RESUMEN
Adenoviral vector AdhMMP8 (human Metalloproteinase-8 cDNA) administration has been proven beneficial in various experimental models of liver injury improving liver function and decreasing fibrosis. In this study, we evaluated the potential therapeutic AdhMMP8 effect in a chronic kidney damage experimental model. Chronic injury was induced by orogastric adenine administration (100mg/kg/day) to Wistar rats for 4 weeks. AdhMMP8 (3x1011vp/kg) was administrated in renal vein during an induced-ligation-ischemic period to facilitate kidney transduction causing no-additional kidney injury as determined by histology and serum creatinine. Animals were sacrificed at 7- and 14-days post-Ad injection. Fibrosis, histopathological features, serum creatinine (sCr), BUN, and renal mRNA expression of αSMA, Col-1α, TGF-ß1, CTGF, BMP7, IL-1, TNFα, VEGF and PAX2 were analyzed. Interestingly, AdhMMP8 administration resulted in cognate human MMP8 protein detection in both kidneys, whereas hMMP8 mRNA was detected only in the left kidney. AdhMMP8 significantly reduced kidney tubule-interstitial fibrosis and glomerulosclerosis. Also, tubular atrophy and interstitial inflammation were clearly decreased rendering improved histopathology, and down regulation of profibrogenic genes expression. Functionally, sCr and BUN were positively modified. The results showed that AdhMMP8 decreased renal fibrosis, suggesting that MMP8 could be a possible therapeutic candidate for kidney fibrosis treatment.
Asunto(s)
Adenina/efectos adversos , Adenoviridae , Regulación de la Expresión Génica , Fallo Renal Crónico , Transducción Genética , Adenina/farmacología , Animales , Modelos Animales de Enfermedad , Fibrosis , Células HEK293 , Humanos , Fallo Renal Crónico/inducido químicamente , Fallo Renal Crónico/genética , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/terapia , Masculino , Metaloproteinasa 8 de la Matriz/biosíntesis , Metaloproteinasa 8 de la Matriz/genética , Ratas , Ratas WistarRESUMEN
The purpose of this study was to identify critical genes associated with septic multiple trauma by comparing peripheral whole blood samples from multiple trauma patients with and without sepsis. A microarray data set was downloaded from the Gene Expression Omnibus (GEO) database. This data set included 70 samples, 36 from multiple trauma patients with sepsis and 34 from multiple trauma patients without sepsis (as a control set). The data were preprocessed, and differentially expressed genes (DEGs) were then screened for using packages of the R language. Functional analysis of DEGs was performed with DAVID. Interaction networks were then established for the most up- and down-regulated genes using HitPredict. Pathway-enrichment analysis was conducted for genes in the networks using WebGestalt. Fifty-eight DEGs were identified. The expression levels of PLAU (down-regulated) and MMP8 (up-regulated) presented the largest fold-changes, and interaction networks were established for these genes. Further analysis revealed that PLAT (plasminogen activator, tissue) and SERPINF2 (serpin peptidase inhibitor, clade F, member 2), which interact with PLAU, play important roles in the pathway of the component and coagulation cascade. We hypothesize that PLAU is a major regulator of the component and coagulation cascade, and down-regulation of PLAU results in dysfunction of the pathway, causing sepsis.
Asunto(s)
Regulación de la Expresión Génica , Traumatismo Múltiple/genética , Mapas de Interacción de Proteínas/genética , Sepsis/genética , Humanos , Metaloproteinasa 8 de la Matriz/biosíntesis , Traumatismo Múltiple/complicaciones , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Sepsis/complicaciones , Activador de Plasminógeno de Tipo Uroquinasa/biosíntesisRESUMEN
BACKGROUND: Diabetes and periodontitis produce a protein discharge that can be reflected in saliva. This study evaluates the salivary concentrations of interleukin (IL)-6, matrix metalloproteinase (MMP)-8, and osteoprotegerin (OPG) in patients with periodontitis with type 2 diabetes. METHODS: Whole saliva samples were obtained from 90 subjects who were divided into four groups: healthy (control; n = 22), untreated periodontitis (UPD; n = 24), diabetes mellitus (DM; n = 20), and UPD + DM (n = 24) groups. Clinical and metabolic data were recorded. Salivary IL-6, MMP-8, and OPG concentrations were determined by a standard enzyme-linked immunosorbent assay. RESULTS: The UPD and UPD + DM groups exhibited higher salivary IL-6 than the control and DM groups (P <0.01). The salivary MMP-8 concentrations in all diseased groups (UPD, DM, and UPD + DM) were higher than in the control group (P <0.01). The salivary OPG concentrations in the DM group were higher than in the UPD and control groups (P <0.05). In the UPD + DM group, salivary IL-6 was correlated with glycated hemoglobin (HbA1c) levels (r = 0.60; P <0.05). The regression analysis indicated that the number of remaining teeth, clinical attachment level, and IL-6 might have influenced the HbA1c levels in patients with diabetes. CONCLUSIONS: Salivary IL-6 concentrations were elevated in patients with periodontitis with or without diabetes. Salivary MMP-8 and OPG concentrations were elevated regardless of periodontal inflammation in patients with diabetes. Therefore, periodontitis and diabetes are conditions that may interfere with protein expression and should be considered when using saliva for diagnoses.