsorption of released sulfate. By the end of reaction, 6.0 %, 4.0 %, 76.0 % 11.3 % and 19.2 % of total Cd(II), Mn(II), Pb(II) Co(II) and Ni(II) were adsorbed on the surface of solid products. Up to 49.6 %, 44.3 %, and 21.6 % of Co(II), Ni(II), and Pb(II) incorporated into solid product, with the reaction indicating that the dynamic process of Fe(II) interaction with goethite may promote the continuous incorporation of Co(II), Ni(II), and Pb(II).


Asunto(s)
Compuestos Férricos , Metales Pesados , Minerales , Compuestos Férricos/química , Minerales/química , Metales Pesados/química , Cationes Bivalentes , Sulfatos/química , Compuestos Ferrosos/química , Manganeso/química , Hierro/química , Contaminantes del Suelo/química
11.
Environ Pollut ; 350: 124019, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663506

RESUMEN

Lead(II) is a potential carcinogen of heavy-metal ions (HIs). With the wide application of Pb-bearing products including lead alloy products, and new-energy lead-ion batteries, lead pollution has become a tricky problem. To solve such a difficulty, novel ultrathin MoS2-vinyl hybrid membranes (MVHMs) with a "spring" effect were synthesized via co-polymerization of acrylic acid, styrene and molybdenum disulfide (MoS2) and their adsorptions for HIs were explored. The "spring" effect derived from the interaction between the tendency of the short polyacrylic acid (PAA) chain connected with MoS2 to spread outward and the coulomb force between layers from MoS2 (s-MoS2), which enlarge the spacing of MoS2 layers without changing the number of layers after membrane formation, which changes the swelling membrane to a dense membrane and reduces the original thickness from 0.5 cm to 0.011 mm in the thickness direction. The adsorption experiment revealed that these MVHMs had super adsorption performance and high selectivity for Pb2+ by comparison with other five metal ions: Cu2+, Cd2+, Ni2+, Cr3+ and Zn2+. Especially, the adsorption quantity of MVHMs for Pb2+ could approach 2468 mg/g and the maximum adsorption ratio of qe[Pb2+]/qe[Cu2+] can reach 10.909. These values were much larger than the data obtained with the adsorbents reported in the last decade. A variety of models are applied to evaluate the effect of ionic groups. It was confirmed that -COOH plays a key role in adsorption of HIs and s-MoS2 also has a certain contribution. Conversely, ion exchange plays only a minor role during the period of adsorption process. Effective diffusion coefficient (Deff) of Pb(II) had the largest values among these metal ions. Hence, these hybrid membranes are promising adsorbents for the removal of Pb2+ from water containing various ions.


Asunto(s)
Acrilatos , Disulfuros , Plomo , Molibdeno , Estireno , Molibdeno/química , Plomo/química , Adsorción , Acrilatos/química , Disulfuros/química , Estireno/química , Polimerizacion , Membranas Artificiales , Contaminantes Químicos del Agua/química , Metales Pesados/química
12.
Waste Manag ; 181: 44-56, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38583272

RESUMEN

Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.


Asunto(s)
Metales Pesados , Fosfatos , Fósforo , Pirólisis , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Metales Pesados/química , Metales Pesados/análisis , Fósforo/química , Fosfatos/química , Carbón Orgánico/química
13.
Waste Manag ; 181: 57-67, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38583273

RESUMEN

Rotary kiln (RK) incineration technology gains prominence in waste management, aiming to reduce pollution, recover energy, and minimize waste. Oxygen-carrier (OC)-aided incineration of waste in the RK demonstrates notable benefits by enhancing oxygen distribution uniformity and facilitating fuel conversion. However, the effects of OC on ash-related alkali and heavy metals during waste incineration in the RK remain unknown. In this study, manganese ore and ilmenite as OCs are introduced into RK during waste combustion, focusing on their effects on the bottom ashes and the behavior of alkali and heavy metals. Results show that manganese ore exhibits a decreasing reactivity due to oxygen depletion during the conversion from Mn2O3 to Mn3O4, while ilmenite maintains good reactivity due to sustained enrichment of Fe2O3 on the particles even after multiple cycles in RK. The porous structure on the surface of OCs particles verifies the cyclic reaction involving oxidation by air and reduction by fuel as OCs move between the active and passive layers of the bed. The porous OCs particles offer abundant adsorption sites for K from the gaseous phase, with surface-deposited K migrating into the particles and enhancing the OCs' capacity for K adsorption. Adding OCs promotes the formation of stable, less volatile compounds of heavy metals (As, Cr, Pb, and Zn) and enhances their retention in bottom ash while ensuring the leaching toxicity remains below Chinese national standard limits. This study enhances the understanding of OCs in incineration, guiding vital references for waste management practices and environmental sustainability.


Asunto(s)
Álcalis , Incineración , Metales Pesados , Oxígeno , Metales Pesados/análisis , Metales Pesados/química , Incineración/métodos , Oxígeno/química , Álcalis/química , Ceniza del Carbón/química , Administración de Residuos/métodos , Contaminantes Atmosféricos/análisis
14.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673744

RESUMEN

Schiff bases (SBs) are important ligands in coordination chemistry due to their unique structural properties. Their ability to form complexes with metal ions has been exploited for the environmental detection of emerging water contaminants. In this work, we evaluated the complexation ability of three newly proposed SBs, 1-3, by complete conformational analysis, using a combination of Molecular Dynamics and Density Functional Theory studies, to understand their ability to coordinate toxic heavy metal (HMs) ions. From this study, it emerges that all the ligands present geometries that make them suitable to complex HMs through the N-imino moieties or, in the case of 3, with the support of the oxygen atoms of the ethylene diether chain. In particular, this ligand shows the most promising coordination behavior, particularly with Pb2+.


Asunto(s)
Complejos de Coordinación , Metales Pesados , Simulación de Dinámica Molecular , Bases de Schiff , Bases de Schiff/química , Metales Pesados/química , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Ligandos
15.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573576

RESUMEN

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Asunto(s)
Cobre , Plomo , Metales Pesados , Aceite de Soja , Sulfuros , Contaminantes Químicos del Agua , Adsorción , Plomo/química , Aceite de Soja/química , Cobre/química , Sulfuros/química , Porosidad , Contaminantes Químicos del Agua/química , Metales Pesados/química , Cromo/química , Cinética , Concentración de Iones de Hidrógeno
16.
Int J Biol Macromol ; 266(Pt 2): 131192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574641

RESUMEN

The present study reports on the selective and sensitive detection of metals using xanthan gum-capped chromia nanoparticles (XG-CrNPs). The nanoparticles were synthesized by the chemical reduction method using sodium borohydride and xanthan gum as the reducing and capping agents, respectively. The synthesis of XG-CrNPs was confirmed by the appearance of the two absorption peaks at 272 nm and 371 nm in the UV-visible region. The nanoparticles have been extensively characterized by FTIR, TEM-EDX, XRD, and TGA analyses. The well-dispersed XG-CrNPs exhibited a quasi-spherical structure with an average particle size of 3 nm. A significantly low amount (2 µg/L) of XG-CrNPs was used for selective and sensitive detection of heavy metal ions. It showed excellent metal detecting properties by quenching its band gap signal which was extraordinarily conspicuous for Co(II), Hg(II), and Cd(II) in comparison to other metal ions like Ag(I), Ba(II), Mg(II), Mn(II), Ni(II), and Zn(II). The limit of detection of Co(II), Cd(II), and Hg(II) with this nanoprobe was found to be 2.167 µM, 1.065 µM, and 0.601 µM respectively. The nanoparticles manifested higher shelf-life and can be reused up to three consecutive cycles where most of its activity was conserved even after being used. Thus, it may find use in metal sensor devices for the detection of hazardous metals.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Metales Pesados/análisis , Metales Pesados/química , Nanopartículas del Metal/química , Iones , Nanopartículas/química , Cromo/análisis , Cromo/química
17.
Chemosphere ; 356: 141897, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582156

RESUMEN

Global water pollution and scarcity of water resources are turning increasingly into serious threats to the survival of all living organisms on Earth. This study offers an influent strategy for the electrosynthesis of reduced graphene oxide/polyaniline/ß-cyclodextrin (rGO/PAni/ßCD) nanocomposite and its application to the removal/recovery of heavy elements (HEs) and rare-earth elements (REEs). Besides physicochemical and electrochemical studies, the surface morphological and statistical properties of fabricated nanocomposite electrode were examined. The textural and morphological characteristics of nanocomposite electrode were investigated via AFM data based on statistical, stereometric, and fractal theory. The cohesive, porous, and well-developed morphology of fabricated nanocomposite electrode has enabled the electrodeposition technique to achieve significant simultaneous removal/recovery efficiency of HE and REE ions such as Pb(II), Cu(II), Cd(II), Hg(II), Ce(IV), and Nb(V). Therefore, using rGO/PAni/ßCD, considerable removal of HEs and REEs was achieved under optimized pH, 0.1 M KNO3, and 35 mg L-1 metal ion initial concentration during 20 min. Removal capacity of the nanocomposite electrode is preserved subsequent to 10 cycles of electrodeposition/desorption, according to the desorption investigation through eluted adsorbent at time intervals in deionized water and adjusted acidic pH values. Then, using rGO/PAni/CD nanocomposite, simulated seawater remediation was accomplished successfully. This interdisciplinary approach reveals that the removal/recovery efficiency enhance linearly along with the improvement of well-developed morphology for electrosynthesized composites. Thus, these results suggest how the morphological features of the polymer composites could improve remediation of water resources.


Asunto(s)
Compuestos de Anilina , Electrodos , Oro , Grafito , Metales de Tierras Raras , Nanocompuestos , Agua de Mar , Contaminantes Químicos del Agua , beta-Ciclodextrinas , Compuestos de Anilina/química , Grafito/química , beta-Ciclodextrinas/química , Agua de Mar/química , Contaminantes Químicos del Agua/química , Nanocompuestos/química , Oro/química , Metales de Tierras Raras/química , Metales Pesados/química , Adsorción
18.
Chemosphere ; 356: 141878, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582172

RESUMEN

In this study, a sulfur-modified magnetic hydrochar was synthesized by grafting thiol-containing groups onto the sludge-derived hydrochar. The modified hydrochar exhibited effective adsorption of Cu2+, Pb2+, Zn2+, and Cd2+ over a wide pH range and in the presence of coexisting ions, and showed almost no secondary leaching in three acidic solutions. In the mult-metal ion system, the modified hydrochar exhibited maximum adsorption capacities were 39.38, 105.74, 26.53, and 38.11 mg g-1 for Cu2+, Pb2+, Zn2+, and Cd2+, respectively. However, the binding capacity and adsorption amount of modified hydrochar for metal ions were lower in the mult-metal ion system compared to the unit-metal ion system. Notably, Pb2+ showed a strong inhibitory effect on the adsorption of other heavy metal ions by modified hydrochar due to strong competition for xanthate functional groups. The Pb2+ occupied the xanthate and native functional groups (-OH, -NH2, and Fe-O etc.), leaving only a small amount of adsorption sites for Cu2+, Zn2+ and Cd2+. Simulation results further supported these findings, indicating that Pb2+ had the highest density profiles near the four functional groups, and the density profiles of the four heavy metals near the xanthate functional groups were greater compared to the other three functional groups. Furthermore, the SEM-EDS, TOF-SIMI, and XPS results indicated that modified hydrochar achieved excellent mineral binding mainly through electrostatic interaction, ion exchange, and chelation. Overall, these results highlight the sulfur-modified magnetic hydrochar as a highly efficient adsorbent for heavy metals in environmental applications.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Adsorción , Metales Pesados/química , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/química , Minerales/química
19.
Chemosphere ; 356: 141932, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593955

RESUMEN

The presence of heavy metals in water pose a serious threat to both public and environmental health. However, the advances in the application of low cost biochar based adsorbent synthesize from various feedstocks plays an effective role in the of removal heavy metals from water. This study implies the introduction of novel method of converting food waste (FW) to biochar through pyrolysis, examine its physiochemical characteristics, and investigate its adsorption potential for the removal of heavy metals from water. The results revealed that biochar yield decreased from 18.4 % to 14.31 % with increase in pyrolysis temperature from 350 to 550 °C. Likewise, increase in the pyrolysis temperature also resulted in the increase in the ash content from 39.87 % to 42.05 % thus transforming the biochar into alkaline nature (pH 10.17). The structural and chemical compositions of biochar produced at various temperatures (350, 450, and 550 °C) showed a wide range of mineralogical composition, and changes in the concentration of surface functional groups. Similarly, the adsorption potential showed that all the produced biochar effectively removed the selected heavy metals from wastewater. However a slightly high removal capacity was observed for biochar produced at 550 °C that was credited to the alkaline nature, negatively charged biochar active sites due to O-containing functional groups and swelling behavior. The results also showed that the maximum adsorption was recorded at pH 8 at adsorbent dose of 2.5 g L-1 with the contact time of 120 min. To express the adsorption equilibrium, the results were subjected to Langmuir and Freundlich isotherms and correlation coefficient implies that the adsorption process follows the Freundlich adsorption isotherm. The findings of this study suggest the suitability of the novel FW derived biochar as an effective and low cost adsorbent for the removal of heavy metals form wastewater.


Asunto(s)
Carbón Orgánico , Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico/química , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Aguas Residuales/química , Adsorción , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Pirólisis , Alimentos , Alimento Perdido y Desperdiciado
20.
Environ Sci Pollut Res Int ; 31(20): 30039-30058, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594565

RESUMEN

Heedless disposal of oil-based fly ash contributes to the contamination of the air, water, and soil. Acid leaching of industrial solid wastes is recognized as a versatile, cost-effective, and environmentally friendly solid waste treatment approach. The present study investigated the viability of conventional leaching (CL) and microwave-assisted leaching (MAL) of predominant heavy metals from Mazut-burnt fly ash. For this purpose, the practicality of four organic acids with various specifications (ascorbic, gluconic, citric, and oxalic acids) on the dissolution efficiency of fly ash components was examined. Utilization of oxalic acid led to achieving full V recovery, complete Fe removal, and Ni enrichment in the residue in both CL and MAL setups. The Ni content of the sample was enriched from 6% in the calcinated sample to 23.7% in the oxalic acid leaching residue. Using citric acid resulted in the co-extraction of V, Ni, and Fe with nearly 70% V, 50% Ni, and 89% Fe dissolved in CL. The dissolution efficiencies were slightly lower in MAL. Oxalic acid was selected as the most promising organic acid reagent for fly ash treatment, so its CL kinetics was studied and defined by the shrinking particle model. The model showed that the controlling steps in the leaching of V differ over time, changing from a chemical reaction before 60 min to fluid film diffusion or mixing afterward. The kinetic study proved MAL as an effective technique in overcoming the leaching kinetic barriers. A life cycle assessment study was conducted to determine the environmental impacts of the proposed process. Accordingly, the MAL using oxalic acid was the most environmentally friendly process among the studied ones, and the utilization of microwaves leads to the reduction of the leaching processes' environmental impacts by decreasing the processing time.


Asunto(s)
Ceniza del Carbón , Microondas , Ceniza del Carbón/química , Cinética , Metales Pesados/química , Ácido Oxálico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...