Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 26(10): e16705, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39350455

RESUMEN

Elucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen Methanocaldococcus jannaschii, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of M. jannaschii. An in-depth analysis of cell growth, morphology and transcriptional responses to heat stress revealed that although the gene encoding γPFD is substantially upregulated in response to heat shock, the γPFD is not indispensable for high-temperature survival. Instead, its absence in the knock-out strain is compensated for by the upregulation of several proteolytic proteins in the absence of heat shock, nearly matching the corresponding transcription profile of selected transcripts for proteins involved in protein synthesis and folding in the wild-type strain following heat shock, using quantitative reverse-transcription PCR (RT-qPCR). These findings bridge environmental adaptation with molecular biology, underscoring the versatility of extremophiles and providing a deeper mechanistic understanding of how they cope with stress.


Asunto(s)
Methanocaldococcus , Chaperonas Moleculares , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Calor , Respuesta al Choque Térmico , Regulación de la Expresión Génica Arqueal , Adaptación Fisiológica , Técnicas de Inactivación de Genes
2.
Extremophiles ; 28(3): 42, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215799

RESUMEN

Methanogenic archaea are chemolithotrophic prokaryotes that can reduce carbon dioxide with hydrogen gas to form methane. These microorganisms make a significant contribution to the global carbon cycle, with methanogenic archaea from anoxic environments estimated to contribute > 500 million tons of global methane annually. Archaeal methanogenesis is dependent on the methanofurans; aminomethylfuran containing coenzymes that act as the primary C1 acceptor molecule during carbon dioxide fixation. Although the biosynthetic pathway to the methanofurans has been elucidated, structural adaptations which confer thermotolerance to Mfn enzymes from extremophilic archaea are yet to be investigated. Here we focus on the methanofuran biosynthetic enzyme MfnB, which catalyses the condensation of two molecules of glyceralde-3-phosphate to form 4­(hydroxymethyl)-2-furancarboxaldehyde-phosphate. In this study, MfnB enzymes from the hyperthermophile Methanocaldococcus jannaschii and the mesophile Methanococcus maripaludis have been recombinantly overexpressed and purified to homogeneity. Thermal unfolding studies, together with steady-state kinetic assays, demonstrate thermoadaptation in the M. jannaschii enzyme. Molecular dynamics simulations have been used to provide a structural explanation for the observed properties. These reveal a greater number of side chain interactions in the M. jannaschii enzyme, which may confer protection from heating effects by enforcing spatial residue constraints.


Asunto(s)
Proteínas Arqueales , Estabilidad de Enzimas , Methanocaldococcus , Methanocaldococcus/enzimología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , Methanococcus/enzimología , Termotolerancia , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/química , Calor , Simulación de Dinámica Molecular
3.
Appl Environ Microbiol ; 90(8): e0029224, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39012100

RESUMEN

Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE: The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.


Asunto(s)
Crecimiento Quimioautotrófico , Hidrógeno , Respiraderos Hidrotermales , Respiraderos Hidrotermales/microbiología , Hidrógeno/metabolismo , Agua de Mar/microbiología , Deltaproteobacteria/metabolismo , Deltaproteobacteria/crecimiento & desarrollo , Methanocaldococcus/metabolismo , Methanocaldococcus/crecimiento & desarrollo , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , Calor
4.
Extremophiles ; 28(3): 32, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023751

RESUMEN

Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 â„ƒ) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.


Asunto(s)
Metabolismo Energético , Methanocaldococcus , Methanocaldococcus/metabolismo , Termodinámica , Hidrógeno/metabolismo , Respiraderos Hidrotermales/microbiología
5.
Nano Lett ; 24(20): 6078-6083, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723608

RESUMEN

Gamma-prefoldin (γPFD), a unique chaperone found in the extremely thermophilic methanogen Methanocaldococcus jannaschii, self-assembles into filaments in vitro, which so far have been observed using transmission electron microscopy and cryo-electron microscopy. Utilizing three-dimensional stochastic optical reconstruction microscopy (3D-STORM), here we achieve ∼20 nm resolution by precisely locating individual fluorescent molecules, hence resolving γPFD ultrastructure both in vitro and in vivo. Through CF647 NHS ester labeling, we first demonstrate the accurate visualization of filaments and bundles with purified γPFD. Next, by implementing immunofluorescence labeling after creating a 3xFLAG-tagged γPFD strain, we successfully visualize γPFD in M. jannaschii cells. Through 3D-STORM and two-color STORM imaging with DNA, we show the widespread distribution of filamentous γPFD structures within the cell. These findings provide valuable insights into the structure and localization of γPFD, opening up possibilities for studying intriguing nanoscale components not only in archaea but also in other microorganisms.


Asunto(s)
Methanocaldococcus , Chaperonas Moleculares , Chaperonas Moleculares/química , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Microscopía Fluorescente/métodos , Imagenología Tridimensional/métodos
6.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762184

RESUMEN

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Asunto(s)
Proteínas Arqueales , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Cristalografía por Rayos X , Methanocaldococcus/enzimología , Methanocaldococcus/metabolismo , Unión Proteica , Multimerización de Proteína , ADN Helicasas/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Modelos Moleculares , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética
7.
Biochem Biophys Res Commun ; 712-713: 149893, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38657529

RESUMEN

RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.


Asunto(s)
Methanocaldococcus , Modelos Moleculares , Methanocaldococcus/enzimología , Cristalografía por Rayos X , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Exonucleasas/metabolismo , Exonucleasas/química , Conformación Proteica , Secuencia de Aminoácidos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética
8.
Int J Biol Macromol ; 256(Pt 1): 128387, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000593

RESUMEN

Alpha amylases catalyse the hydrolysis of α-1, 4-glycosidic bonds in starch, yielding glucose, maltose, dextrin, and short oligosaccharides, vital to various industrial processes. Structural and functional insights on α-amylase from Methanocaldococcus jannaschii were computationally explored to evaluate a catalytic domain and its fusion with a small ubiquitin-like modifier (SUMO). The recombinant proteins' production, characterization, ligand binding studies, and structural analysis of the cloned amylase native full gene (MjAFG), catalytic domain (MjAD) and fusion enzymes (S-MjAD) were thoroughly analysed in this comparative study. The MjAD and S-MjAD showed 2-fold and 2.5-fold higher specific activities (µmol min-1 mg -1) than MjAFG at 95 °C at pH 6.0. Molecular modelling and MD simulation results showed that the removal of the extra loop (178 residues) at the C-terminal of the catalytic domain exposed the binding and catalytic residues near its active site, which was buried in the MjAFG enzyme. The temperature ramping and secondary structure analysis of MjAFG, MjAD and S-MjAD through CD spectrometry showed no notable alterations in the secondary structures but verified the correct folding of MjA variants. The chimeric fusion of amylases with thermostable α-glucosidases makes it a potential candidate for the starch degrading processes.


Asunto(s)
Methanocaldococcus , alfa-Amilasas , alfa-Amilasas/química , Methanocaldococcus/metabolismo , Archaea/metabolismo , Amilasas/química , Almidón/metabolismo
9.
Int J Biol Macromol ; 258(Pt 1): 128763, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103675

RESUMEN

The small heat-shock protein (sHSP) from the archaea Methanocaldococcus jannaschii, MjsHSP16.5, functions as a broad substrate ATP-independent holding chaperone protecting misfolded proteins from aggregation under stress conditions. This protein is the first sHSP characterized by X-ray crystallography, thereby contributing significantly to our understanding of sHSPs. However, despite numerous studies assessing its functions and structures, the precise arrangement of the N-terminal domains (NTDs) within this sHSP cage remains elusive. Here we present the cryo-electron microscopy (cryo-EM) structure of MjsHSP16.5 at 2.49-Å resolution. The subunits of MjsHSP16.5 in the cryo-EM structure exhibit lesser compaction compared to their counterparts in the crystal structure. This structural feature holds particular significance in relation to the biophysical properties of MjsHSP16.5, suggesting a close resemblance to this sHSP native state. Additionally, our cryo-EM structure unveils the density of residues 24-33 within the NTD of MjsHSP16.5, a feature that typically remains invisible in the majority of its crystal structures. Notably, these residues show a propensity to adopt a ß-strand conformation and engage in antiparallel interactions with strand ß1, both intra- and inter-subunit modes. These structural insights are corroborated by structural predictions, disulfide bond cross-linking studies of Cys-substitution mutants, and protein disaggregation assays. A comprehensive understanding of the structural features of MjsHSP16.5 expectedly holds the potential to inspire a wide range of interdisciplinary applications, owing to the renowned versatility of this sHSP as a nanoscale protein platform.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico/metabolismo , Microscopía por Crioelectrón , Methanocaldococcus/metabolismo , Chaperonas Moleculares/metabolismo
10.
J Mol Biol ; 435(11): 167997, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330287

RESUMEN

AAA+ ATPases are ubiquitous hexameric unfoldases acting in cellular protein quality control. In complex with proteases, they form protein degradation machinery (the proteasome) in both archaea and eukaryotes. Here, we use solution-state NMR spectroscopy to determine the symmetry properties of the archaeal PAN AAA+ unfoldase and gain insights into its functional mechanism. PAN consists of three folded domains: the coiled-coil (CC), OB and ATPase domains. We find that full-length PAN assembles into a hexamer with C2 symmetry, and that this symmetry extends over the CC, OB and ATPase domains. The NMR data, collected in the absence of substrate, are incompatible with the spiral staircase structure observed in electron-microscopy studies of archaeal PAN in the presence of substrate and in electron-microscopy studies of eukaryotic unfoldases both in the presence and in the absence of substrate. Based on the C2 symmetry revealed by NMR spectroscopy in solution, we propose that archaeal ATPases are flexible enzymes, which can adopt distinct conformations in different conditions. This study reaffirms the importance of studying dynamic systems in solution.


Asunto(s)
Endopeptidasa Clp , Methanocaldococcus , Complejo de la Endopetidasa Proteasomal , Proteolisis , Saccharomyces cerevisiae , Complejo de la Endopetidasa Proteasomal/química , Endopeptidasa Clp/química , Dominios Proteicos , Resonancia Magnética Nuclear Biomolecular , Methanocaldococcus/enzimología , Saccharomyces cerevisiae/enzimología
11.
Biomolecules ; 13(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37189358

RESUMEN

In the field of genetic code expansion (GCE), improvements in the efficiency of noncanonical amino acid (ncAA) incorporation have received continuous attention. By analyzing the reported gene sequences of giant virus species, we noticed some sequence differences at the tRNA binding interface. On the basis of the structural and activity differences between Methanococcus jannaschii Tyrosyl-tRNA Synthetase (MjTyrRS) and mimivirus Tyrosyl-tRNA Synthetase (MVTyrRS), we found that the size of the anticodon-recognized loop of MjTyrRS influences its suppression activity regarding triplet and specific quadruplet codons. Therefore, three MjTyrRS mutants with loop minimization were designed. The suppression of wild-type MjTyrRS loop-minimized mutants increased by 1.8-4.3-fold, and the MjTyrRS variants enhanced the activity of the incorporation of ncAAs by 15-150% through loop minimization. In addition, for specific quadruplet codons, the loop minimization of MjTyrRS also improves the suppression efficiency. These results suggest that loop minimization of MjTyrRS may provide a general strategy for the efficient synthesis of ncAAs-containing proteins.


Asunto(s)
Aminoácidos , Tirosina-ARNt Ligasa , Aminoácidos/metabolismo , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Anticodón/genética , Methanocaldococcus/genética , Methanocaldococcus/metabolismo , Codón
13.
Proteins ; 91(1): 91-98, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35978488

RESUMEN

In this paper, we report the structural analysis of dihydroorotase (DHOase) from the hyperthermophilic and barophilic archaeon Methanococcus jannaschii. DHOase catalyzes the reversible cyclization of N-carbamoyl-l-aspartate to l-dihydroorotate in the third step of de novo pyrimidine biosynthesis. DHOases form a very diverse family of enzymes and have been classified into types and subtypes with structural similarities and differences among them. This is the first archaeal DHOase studied by x-ray diffraction. Its structure and comparison with known representatives of the other subtypes help define the structural features of the archaeal subtype. The M. jannaschii DHOase is found here to have traits from all subtypes. Contrary to expectations, it has a carboxylated lysine bridging the two Zn ions in the active site, and a long catalytic loop. It is a monomeric protein with a large ß sandwich domain adjacent to the TIM barrel. Loop 5 is similar to bacterial type III and the C-terminal extension is long.


Asunto(s)
Dihidroorotasa , Methanocaldococcus , Dihidroorotasa/química , Dihidroorotasa/metabolismo , Methanocaldococcus/metabolismo , Dominio Catalítico , Catálisis , Ácido Aspártico
14.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 11): 378-385, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322423

RESUMEN

Bacterial capsular polysaccharides provide protection against environmental stress and immune evasion from the host immune system, and are therefore considered to be attractive therapeutic targets for the development of anti-infectious reagents. Here, we focused on CapG, one of the key enzymes in the synthesis pathway of capsular polysaccharides type 5 (CP5) from the opportunistic pathogen Staphylococcus aureus. SaCapG catalyses the 2-epimerization of UDP-N-acetyl-D-talosamine (UDP-TalNAc) to UDP-N-acetyl-D-fucosamine (UDP-FucNAc), which is one of the nucleotide-activated precursors for the synthesis of the trisaccharide repeating units of CP5. Here, the cloning, expression and purification of recombinant SaCapG are reported. After extensive efforts, single crystals of SaCapG were successfully obtained which belonged to space group C2 and exhibited unit-cell parameters a = 302.91, b = 84.34, c = 145.09 Å, ß = 110.65°. The structure was solved by molecular replacement and was refined to 3.2 Šresolution. The asymmetric unit revealed a homohexameric assembly of SaCapG, which was consistent with gel-filtration analysis. Structural comparison with UDP-N-acetyl-D-glucosamine 2-epimerase from Methanocaldococcus jannaschii identified α2, the α2-α3 loop and α10 as a gate-regulated switch controlling substrate entry and/or product release.


Asunto(s)
Polisacáridos Bacterianos , Staphylococcus aureus , Cristalografía por Rayos X , Polisacáridos Bacterianos/química , Methanocaldococcus , Uridina Difosfato
15.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142308

RESUMEN

Genetically encoded caged amino acids can be used to control the dynamics of protein activities and cellular localization in response to external cues. In the present study, we revealed the structural basis for the recognition of O-(2-nitrobenzyl)-L-tyrosine (oNBTyr) by its specific variant of Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (oNBTyrRS), and then demonstrated its potential availability for time-resolved X-ray crystallography. The substrate-bound crystal structure of oNBTyrRS at a 2.79 Å resolution indicated that the replacement of tyrosine and leucine at positions 32 and 65 by glycine (Tyr32Gly and Leu65Gly, respectively) and Asp158Ser created sufficient space for entry of the bulky substitute into the amino acid binding pocket, while Glu in place of Leu162 formed a hydrogen bond with the nitro moiety of oNBTyr. We also produced an oNBTyr-containing lysozyme through a cell-free protein synthesis system derived from the Escherichia coli B95. ΔA strain with the UAG codon reassigned to the nonnatural amino acid. Another crystallographic study of the caged protein showed that the site-specifically incorporated oNBTyr was degraded to tyrosine by light irradiation of the crystals. Thus, cell-free protein synthesis of caged proteins with oNBTyr could facilitate time-resolved structural analysis of proteins, including medically important membrane proteins.


Asunto(s)
Methanocaldococcus/enzimología , Tirosina-ARNt Ligasa , Codón de Terminación/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Muramidasa/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
16.
Nucleic Acids Res ; 50(14): 8154-8167, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35848927

RESUMEN

RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5' leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae-RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein-protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.


Asunto(s)
Proteínas Arqueales , Methanocaldococcus , Ribonucleasa P , Proteínas Arqueales/metabolismo , Methanocaldococcus/enzimología , Methanocaldococcus/genética , Conformación Proteica , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Relación Estructura-Actividad
17.
Nature ; 609(7925): 197-203, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35882349

RESUMEN

Archaea synthesize isoprenoid-based ether-linked membrane lipids, which enable them to withstand extreme environmental conditions, such as high temperatures, high salinity, and low or high pH values1-5. In some archaea, such as Methanocaldococcus jannaschii, these lipids are further modified by forming carbon-carbon bonds between the termini of two lipid tails within one glycerophospholipid to generate the macrocyclic archaeol or forming two carbon-carbon bonds between the termini of two lipid tails from two glycerophospholipids to generate the macrocycle glycerol dibiphytanyl glycerol tetraether (GDGT)1,2. GDGT contains two 40-carbon lipid chains (biphytanyl chains) that span both leaflets of the membrane, providing enhanced stability to extreme conditions. How these specialized lipids are formed has puzzled scientists for decades. The reaction necessitates the coupling of two completely inert sp3-hybridized carbon centres, which, to our knowledge, has not been observed in nature. Here we show that the gene product of mj0619 from M. jannaschii, which encodes a radical S-adenosylmethionine enzyme, is responsible for biphytanyl chain formation during synthesis of both the macrocyclic archaeol and GDGT membrane lipids6. Structures of the enzyme show the presence of four metallocofactors: three [Fe4S4] clusters and one mononuclear rubredoxin-like iron ion. In vitro mechanistic studies show that Csp3-Csp3 bond formation takes place on fully saturated archaeal lipid substrates and involves an intermediate bond between the substrate carbon and a sulfur of one of the [Fe4S4] clusters. Our results not only establish the biosynthetic route for tetraether formation but also improve the use of GDGT in GDGT-based paleoclimatology indices7-10.


Asunto(s)
Proteínas Arqueales , Éteres de Glicerilo , Lípidos de la Membrana , Methanocaldococcus , Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Carbono/química , Carbono/metabolismo , Glicerol/química , Glicerol/metabolismo , Éteres de Glicerilo/química , Éteres de Glicerilo/metabolismo , Lípidos de la Membrana/biosíntesis , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Methanocaldococcus/química , Methanocaldococcus/enzimología , Methanocaldococcus/metabolismo , S-Adenosilmetionina/metabolismo , Terpenos/química , Terpenos/metabolismo
18.
Biotechnol Bioeng ; 119(9): 2388-2398, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35661137

RESUMEN

Prokaryotic Argonaute proteins (pAgos) play an important role in host defense against invading genetic elements. The functional diversities make pAgos very promising in development of novel nucleic acid manipulation tools and attract increasing attentions. Here, we reported the in vitro characterization of an Argonaute protein from archaeon Thermococcus thioreducens (TtrAgo) and its example of application in hepatitis B virus DNA detection. The results showed that TtrAgo functions as a programmable DNA endonuclease by utilizing both short 5'-phosphorylated and 5'-hydroxylated single-stranded DNA guides, and presents high efficiency and accuracy at optimal temperatures ranging from 75°C to 95°C. In addition, TtrAgo also possesses stepwise cleavage activity like PfAgo (Pyrococcus furiosus) and chopping activity toward double-stranded DNA similar to MjAgo (Methanocaldococcus jannaschii). This study increases our understanding of pAgos and expands the Ago-based DNA detection toolbox.


Asunto(s)
Pyrococcus furiosus , Thermococcus , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , ADN/metabolismo , Methanocaldococcus/genética , Pyrococcus furiosus/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
19.
Microbiol Spectr ; 10(1): e0209321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107346

RESUMEN

Methanocaldococcus sp. strain FS406-22, a hyperthermophilic methanogen, fixes nitrogen with a minimal set of known nif genes. Only four structural nif genes, nifH, nifD, nifK, and nifE, are present in a cluster, and a nifB homolog is present elsewhere in the genome. nifN, essential for the final synthesis of the iron-molybdenum cofactor of nitrogenase in well-characterized diazotrophs, is absent from FS406-22. In addition, FS406-22 encodes four novel hypothetical proteins, and a ferredoxin, in the nif cluster. Here, we develop a set of genetic tools for FS406-22 and test the functionality of genes in the nif cluster by making markerless in-frame deletion mutations. Deletion of the gene for one hypothetical protein, designated Hp4, delayed the initiation of diazotrophic growth and decreased the growth rate, an effect we confirmed by genetic complementation. NifE also appeared to play a role in diazotrophic growth, and the encoding of Hp4 and NifE in a single operon suggested they may work together in some way in the synthesis of the nitrogenase cofactor. No role could be discerned for any of the other hypothetical proteins, nor for the ferredoxin, despite the presence of these genes in a variety of related organisms. Possible pathways and evolutionary scenarios for the synthesis of the nitrogenase cofactor in an organism that lacks nifN are discussed. IMPORTANCEMethanocaldococcus has been considered a model genus, but genetic tools have not been forthcoming until recently. Here, we develop and illustrate the utility of positive selection with either of two selective agents (simvastatin and neomycin), negative selection, generation of markerless in-frame deletion mutations, and genetic complementation. These genetic tools should be useful for a variety of related species. We address the question of the minimal set of nif genes, which has implications for how nitrogen fixation evolved.


Asunto(s)
Proteínas Bacterianas/genética , Methanocaldococcus/genética , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Genes Bacterianos/genética , Methanocaldococcus/enzimología , Methanocaldococcus/metabolismo , Nitrogenasa/metabolismo , Operón , Regiones Promotoras Genéticas , Eliminación de Secuencia
20.
Nat Commun ; 13(1): 710, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132062

RESUMEN

Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament's flexibility.


Asunto(s)
Flagelos/química , Methanocaldococcus/química , Proteínas Arqueales/química , Sitios de Unión , Microscopía por Crioelectrón , Flagelos/fisiología , Flagelina/química , Glicosilación , Metales/química , Methanocaldococcus/fisiología , Modelos Moleculares , Multimerización de Proteína , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA