Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Hazard Mater ; 468: 133701, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364576

RESUMEN

Rare earth elements (REEs) are crucial elements for current high-technology and renewable energy advances. In addition to their increasing usage and their low recyclability leading to their release into the environment, REEs are also used as crop fertilizers. However, little is known regarding the cellular and molecular effects of REEs in plants, which is crucial for better risk assessment, crop safety and phytoremediation. Here, we analysed the ionome and transcriptomic response of Arabidopsis thaliana exposed to a light (lanthanum, La) and a heavy (ytterbium, Yb) REE. At the transcriptome level, we observed the contribution of ROS and auxin redistribution to the modified root architecture following REE exposure. We found indications for the perturbation of Fe homeostasis by REEs in both roots and leaves of Arabidopsis suggesting competition between REEs and Fe. Furthermore, we propose putative ways of entry of REEs inside cells through transporters of microelements. Finally, similar to REE accumulating species, organic acid homeostasis (e.g. malate and citrate) appears critical as a tolerance mechanism in response to REEs. By combining ionomics and transcriptomics, we elucidated essential patterns of REE uptake and toxicity response of Arabidopsis and provide new hypotheses for a better evaluation of the impact of REEs on plant homeostasis.


Asunto(s)
Arabidopsis , Metales de Tierras Raras , Arabidopsis/genética , Metales de Tierras Raras/toxicidad , Lantano , Plantas , Homeostasis
2.
Chemosphere ; 349: 140895, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070608

RESUMEN

Rare earth elements (REEs) are increasingly used in a wide range of applications. However, their toxicokinetic behaviors in animals and humans are not yet fully documented, hindering health risk assessments. We used a rat experimental model to provide novel data on the toxicokinetics of the insoluble oxide forms of praseodymium (Pr), neodymium (Nd), cerium (Ce) and yttrium (Y) administered intravenously. Detailed blood, urinary and fecal time courses were documented through serial sampling over 21 days in male Sprague-Dawley rats exposed to a mixture of these REE oxides administered at two different doses (0.3 or 1 mg kg-1 bw of each REE oxide commercially sold as bulk µm-sized particles). Tissue REE levels at the time of sacrifice were also measured. Significant effects of the dose on REE time courses in blood and on cumulative urinary and fecal excretion rates were observed for all four REE oxides assessed, as lower cumulative excretion rates were noted at the higher REE dose. In the liver, the main accumulation organ, the fraction of the administered REE dose remaining in the tissue at necropsy was similar at both doses. Toxicokinetic data for the REE oxides were compared to similar data for their chloride salts (also administered intravenously in a mixture, at 0.3 and 1 mg kg-1 bw of each REE chloride) obtained from a previous study. Compared to their chloride counterparts, faster elimination of REE oxides from the blood was observed in the first hours post-dosing. Furthermore, higher mean residence time (MRT) values as well as slower cumulative urinary and fecal excretion were determined for the REE oxides. Also, while liver REE retention was similar for both REE forms, the fractions of the administered REEs recovered in the spleen and lungs were noticeably higher for the REE oxides, at both dose levels. This study highlights the importance of both the dose and form of the administered REEs on their toxicokinetic profiles. Results indicate that chronic exposure and increased doses of REEs may favor bioaccumulation in the body, in particular for insoluble oxide forms of REEs, which are eliminated more slowly from the body.


Asunto(s)
Metales de Tierras Raras , Óxidos , Humanos , Masculino , Ratas , Animales , Óxidos/toxicidad , Toxicocinética , Cloruros , Ratas Sprague-Dawley , Metales de Tierras Raras/toxicidad
3.
Sci Total Environ ; 905: 167302, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37742965

RESUMEN

Rare earth elements (REE) are emerging contaminants due to their increased use in diverse applications including cutting-edge and green-technologies. Their environmental concerns and contradicting results concerning their biological effects require an extensive understanding of REE ecotoxicology. Thus, we have studied the fate, bioaccumulation and biological effects of three representative REE, neodymium (Nd), gadolinium (Gd) and ytterbium (Yb), individually and in mixture, using the freshwater bivalve Corbicula fluminea. The organisms were exposed for 96 h at 1 mg L-1 REE in the absence and presence of dissolved organic matter (DOM) reproducing an environmental contamination. Combined analysis of the fate, distribution and effects of REE at tissue and subcellular levels allowed a comprehensive understanding of their behaviour, which would help improving their environmental risk assessment. The bivalves accumulated significant concentrations of Nd, Gd and Yb, which were decreased in the presence of DOM likely due to the formation of REE-DOM complexes that reduced REE bioavailability. The accumulation of Nd, Gd and Yb differed between tissues, with gills > digestive gland ≥ rest of soft tissues > hemolymph. In the gills and in the digestive gland, Nd, Gd and Yb were mostly (>90 %) distributed among metal sensitive organelles, cellular debris and detoxified metal-rich granules. Gadolinium, Yb and especially Nd decreased lysosome size in the digestive gland and disturbed osmo- and iono-regulation of C. fluminea by decreasing Na concentrations in the hemolymph and Ca2+ ATPase activity in the gills. Individual and mixed Nd, Gd and Yb exhibited numerous similarities and some differences in terms of fate, accumulation and biological effects, possibly because they have common abiotic and biotic ligands but different affinities for the latter. In most cases, individual and mixed effects of Nd, Gd, Yb were similar suggesting that additivity approach is suitable for the environmental risk assessment of REE mixtures.


Asunto(s)
Corbicula , Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Gadolinio/toxicidad , Gadolinio/análisis , Metales de Tierras Raras/toxicidad , Metales de Tierras Raras/análisis , Agua Dulce , Ecotoxicología , Contaminantes Químicos del Agua/análisis
4.
J Hazard Mater ; 460: 132487, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37690204

RESUMEN

Extensive rare earth element (REE) mining activities pose threats to agricultural soils surrounding the mining areas. Here, low and high REE-contaminated soils from farmlands around mine tailings were remediated with hydroxyapatite. A toxicokinetic approach was applied to assess whether the use of hydroxyapatite reduced the bioavailability of REEs and thus inhibited their accumulation in the terrestrial organism Enchytraeus crypticus. Our results showed that addition of hydroxyapatite increased soil pH, DOC and anion contents. CaCl2-extractable REE concentrations significantly decreased, indicating the stabilization by hydroxyapatite. The influence of hydroxyapatite on the REE accumulation in enchytraeids was quantified by fitting a toxicokinetic model to dynamic REE body concentrations. The estimated uptake (Ku) and elimination rate constants (Ke), and bioaccumulation factor (BAF) for REEs were in the range of 0.000821 - 0.122 kgsoil/kgworm day-1, 0.0224 - 0.136 day-1, and 0.00135 - 1.96, respectively. Both Ku and BAF were significantly reduced by over 80% by hydroxyapatite addition, confirming the decreased REE bioavailability. Low atomic number REEs had higher BAFs in slightly contaminated soil, suggesting a higher bioaccumulation potential of light REEs in soil organisms. Overall, chemical stabilization with amendments can attenuate the bioavailability of REEs and reduce the potential ecological risk of contaminated agricultural soils near REE mining areas.


Asunto(s)
Metales de Tierras Raras , Oligoquetos , Animales , Suelo , Toxicocinética , Agricultura , Bioacumulación , Durapatita , Metales de Tierras Raras/toxicidad
5.
Environ Sci Process Impacts ; 25(8): 1288-1297, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37249563

RESUMEN

While our awareness of the toxicity of rare earth elements to aquatic organisms increases, our understanding of their direct interaction and accumulation remains limited. This study describes the acute toxicity of lanthanum (La) and gadolinium (Gd) in Daphnia magna neonates and discusses potential modes of action on the basis of the respective patterns of biodistribution. Ecotoxicological bioassays for acute toxicity were conducted and dissolved metal concentrations at the end of the tests were determined. The results showed a significant difference in nominal EC50 (immobility) between La (>30 mg L-1) and Gd (13.93 (10.92 to 17.38) mg L-1). Daphnids that were then exposed to a concentration close to the determined EC50 of Gd (15 mg L-1, nominal concentration) for 48 h and 72 h were studied by synchrotron micro and nano-X-ray fluorescence to evaluate the biodistribution of potentially accumulated metals. X-ray fluorescence analyses showed that La was mainly found in the intestinal track and appeared to accumulate in the hindgut. This accumulation might be explained by the ingestion of solid La precipitates formed in the media. In contrast, Gd could only be detected in a small amount, if at all, in the intestinal tract, but was present at a much higher concentration in the tissues and became more pronounced with longer exposure time. The solubility of Gd is higher in the media used, leading to higher dissolved concentrations and uptake into tissue in ionic form via common metal transporting proteins. By studying La and Gd biodistribution in D. magna after an acute exposure, the present study has demonstrated that different uptake pathways of solid and dissolved metal species may lead to different accumulation patterns and toxicity.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Gadolinio/toxicidad , Lantano/toxicidad , Lantano/metabolismo , Daphnia , Distribución Tisular , Metales de Tierras Raras/toxicidad , Metales/metabolismo , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Pollut Res Int ; 30(36): 84829-84849, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37138125

RESUMEN

Rare earth elements (REEs) that include 15 lanthanides, scandium, and yttrium are a special class of elements due to their remarkable qualities such as magnetism, corrosion resistance, luminescence, and electroconductivity. Over the last few decades, the implication of REEs in agriculture has increased substantially, which was driven by rare earth element (REE)-based fertilizers to increase crop growth and yield. REEs regulate different physiological processes by modulating the cellular Ca2+ level, chlorophyll activities, and photosynthetic rate, promote the protective role of cell membranes, and increase the plant's ability to withstand various stresses and other environmental factors. However, the use of REEs in agriculture is not always beneficial because REEs regulate plant growth and development in dose-dependent manner and excessive usage of them negatively affects plants and agricultural yield. Moreover, increasing applications of REEs together with technological advancement is also a rising concern as they adversely impact all living organisms and disturb different ecosystems. Several animals, plants, microbes, and aquatic and terrestrial organisms are subject to acute and long-term ecotoxicological impacts of various REEs. This concise overview of REEs' phytotoxic effects and implications on human health offers a context for continuing to sew fabric scraps to this incomplete quilt's many layers and colors. This review deals with the applications of REEs in different fields, specifically agriculture, the molecular basis of REE-mediated phytotoxicity, and the consequences for human health.


Asunto(s)
Alcaloides , Elementos de la Serie de los Lantanoides , Metales de Tierras Raras , Animales , Humanos , Ecosistema , Metales de Tierras Raras/toxicidad , Itrio , Plantas
7.
Sci Total Environ ; 879: 163259, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37011679

RESUMEN

The widespread application of rare earth elements (REEs) has raised concerns about their potential release into the environment and subsequent ingestion by humans. Therefore, it is essential to evaluate the cytotoxicity of REEs. Here, we investigated the interactions between three typical REEs (La, Gd, and Yb) ions as well as their nanometer/µm-sized oxides and red blood cells (RBCs), a plausible contact target for nanoparticles when they enter the bloodstream. Hemolysis of REEs at 50-2000 µmol L-1 was examined to simulate their cytotoxicity under medical or occupational exposure. We found that the hemolysis due to the exposure of REEs was highly dependent on their concentration, and the cytotoxicity followed the order of La3+ > Gd3+ > Yb3+. The cytotoxicity of REE ions (REIs) is higher than REE oxides (REOs), while nanometer-sized REO caused more hemolysis than that µm-sized REO. The production of reactive oxygen species (ROS), ROS quenching experiment, as well as the detection of lipid peroxidation, confirmed that REEs causes cell membrane rupture by ROS-related chemical oxidation. In addition, we found that the formation of a protein corona on REEs increased the steric repulsion between REEs and cell membranes, hence mitigating the cytotoxicity of REEs. The theoretical simulation indicated the favorable interaction of REEs with phospholipids and proteins. Therefore, our findings provide a mechanistic explanation for the cytotoxicity of REEs to RBCs once they have entered the blood circulation system of organisms.


Asunto(s)
Metales de Tierras Raras , Corona de Proteínas , Humanos , Óxidos/toxicidad , Hemólisis , Especies Reactivas de Oxígeno , Metales de Tierras Raras/toxicidad , Lípidos
8.
Chemosphere ; 329: 138592, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37023907

RESUMEN

Heavy metals (HMs) are routine contaminants due to their extensive use worldwide. Rare earth elements (REEs) are emerging contaminants because of their global exploitation for use in the high-tech sector. Diffusive gradients in thin films (DGT) are an effective method for measuring the bioavailable component of pollutants. This study represents the first assessment of the mixture toxicity of HMs and REEs in aquatic biota using the DGT technique in sediments. Xincun Lagoon was chosen as the case study site because it has been contaminated by pollutants. Nonmetric multidimensional scaling (NMS) analysis reveals that a wide variety of pollutants (Cd, Pb, Ni, Cu, InHg, Co, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb) are primarily impacted by sediment characteristics. Appraisal of single HM-REE toxicity reveals that the risk quotient (RQ) values for Y, Yb and Ce notably exceeded 1, demonstrating that the adverse effects of these single HMs and REEs should not be ignored. The combined toxicity of HM-REE mixtures in terms of probabilistic ecological risk assessment shows that the Xincun surface sediments had a medium probability (31.29%) of toxic effects on aquatic biota.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Metales de Tierras Raras , Contaminantes Químicos del Agua , Metales de Tierras Raras/toxicidad , Metales de Tierras Raras/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , Ecotoxicología , Sedimentos Geológicos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , China
9.
Bull Environ Contam Toxicol ; 110(3): 65, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922429

RESUMEN

Rare earth elements (REEs) cerium (Ce) and lanthanum (La) and their combination were tested across a concentration range, from toxic (10-4 to 10-5 M) to lower concentrations (10-6 to 10-8 M) for their effects on sea urchin (Sphaerechinus granularis) sperm. A significantly decreased fertilization rate (FR) was found for sperm exposed to 10-5 M Ce, La and their combination, opposed to a significant increase of FR following 10-7 and 10-8 M REE sperm exposure. The offspring of REE-exposed sperm showed significantly increased developmental defects following sperm exposure to 10-5 M REEs vs. untreated controls, while exposure to 10-7 and 10-8 M REEs resulted in significantly decreased rates of developmental defects. Both of observed effects-on sperm fertilization success and on offspring quality-were closely exerted by Ce or La or their combination.


Asunto(s)
Cerio , Metales de Tierras Raras , Animales , Masculino , Lantano/toxicidad , Cerio/toxicidad , Semen , Erizos de Mar , Metales de Tierras Raras/toxicidad , Espermatozoides
10.
Ecotoxicol Environ Saf ; 251: 114538, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652740

RESUMEN

The increasing use of Rare Earth Elements (REE) in emerging technologies, medicine and agriculture has led to chronic aquatic compartment contamination. In this context, this aimed to evaluate the acute toxic effects of lanthanum (La), neodymium (Nd) and samarium (Sm), as both single and binary and ternary mixtures on the survival of the microcrustacean Daphnia similis. A metal solution medium with (MS) and without EDTA and cyanocobalamin (MSq) as chelators was employed as the assay dilution water to assess REE bioavailability effects. In the single exposure experiments, toxicity in the MS medium decreased following the order La > Sm > Nd, while the opposite was noted for the MSq medium, which was also more toxic than the MS medium. The highest MS toxicity was observed for the binary Nd + La (1:1) mixture (EC50 48 h of 11.57 ± 1.22 mg.L-1) and the lowest, in the ternary Sm + La + Nd (2:2:1) mixture (EC50 48 h 41.48 ± 1.40 mg.L-1). The highest toxicity in the MSq medium was observed in the single assays and in the binary Sm + Nd (1:1) mixture (EC50 48 h 10.60 ± 1.57 mg.L-1), and the lowest, in the ternary Sm + La + Nd (1:2:2) mixture (EC50 48 h 36.76 ± 1.54 mg.L-1). Concerning the MS medium, 75 % of interactions were additive, 19 % antagonistic, and 6 % synergistic. In the MSq medium, 56 % of interactions were synergistic and 44 % additive. The higher toxicity observed in the MSq medium indicates that the absence of chelators can increase the concentrations of more toxic free ions, suggesting that the MS medium should be avoided in REE assays. Additive interactions were observed in greater or equivalent amounts in both media and were independent of elemental mixture ratios. These findings improve the understanding of environmental REE effects, contributing to the establishment of future guidelines and ecological risk calculations.


Asunto(s)
Daphnia , Metales de Tierras Raras , Animales , Metales de Tierras Raras/toxicidad , Samario , Lantano/toxicidad , Neodimio/farmacología , Quelantes/farmacología
11.
Chemosphere ; 311(Pt 1): 136823, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36241114

RESUMEN

Exploring the factors that simultaneously increase the accumulation of various pollutants in cells of organisms to restrict the toxic effects of pollutants on organisms has become a focus of research aimed at protecting ecosystems. Here, we found that the accumulation of organic [e.g., benzo(a)pyrene (BaP)], inorganic [e.g., cadmium (Cd)] and emerging [e.g., rare earth elements (REEs)] pollutants in leaf cells of different plants grown in Nanjing was 567-1022%, 547-922% and 972-1392% of those grown in Haikou, respectively, when the concentration of REEs in rainwater of Nanjing and Haikou was 4.31 × 10-3 µg/L and 3.04 × 10-6 µg/L. Unprecedentedly, endocytosis in leaf cells of different plants grown in Nanjing was activated by REEs, and then extracellular BaP, Cd and REEs (e.g. terbium) were transported into these leaf cells together via endocytic vesicles. Particularly, the co-accumulation of those pollutants in these leaf cells was sharply increased, thus magnifying their toxic effects on these plants. Furthermore, the co-accumulation of those pollutants in human cells was also significantly increased by REEs, in a similar way to these leaf cells. Therefore, REEs in environments are key factors that greatly increase the co-accumulation of various pollutants in cells of organisms. These results provide new insights into how pollutants are accumulated in cells of organisms in ecosystems, informing a reference for making policy to ensure the safety of ecosystems.


Asunto(s)
Contaminantes Ambientales , Metales de Tierras Raras , Humanos , Contaminantes Ambientales/toxicidad , Cadmio/toxicidad , Ecosistema , Metales de Tierras Raras/toxicidad , Terbio , Plantas
12.
Biol Trace Elem Res ; 201(5): 2573-2581, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35715718

RESUMEN

Rare earth elements (REEs) are recognized as emerging contaminants with implications in human and environmental health. Apart from their adverse effects, REEs have been reported as having positive effects when amended to fertilizers and livestock feed additives, thus suggesting a hormetic trend, implying a concentration-related shift from stimulation to inhibition and toxicity, with analogous trends that have been assessed for a number of xenobiotics. In view of optimizing the success of REE mixtures in stimulating crop yield and/or livestock growth or egg production, one should foresee the comparative concentration-related effects of individual REEs (e.g., Ce and La) vs. their mixtures, which may display distinct trends. The results might prompt further explorations on the use of REE mixtures vs. single REEs aimed at optimizing the preparation of fertilizers and feed additives, in view of the potential recognition of their use in agronomy and zootechny.


Asunto(s)
Fertilizantes , Metales de Tierras Raras , Animales , Humanos , Ganado , Metales de Tierras Raras/toxicidad , Agricultura , Alimentación Animal
13.
J Agric Food Chem ; 70(51): 16390-16400, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36524925

RESUMEN

Given that increasing temperature may aggravate the toxicity of pollutants, it is a daunting challenge to evaluate the realistic risks of rare earth elements (REEs) under global warming. Here, we studied how elevated temperatures (27 and 32 °C) impact the effect of yttrium (Y) on wheat plants (Triticum aestivum L.) at concentrations not causing effects (0, 0.5, and 1 µM) at the control temperature (22 °C) in a hydroponic system. After 14 days of exposure, significant inhibition (p < 0.05, 29.5%) of root elongation was observed only at 1 µM of Y at 32 °C. Exposure to Y at 27 °C showed no visible effects on root length, but induced significant (p < 0.05) metabolic disorders of a range of carbohydrates and amino acids related to galactose, phenylalanine, and glutamate metabolisms. Such cases were even shifted to substantial perturbation of the nucleotide pool reallocation involved in the disruption of purine and pyrimidine metabolism at 32 °C. These observations were regulated by sets of genes involved in these perturbed pathways. Using weighted gene co-expression network analysis, the disorder of nucleotide metabolism was shown to be responsible for the aggravated Y phytotoxicity at the extreme high temperature. Although the temperature fluctuation considered seems to be in an extreme range, unexpected implications driven by high temperature cannot be neglected. Our findings thus reduce the gaps of knowledge in REE toxicity to plants under future climate warming scenarios and highlight the importance of incorporating environmental temperature into the framework of the risk assessment of REEs.


Asunto(s)
Metales de Tierras Raras , Itrio , Itrio/metabolismo , Itrio/farmacología , Triticum/química , Temperatura , Metales de Tierras Raras/toxicidad , Metales de Tierras Raras/análisis , Plantas/metabolismo
14.
Ecotoxicol Environ Saf ; 242: 113922, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905629

RESUMEN

Rare earth elements (REEs) have been widely applied as fertilizers in farmland of China for decades to improve the yield and quality of crops. Unfortunately, adverse effects on plants have been observed due to overdosing with REEs. Until now, the toxicology of REEs was mainly evaluated based on phenotypic responses, but knowledge gaps still exist concerning their metabolic effects. Here, the physiological responses and nontargeted metabolomics studies were combined to systematically explore the potential effects of La and Ce on a crop plant, wheat Triticum aestivum. It was observed that REEs accumulated in the shoots of wheat, with significant reduction of the shoot biomass at higher exposure doses. The disturbance of photosynthesis and induced oxidative stress were identified by analyzing indicators of the photosynthetic (chlorophyll a/b, carotenoid and rubisco) and antioxidant systems (POD, CAT, SOD, GSH and MDA). Furthermore, the global metabolic profiles of REEs treatment groups and the non-exposed control group were screened and compared, and the metabolomic disturbance of REEs was dose-dependent. A high overlap of significantly changed metabolites and matched disturbed biological pathways was found between La and Ce treatments, indicating similarity of their toxicity mechanism in wheat shoots. Generally, the perturbed metabolomic pathways were mainly related to carbohydrate, amino acid and nucleotide/side metabolism, suggesting a disturbance of carbon and nitrogen metabolism, which finally affected the growth of wheat. We thus proved the potential adverse effect of inappropriate application of REEs in crop plants and postulated metabolomics as a feasible tool to identify the underlying toxicological mechanisms.


Asunto(s)
Antioxidantes , Metales de Tierras Raras , Antioxidantes/metabolismo , Clorofila A , Productos Agrícolas/metabolismo , Metales de Tierras Raras/toxicidad , Fotosíntesis , Triticum
15.
Environ Pollut ; 307: 119554, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35640725

RESUMEN

Rare earth elements (REE) have become essential in high- and green-technologies. Their increasing use lead to the release of anthropogenic REE into the environment including aquatic systems. The limited data available on the aquatic ecotoxicology of REE indicate their biological effects are highly dependent on their speciation, posing challenges for a reliable environmental risk assessment (ERA). The current study assessed the influence of speciation on the toxicity of neodymium (Nd), gadolinium (Gd) and ytterbium (Yb) in the Daphnia magna mobility inhibition test (ISO 6341:2012). REE toxicity was assessed individually and in ternary mixture, in the absence and presence of dissolved organic matter (DOM). Speciation was predicted by modeling and REE bioaccumulation by D. magna was measured to better understand the relationship between REE speciation and toxicity. DOM decreased significantly the toxicity of Nd, Gd and the mixture towards this freshwater crustacean. This was explained by a lower REE bioaccumulation in the presence of DOM due to REE-DOM complexation, which reduced REE bioavailability. DOM effects on Yb toxicity and bioaccumulation were limited because of Yb precipitation. We show that the way of expressing EC50 values (based on nominal, measured or predicted REE concentrations in solution) drastically changed REE toxicity assessment and that these changes were influenced by REE speciation. This study demonstrates for the first time that REE speciation, and especially REE-DOM complexation, significantly influences REE bioaccumulation and toxicity towards D. magna. Our results have implications for the subsequent ERA of REE.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Animales , Disponibilidad Biológica , Daphnia , Agua Dulce , Metales de Tierras Raras/toxicidad , Contaminantes Químicos del Agua/análisis
16.
Ecotoxicology ; 31(5): 689-699, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35362805

RESUMEN

Rare Earth Elements (REE) are becoming increasingly important economically and highly exploited, thus contributing to REE increases in ecosystems. The ecotoxicological effects of REE on the terrestrial environment are, however, not fully understood and information on the biological effects of REE is urgently required for environmental risk assessments. In this review, studies and gaps in the existing scientific literature regarding the toxicological effects of REE on terrestrial organisms are presented. A total of 41 articles from the Web of Science database are discussed. La and Ce are the most studied elements, while little information is found concerning heavy REE. Most studies have been performed on plant species and few investigations are available for animals. Plant effects such as reduced mitotic index, germination and photosynthesis and antioxidant system enzyme alterations have been reported. Invertebrate effects include mortality, reproduction alterations and reduced locomotion. Based on the limited number of articles on terrestrial environment REE effects, this review highlights the need for more detailed studies in order to elucidate the effects associated with the REE hormesis and perform complete risk assessments with the establishment of safe REE usage limits.


Asunto(s)
Ecosistema , Metales de Tierras Raras , Animales , Ecotoxicología , Invertebrados , Metales de Tierras Raras/toxicidad , Plantas
17.
Sci Total Environ ; 831: 155416, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489480

RESUMEN

Rare earth element nanoparticles (REE NPs) or agents have been used extensively in various fields. Human exposure to REE NPs is an increasing concern. To date, REE NP-mediated comprehensive immune responses after incorporation into the body remain unclear. In our study, using gadolinium oxide NPs (Gd2O3) as a typical REE NP, we systematically investigated immune responses in vivo. The liver and spleen were the main sites where Gd2O3 retained and accumulated, while Gd2O3 content per unit tissue mass in the spleen was 4.4 times higher than that in the liver. Gd2O3 increased the number of monocyte-derived macrophages and myeloid-derived dendritic cells (M-DCs) in the liver. In the spleen, Gd2O3 caused infiltration of neutrophils, M-DCs, and B cells. The accumulation of Gd2O3 in the liver or spleen also contributed to an increased concentration of cytokines in peripheral blood. In both the bone marrow and spleen, Gd2O3 led to increased populations of hematopoietic stem cells (HSCs), multipotent progenitors, and common lymphoid progenitors. Compared to the decreased monocytes in peripheral blood on day 2, a significant decrease of circulating lymphocytes on day 7 was still observed, suggesting the exposure duration led to variable effects. This might be explained by the sustained accumulation of Gd2O3 in the liver and spleen. Together, our study systemically depicted the alterations in mature immune alterations together with hematopoiesis in both myeloid and lymphoid lineages induced by Gd2O3 exposure. Our findings will facilitate a comprehensive understanding of the interactions of immune system with REE NPs in vivo.


Asunto(s)
Metales de Tierras Raras , Nanopartículas , Animales , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Inflamación/inducido químicamente , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/toxicidad , Ratones , Nanopartículas/toxicidad
18.
Sci Rep ; 12(1): 2089, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136105

RESUMEN

The effects of rare earth mining on rice biomass, rare earth element (REE) content and bacterial community structure was studied through pot experiment. The research shows that the REE content in rice roots, shoots and grains was significantly positive correlated with that in soil, and the dry weight of rice roots, shoots and grains was highly correlated with soil physical and chemical properties, nutrient elements and REE contents; The exploitation of rare earth minerals inhibited a-diversity of endophytic bacteria in rhizosphere, root, phyllosphere and leaf of rice, significantly reduced the abundance index, OTU number, Chao, Ace index and also significantly reduced the diversity index-Shannon index, and also reduced uniformity index: Pielou's evenness index, which caused ß-diversity of bacteria to be quite different. The exploitation of rare earth minerals reduces the diversity of bacteria, but forms dominant bacteria, such as Burkholderia, Bacillus, Buttiauxella, Acinetobacter, Bradyrhizobium, Candida koribacter, which can degrade the pollutants formed by exploitation of rare earth minerals, alleviate the compound pollution of rare earth and ammonia nitrogen, and also has the function of fixing nitrogen and resisting rare earth stress; The content of soil available phosphorus in no-mining area is lower, and the dominant bacteria of Pantoea formed in such soil, which has the function of improving soil phosphorus availability. Rare earth elements and physical and chemical properties of soil affect the community structure of bacteria in rhizosphere and phyllosphere of rice, promote the parallel movement of some bacteria in rhizosphere, root, phyllosphere and leaf of rice, promote the construction of community structure of bacteria in rhizosphere and phyllosphere of rice, give full play to the growth promoting function of Endophytes, and promote the growth of rice. The results showed that the exploitation of rare earth minerals has formed the dominant endophytic bacteria of rice and ensured the yield of rice in the mining area, however, the mining of mineral resources causes the compound pollution of rare earth and ammonia nitrogen, which makes REE content of rice in mining area significantly higher than that in non-mining area, and the excessive rare earth element may enter the human body through the food chain and affect human health, so the food security in the REE mining area deserves more attention.


Asunto(s)
Endófitos/efectos de los fármacos , Metales de Tierras Raras/toxicidad , Microbiota , Oryza/microbiología , Rizosfera , Bacterias/efectos de los fármacos , Metales de Tierras Raras/metabolismo , Oryza/efectos de los fármacos , Oryza/metabolismo , Suelo/química , Microbiología del Suelo
19.
J Hazard Mater ; 425: 127830, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34896703

RESUMEN

The rapid development of green energy sources and new medical technologies contributes to the increased exploitation of rare earth elements (REEs). They can be subdivided into light (LREEs) and heavy (HREEs) REEs. Mining, industrial processing, and end-use practices of REEs has led to elevated environmental concentrations and raises concerns about their toxicity to organisms and their impact on ecosystems. REE toxicity has been reported, but its precise underlying molecular effects have not been well described. Here, transcriptomic and proteomic approaches were combined to decipher the molecular responses of the model organism Saccharomyces cerevisiae to La (LREE) and Yb (HREE). Differences were observed between the early and late responses to La and Yb. Several crucial pathways were modulated in response to both REEs, such as oxidative-reduction processes, DNA replication, and carbohydrate metabolism. REE-specific responses involving the cell wall and pheromone signalling pathways were identified, and these responses have not been reported for other metals. REE exposure also modified the expression and abundance of several ion transport systems, with strong discrepancies between La and Yb. These findings are valuable for prioritizing key genes and proteins involved in La and Yb detoxification mechanisms that deserve further characterization to better understand REE environmental and human health toxicity.


Asunto(s)
Metales de Tierras Raras , Saccharomyces cerevisiae , Ecosistema , Humanos , Metales de Tierras Raras/toxicidad , Minería , Proteómica , Saccharomyces cerevisiae/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-34574769

RESUMEN

Solid fuel combustion is an important source of the release of rare earth elements (REEs) into the ambient environment, resulting in potential adverse effects on human cardiovascular health. Our study aimed to identify reliable exposure biomarkers of REE intake and their potential role in blood pressure change. A total of 24 rats were administered with 14 REE chlorides at four doses (six rats per group). Fur samples were collected both before and after administration. Blood samples were collected after 12 weeks of REE intake. The REE concentrations in rat fur and blood samples were measured by inductively coupled plasma mass spectrometry. For each week, blood pressure, as well as heart rate and pulse pressure, were measured. The linear mixed-effect model was used to analyze the relationship between REE administration dose and blood pressure change. We found that the REE concentration in fur, but not blood, samples exhibited significant dose-response relationships with administration dose. It suggested that hair samples are a more efficient matrix for indicating the exposure level of a population to REEs than blood samples. However, there was no dose-response relationships between the administration dose and blood pressure change of rats, or with heart rate and pulse pressure for the 14 REEs. We also did not find a dose-response relationship between REE administration levels and plasma concentration of 8-hydroxy-2'-deoxyguanosine, as an important DNA oxidative stress damage biomarker. In conclusion, hair samples are more suitable as a sample type to reliably assess exposure to REEs than blood samples, and REEs did not have a direct adverse effect on blood pressure in our rat model.


Asunto(s)
Experimentación Animal , Metales de Tierras Raras , Animales , Biomarcadores , Presión Sanguínea , Cloruros , Metales de Tierras Raras/toxicidad , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...