Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39008351

RESUMEN

Two pink-pigmented bacteria, designated strains NEAU-140T and NEAU-KT, were isolated from field soil collected from Linyi, Shandong Province, PR China. Both isolates were aerobic, Gram-stain-negative, rod-shaped, and facultatively methylotrophic. 16S rRNA gene sequences analysis showed that these two strains belong to the genus Methylobacterium. Strain NEAU-140T exhibited high 16S rRNA gene sequence similarities to Methylobacterium radiotolerans NBRC 15690T (97.43 %) and Methylobacterium phyllostachyos NBRC 105206T (97.36 %). Strain NEAU-KT exhibited high 16S rRNA gene sequence similarities to M. phyllostachyos NBRC 105206T (99.00 %) and Methylobacterium longum DSM 23933T (98.72 %). A phylogenetic tree based on 16S rRNA gene sequences showed that strain NEAU-140T formed a clade with Methylobacterium aerolatum (95.94 %), Methylobacterium persicinum (95.66 %) and Methylobacterium komagatae (96.87 %), and strain NEAU-KT formed a cluster with M. phyllostachyos and M. longum. The predominant fatty acid in both strains was C18 : 1 ω7c. Both strains contained ubiquinone Q-10 as the only respiratory quinone. The polar lipid profiles of both strains contained diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. Whole-genome phylogeny showed that strains NEAU-140T and NEAU-KT formed a phyletic line with M. aerolatum, M. persicinum, Methylobacterium radiotolerans, Methylobacterium fujisawaense, Methylobacterium oryzae, Methylobacterium tardum, M. longum and M. phyllostachyos. The orthologous average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain NEAU-140T and its closely related strains were lower than 82.62 and 25.90  %, respectively. The ANI and dDDH values between strain NEAU-KT and its closely related strains were lower than 86.29 and 31.7 %, respectively. The genomic DNA G+C contents were 71.63 mol% for strain NEAU-140T and 69.08 mol% for strain NEAU-KT. On the basis of their phenotypic and phylogenetic distinctiveness and the results of dDDH and ANI hybridization, these two isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium amylolyticum sp. nov. (type strain NEAU-140T=MCCC 1K08801T=DSM 110568T) and Methylobacterium ligniniphilum sp. nov. (type strain NEAU-KT=MCCC 1K08800T=DSM 110567T) are proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Methylobacterium , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Microbiología del Suelo , ARN Ribosómico 16S/genética , Methylobacterium/genética , Methylobacterium/clasificación , Methylobacterium/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/análisis , China , Ubiquinona , Vitamina K 2/análogos & derivados , Vitamina K 2/análisis
2.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013920

RESUMEN

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Asunto(s)
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimología , Methylobacterium/crecimiento & desarrollo , Metanol/metabolismo , Simbiosis , Mutación , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/crecimiento & desarrollo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crecimiento & desarrollo , Methylobacterium extorquens/enzimología , Desarrollo de la Planta , Microbiota/genética , Biomasa
3.
Antonie Van Leeuwenhoek ; 117(1): 83, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806744

RESUMEN

An aerobic, Gram-stain-negative, motile rod bacterium, designated as SYSU BS000021T, was isolated from a black soil sample in Harbin, Heilongjiang province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Methylobacterium, and showed the highest sequence similarity to Methylobacterium segetis KCTC 62267 T (98.51%) and Methylobacterium oxalidis DSM 24028 T (97.79%). Growth occurred at 20-37℃ (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and in the presence of 0% (w/v) NaCl. Polar lipids comprised of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified polar lipid. The major cellular fatty acids (> 5%) were C18:0 and C18:1 ω7c and/or C18:1 ω6c. The predominant respiratory quinone was Q-10. The genomic G + C content was 68.36% based on the whole genome analysis. The average nucleotide identity (≤ 83.5%) and digital DNA-DNA hybridization (≤ 27.3%) values between strain SYSU BS000021T and other members of the genus Methylobacterium were all lower than the threshold values recommended for distinguishing novel prokaryotic species. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain SYSU BS000021T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium nigriterrae sp. nov. is proposed. The type strain of the proposed novel species is SYSU BS000021T (= GDMCC 1.3814 T = KCTC 8051 T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Methylobacterium , Filogenia , ARN Ribosómico 16S , Microbiología del Suelo , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Ácidos Grasos/química , Methylobacterium/genética , Methylobacterium/clasificación , Methylobacterium/aislamiento & purificación , China , Hibridación de Ácido Nucleico , Análisis de Secuencia de ADN , Fosfolípidos/análisis
4.
J Hazard Mater ; 471: 134352, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677120

RESUMEN

Microcystis typically forms colonies under natural conditions, which contributes to occurrence and prevalence of algal blooms. The colonies consist of Microcystis and associated bacteria (AB), embedded in extracellular polymeric substances (EPS). Previous studies indicate that AB can induce Microcystis to form colonies, however the efficiency is generally low and results in a uniform morphotype. In this study, by using filtrated natural water, several AB strains induced unicellular M. aeruginosa to form colonies resembling several Microcystis morphotypes. The mechanisms were investigated with Methylobacterium sp. Z5. Ca2+ was necessary for Z5 to induce Microcystis to form colonies, while dissolved organic matters (DOM) facilitated AB to agglomerate Microcystis to form large colonies. EPS of living Z5, mainly the aromatic protein components, played a key role in colony induction. Z5 initially aggregated Microcystis via the bridging effects of Ca2+ and DOM, followed by the induction of EPS synthesis and secretion in Microcystis. In this process, the colony forming mode shifted from cell adhesion to a combination of cell adhesion and cell division. Intriguingly, Z5 drove the genomic rearrangement of Microcystis by upregulating some transposase genes. This study unveiled a novel mechanism about Microcystis colony formation and identified a new driver of Microcystis genomic evolution.


Asunto(s)
Calcio , Matriz Extracelular de Sustancias Poliméricas , Microcystis , Microcystis/metabolismo , Calcio/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Methylobacterium/metabolismo , Methylobacterium/genética
5.
Chemosphere ; 352: 141467, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387667

RESUMEN

The increasing concern for environmental remediation has led to a search for effective methods to remove eutrophic nutrients. In this study, Methylobacterium gregans DC-1 was utilized to improve nitrogen removal in a sequencing batch biofilm reactor (SBBR) via aerobic denitrification. This bacterium has the extraordinary characteristics of strong auto-aggregation and a high ability to remove nitrogen efficiently, making it an ideal candidate for enhanced treatment of nitrogen-rich wastewater. This strain was used for the bioassessment of a test reactor (SBBRbio), which showed a shorter biofilm formation time compared to a control reactor (SBBRcon) without this strain inoculation. Moreover, the enhanced biofilm was enriched in TB-EPS and had a wider variety of protein secondary structures than SBBRcon. During the stabilization phase of SBBRbio, the EPS molecules showed the highest proportion of intermolecular hydrogen bonding. It is possible that bioaugmentation with this strain positively affects the structural stability of biofilm. At influent ammonia loadings of 100 and 150 mg. L-1, the average reduction of ammonia and nitrate-nitrogen was higher in the experimental system compared to the control system. Additionally, nitrite-N accumulation was lower and N2O production decreased compared to the control. Analysis of the microbial community structure demonstrated successful colonization in the bioreactor by a highly nitrogen-tolerant strain that efficiently removed inorganic nitrogen. These results illustrate the great potential of this type of denitrifying bacteria in the application of bioaugmentation systems.


Asunto(s)
Methylobacterium , Purificación del Agua , Desnitrificación , Amoníaco , Nitrógeno , Biopelículas , Reactores Biológicos/microbiología , Nitrificación
6.
Folia Microbiol (Praha) ; 69(1): 121-131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37526803

RESUMEN

The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.


Asunto(s)
Fragaria , Methylobacterium , Zea mays/microbiología , Fragaria/metabolismo , Methylobacterium/metabolismo , Nitrógeno/metabolismo , Fotosíntesis , Productos Agrícolas
7.
mBio ; 15(1): e0199923, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38085021

RESUMEN

IMPORTANCE: Bacteria known as pink-pigmented facultative methylotrophs colonize many diverse environments on earth, play an important role in the carbon cycle, and in some cases promote plant growth. However, little is known about how these organisms interact with each other and their environment. In this work, we identify one of the chemical signals commonly used by these bacteria and discover that this signal controls swarming motility in the pink-pigmented facultative methylotroph Methylobacterium fujisawaense DSM5686. This work provides new molecular details about interactions between these important bacteria and will help scientists predict these interactions and the group behaviors they regulate from genomic sequencing information.


Asunto(s)
Methylobacterium , Percepción de Quorum , Acil-Butirolactonas , Methylobacterium/genética
8.
Bioresour Technol ; 393: 130104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38008225

RESUMEN

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Asunto(s)
Ácido Láctico/análogos & derivados , Methylobacterium , Methylobacterium/genética , Methylobacterium/metabolismo , Fermentación , Metanol/metabolismo , Adenosina Trifosfato/metabolismo , Ingeniería Metabólica/métodos
9.
Sci Total Environ ; 912: 169010, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38040348

RESUMEN

Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.


Asunto(s)
Bacillaceae , Bacillus , Methylobacterium , Fermentación , Firmicutes
10.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37985695

RESUMEN

Methylobacterium species are abundant colonizers of the phyllosphere due to the availability of methanol, a waste product of pectin metabolism during plant cell division. The phyllosphere is an extreme environment, with a landscape that is heterogeneous and continuously changing as the plant grows and is exposed to high levels of ultraviolet irradiation. Geographically, New Zealand (NZ) has been isolated for over a million years, has a biologically diverse flora, and is considered a biodiversity hotspot, with most native plants being endemic. We therefore hypothesize that the phyllosphere of NZ native plants harbor diverse groups of Methylobacterium species. Leaf imprinting using methanol-supplemented agar medium was used to isolate bacteria, and diversity was determined using ARDRA and 16S rRNA gene sequencing. Methylobacterium species were successfully isolated from the phyllosphere of 18 of the 20 native NZ plant species in this study, and six different species were identified: M. marchantiae, M. mesophilicum, M. adhaesivum, M. komagatae, M. extorquens, and M. phyllosphaerae. Other α, ß, and γ-Proteobacteria, Actinomycetes, Bacteroidetes, and Firmicutes were also isolated, highlighting the presence of other potentially novel methanol utilizers within this ecosystem. This study identified that Methylobacterium are abundant members of the NZ phyllosphere, with species diversity and composition dependent on plant species.


Asunto(s)
Methylobacterium , Methylobacterium/genética , Ecosistema , ARN Ribosómico 16S/genética , Metanol , Nueva Zelanda , Plantas/microbiología , Hojas de la Planta/microbiología
11.
Photochem Photobiol Sci ; 22(12): 2839-2850, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37838625

RESUMEN

Methylotrophs are a diverse group of bacteria that abundantly colonize the phyllosphere and have great potential to withstand UV irradiation because of their pigmented nature and ability to promote plant growth through various mechanisms. The present study investigated the effects of UVB radiation on plant growth-promoting (PGP) properties of methylotrophic bacteria and the growth of Vigna radiata L. A total of 55 methylotrophic bacteria were isolated from desert plants, and 15 methylotrophs were resistant to UVB radiation for 4 h. All UVB-resistant methylotrophs possess a methyldehydrogenase gene. Identification based on 16S rRNA gene sequencing revealed that all 15 UVB-resistant methylotrophs belonged to the genera Methylorubrum (07), Methylobacterium (07), and Rhodococcus (01). Screening of methylotrophs for PGP activity in the presence and absence of UVB radiation revealed that all isolates showed ACC deaminase activity and growth on a nitrogen-free medium. Furthermore, the production of IAA-like substances ranged from 8.62 to 85.76 µg/mL, siderophore production increased from 3.47 to 65.75% compared to the control. Seed germination assay with V. radiata L. (mung bean) exposed to UVB radiation revealed that methylotrophs improved seed germination, root length, and shoot length compared to the control. The present findings revealed that the isolates SD3, SD2, KD1, KD5, UK1, and UK3 reduced the deleterious effects of UVB radiation on mung bean plants and can be used to protect seedlings from UVB radiation for sustainable agriculture.


Asunto(s)
Methylobacterium , Vigna , Vigna/genética , ARN Ribosómico 16S/genética , Plantones
12.
PLoS One ; 18(9): e0291072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37703253

RESUMEN

Nontuberculous mycobacteria (NTM) are ubiquitous environmental opportunistic pathogens that can cause chronic lung disease. Within the United States, Hawai'i has the highest incidence of NTM lung disease, though the precise reasons are yet to be fully elucidated. One possibility is the high prevalence of NTM in the Hawai'i environment acting as a potential reservoir for opportunistic NTM infections. Through our previous initiatives to collect and characterize NTM in Hawai'i, community scientists of Hawai'i have collected thousands of environmental samples for sequencing. Here, these community scientists were invited for the first time into a high school lab in O'ahu for a genomic sequencing workshop, where participants sequenced four of the collected isolate genomic samples using the Oxford Nanopore Technologies MinION sequencer. Participants generated high quality long read data that when combined with short read Illumina data yielded complete bacterial genomic assemblies suitable for in-depth analysis. The gene annotation analysis identified a suite of genes that might help NTM thrive in the Hawai'i environment. Further, we found evidence of co-occurring methylobacteria, revealed from the sequencing data, suggesting that in some cases methylobacteria and NTM may coexist in the same niche, challenging previously accepted paradigms. The sequencing efforts presented here generated novel insights regarding the potential survival strategies and microbial interactions of NTM in the geographic hot spot of Hawai'i. We highlight the contributions of community scientists and present an activity that can be reimplemented as a workshop or classroom activity by other research groups to engage their local communities.


Asunto(s)
Methylobacterium , Infecciones por Mycobacterium no Tuberculosas , Humanos , Hawaii , Micobacterias no Tuberculosas/genética , Mapeo Cromosómico , Exactitud de los Datos
13.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108681

RESUMEN

Methylotrophic bacteria are widely distributed in nature and can be applied in bioconversion because of their ability to use one-carbon source. The aim of this study was to investigate the mechanism underlying utilization of high methanol content and other carbon sources by Methylorubrum rhodesianum strain MB200 via comparative genomics and analysis of carbon metabolism pathway. The genomic analysis revealed that the strain MB200 had a genome size of 5.7 Mb and two plasmids. Its genome was presented and compared with that of the 25 fully sequenced strains of Methylobacterium genus. Comparative genomics revealed that the Methylorubrum strains had closer collinearity, more shared orthogroups, and more conservative MDH cluster. The transcriptome analysis of the strain MB200 in the presence of various carbon sources revealed that a battery of genes was involved in the methanol metabolism. These genes are involved in the following functions: carbon fixation, electron transfer chain, ATP energy release, and resistance to oxidation. Particularly, the central carbon metabolism pathway of the strain MB200 was reconstructed to reflect the possible reality of the carbon metabolism, including ethanol metabolism. Partial propionate metabolism involved in ethyl malonyl-CoA (EMC) pathway might help to relieve the restriction of the serine cycle. In addition, the glycine cleavage system (GCS) was observed to participate in the central carbon metabolism pathway. The study revealed the coordination of several metabolic pathways, where various carbon sources could induce associated metabolic pathways. To the best of our knowledge, this is the first study providing a more comprehensive understanding of the central carbon metabolism in Methylorubrum. This study provided a reference for potential synthetic and industrial applications of this genus and its use as chassis cells.


Asunto(s)
Metanol , Methylobacterium , Metanol/metabolismo , Biocombustibles , Carbono/metabolismo , Methylobacterium/metabolismo , Genómica
14.
PLoS One ; 18(2): e0281505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36749783

RESUMEN

A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.


Asunto(s)
Methylobacterium , Saccharum , Zea mays/genética , Saccharum/genética , Methylobacterium/genética , ARN Ribosómico 16S/genética , Grano Comestible/genética , Filogenia
15.
Biosci Biotechnol Biochem ; 87(1): 1-6, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36367545

RESUMEN

C1-microorganisms that can utilize C1-compounds, such as methane and methanol, are ubiquitous in nature, and contribute to drive the global carbon cycle between two major greenhouse gases, CO2 and methane. Plants emit C1-compounds from their leaves and provide habitats for C1-microorganisms. Among C1-microorganisms, Methylobacterium spp., representative of methanol-utilizing methylotrophic bacteria, predominantly colonize the phyllosphere and are known to promote plant growth. This review summarizes the interactions between C1-mircroorganisms and plants that affect not only the fixation of C1-compounds produced by plants but also CO2 fixation by plants. We also describe our recent understanding of the survival strategy of C1-microorganisms in the phyllosphere and the application of Methylobacterium spp. to improve rice crop yield.


Asunto(s)
Metanol , Methylobacterium , Dióxido de Carbono , Plantas/microbiología , Metano , Hojas de la Planta/microbiología , Carbono
16.
Antonie Van Leeuwenhoek ; 115(9): 1165-1176, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35867173

RESUMEN

It has been previously shown that a number of plant associated methylotrophic bacteria contain an enzyme aminocyclopropane carboxylate (ACC) deaminase (AcdS) hydrolyzing ACC, the immediate precursor of ethylene in plants. The genome of the epiphytic methylotroph Methylobacterium radiotolerans JCM2831 contains an open reading frame encoding a protein homologous to transcriptional regulatory protein AcdR of the Lrp (leucine-responsive regulatory protein) family. The acdR gene of M. radiotolerans was heterologously expressed in Escherichia coli and purified. The results of gel retardation experiments have shown that AcdR specifically binds the DNA fragment containing the promoter-operator region of the acdS gene. ACC decreased electrophoretic mobility of the AcdR-DNA complex whereas leucine had no effect on the complex mobility. The mutant strains of M. radiotolerans obtained by insertion of a tetracycline cassette in the acdS or acdR gene lost the ACC-deaminase activity but the strains with complementation of the mutation recovered this function. The acdS- mutant but not acdR- strain expressed the xylE reporter gene under the control of acdS promoter region thus resulting in a catechol 2,3-dioxygenase activity. This suggested that AcdR in vivo functions as activator of transcription of the acdS gene. The results obtained in this study showed that in phytosymbiotic methylotroph Methylobacterium radiotolerans AcdR mediates activation of the acdS gene transcription in the presence of an inducer ACC or 2-aminoisobutyrate and the excess of the regulatory protein assists in transcription initiation even in the absence of the inducer. The model of regulation of acdS transcription in M. radiotolerans was proposed.


Asunto(s)
Liasas de Carbono-Carbono , Methylobacterium , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Methylobacterium/genética , Methylobacterium/metabolismo , Regiones Promotoras Genéticas , Transcripción Genética
17.
Microbiol Spectr ; 10(4): e0081022, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856668

RESUMEN

The genus Methylobacterium includes widespread plant-associated bacteria that are abundant in the plant phyllosphere (leaf surfaces), consume plant-secreted methanol, and can produce plant growth-promoting metabolites. However, despite the potential to increase agricultural productivity, their impact on host fitness in the natural environment is relatively poorly understood. Here, we conducted field experiments with three traditionally cultivated rice landraces from northeastern India. We inoculated seedlings with native versus nonnative phyllosphere Methylobacterium strains and found significant impacts on plant growth and grain yield. However, these effects were variable. Whereas some Methylobacterium isolates were beneficial for their host, others had no impact or were no more beneficial than the bacterial growth medium on its own. Host plant benefits were not consistently associated with Methylobacterium colonization and did not have altered phyllosphere microbiome composition, changes in the early expression of plant stress response pathways, or bacterial auxin production. We provide the first demonstration of the benefits of phyllosphere Methylobacterium for rice yield under field conditions and highlight the need for further analysis to understand the mechanisms underlying these benefits. Given that the host landrace-Methylobacterium relationship was not generalizable, future agricultural applications will require careful testing to identify coevolved host-bacterium pairs that may enhance the productivity of high-value rice varieties. IMPORTANCE Plants are associated with diverse microbes in nature. Do the microbes increase host plant health, and can they be used for agricultural applications? This is an important question that must be answered in the field rather than in the laboratory or greenhouse. We tested the effects of native, leaf-inhabiting bacteria (genus Methylobacterium) on traditionally cultivated rice varieties in a crop field. We found that inoculation with some bacteria increased rice grain production substantially while a nonnative bacterium reduced plant health. Overall, the effect of bacterial inoculation varied across pairs of rice varieties and their native bacteria. Thus, knowledge of evolved associations between specific bacteria hosted by specific rice varieties is necessary to develop ways to increase the yield of traditional rice landraces and preserve these important sources of cultural and genetic diversity.


Asunto(s)
Methylobacterium , Oryza , Agricultura , Grano Comestible , Methylobacterium/genética , Methylobacterium/metabolismo , Oryza/microbiología , Hojas de la Planta/microbiología
18.
Genome Biol Evol ; 14(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35906926

RESUMEN

Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer (HGT). We showed that Methylobacterium contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content, and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition to recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose early branching in Methylobacterium history has been heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandonment of Methylorubrum.


Asunto(s)
Methylobacterium , Ecosistema , Filogenia , Hojas de la Planta , Plantas/genética , ARN Ribosómico 16S/genética
19.
Bioresour Technol ; 354: 127204, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460844

RESUMEN

In the current study, the isolated Methylobacterium sp. ISTM1 simultaneously produced both extracellular polymeric substances (EPS) and polyhydroxyalkanoates (PHA) in a single-step process. The yield of biopolymers (EPS and PHA) was enhanced by optimizing the process parameters of EPS and PHA production. Methylobacterium sp. ISTM1 was able to produce 7.18 ± 0.04 g L-1 EPS and 1.41 ± 0.04 g L-1 PHA simultaneously at optimized culture conditions i.e., 9% molasses and pH 7. The genomic analysis of the strain has identified the involved genes and pathways in the production of EPS and PHA. Both the biopolymers were found non-toxic according to the cytotoxicity analysis. The results of the current study present the potential of the bacterium Methylobacterium sp. ISTM1 produces non-toxic biopolymers by utilizing agro-industrial waste (molasses) that can be harnessed sustainably for various applications.


Asunto(s)
Methylobacterium , Polihidroxialcanoatos , Biopolímeros , Matriz Extracelular de Sustancias Poliméricas , Genómica , Melaza
20.
Bioresour Technol ; 352: 127088, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35364237

RESUMEN

In the context of algal wastewater bioremediation, this study has identified a novel consortium formed by the bacterium Methylobacterium oryzae and the microalga Chlamydomonas reinhardtii that greatly increase biomass generation (1.22 g L-1·d-1), inorganic nitrogen removal (>99%), and hydrogen production (33 mL·L-1) when incubated in media containing ethanol and methanol. The key metabolic aspect of this relationship relied on the bacterial oxidation of ethanol to acetate, which supported heterotrophic algal growth. However, in the bacterial monocultures the acetate accumulation inhibited bacterial growth. Moreover, in the absence of methanol, ethanol was an unsuitable carbon source and its incomplete oxidation to acetaldehyde had a toxic effect on both the alga and the bacterium. In cocultures, both alcohols were used as carbon sources by the bacteria, the inhibitory effects were overcome and both microorganisms mutually benefited. Potential biotechnological applications in wastewater treatment, biomass generation and hydrogen production are discussed.


Asunto(s)
Chlamydomonas , Acetatos , Biomasa , Carbono , Chlamydomonas/metabolismo , Desnitrificación , Etanol , Hidrógeno , Metanol , Methylobacterium , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA