Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
J Physiol ; 601(14): 2935-2958, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37278367

RESUMEN

The acrosome is a lysosome-related vesicular organelle located in the sperm head. The acrosomal reaction (AR) is an exocytic process mediated by Ca2+ and essential for mammalian fertilization. Recent findings support the importance of acrosomal alkalinization for the AR. Mibefradil (Mib) and NNC 55-0396 (NNC) are two amphipathic weak bases that block the sperm-specific Ca2+ channel (CatSper) and induce acrosomal pH (pHa ) increase by accumulating in the acrosomal lumen of mammalian sperm. This accumulation and pHa elevation increase the intracellular Ca2+ concentration ([Ca2+ ]i ) and trigger the AR by unknown mechanisms of Ca2+ transport. Here, we investigated the pathways associated with the pHa increase-induced Ca2+ signals using mouse sperm as a model. To address these questions, we used single-cell Ca2+ imaging, the lysosomotropic agent Gly-Phe-ß-naphthylamide (GPN) and pharmacological tools. Our findings show that Mib and NNC increase pHa and release acrosomal Ca2+ without compromising acrosomal membrane integrity. Our GPN results indicate that the osmotic component does not significantly contribute to acrosomal Ca2+ release caused by pHa rise. Inhibition of two-pore channel 1 (TPC1) channels reduced the [Ca2+ ]i increase stimulated by acrosomal alkalinization. In addition, blockage of Ca2+ release-activated Ca2+ (CRAC) channels diminished Ca2+ uptake triggered by pHa alkalinization. Finally, our findings contribute to understanding how pHa controls acrosomal Ca2+ efflux and extracellular Ca2+ entry during AR in mouse sperm. KEY POINTS: The acrosomal vesicle is a lysosome-related organelle located in the sperm head. The acrosome reaction (AR) is a highly regulated exocytic process mediated by Ca2+ , which is essential for fertilization. However, the molecular identity of Ca2+ transporters involved in the AR and their mechanisms to regulate Ca2+ fluxes are not fully understood. In mammalian sperm, acrosomal alkalinization induces intracellular Ca2+ concentration ([Ca2+ ]i ) increase and triggers the AR by unknown molecular mechanisms of Ca2+ transport. In this study, we explored the molecular mechanisms underlying Ca2+ signals caused by acrosomal alkalinization using mouse sperm as a model. TPC1 and CRAC channels contribute to [Ca2+ ]i elevation during acrosomal alkalinization. Our findings expand our understanding of how the acrosomal pH participates in the physiological induction of the AR.


Asunto(s)
Calcio , Semen , Masculino , Animales , Ratones , Calcio/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Acrosoma/metabolismo , Mibefradil/metabolismo , Mibefradil/farmacología , Concentración de Iones de Hidrógeno , Mamíferos/metabolismo
2.
Sci Rep ; 13(1): 4683, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949059

RESUMEN

Prostate cancer is often treated by perturbing androgen receptor signalling. CACNA1D, encoding CaV1.3 ion channels is upregulated in prostate cancer. Here we show how hormone therapy affects CACNA1D expression and CaV1.3 function. Human prostate cells (LNCaP, VCaP, C4-2B, normal RWPE-1) and a tissue microarray were used. Cells were treated with anti-androgen drug, Enzalutamide (ENZ) or androgen-removal from media, mimicking androgen-deprivation therapy (ADT). Proliferation assays, qPCR, Western blot, immunofluorescence, Ca2+-imaging and patch-clamp electrophysiology were performed. Nifedipine, Bay K 8644 (CaV1.3 inhibitor, activator), mibefradil, Ni2+ (CaV3.2 inhibitors) and high K+ depolarising solution were employed. CACNA1D and CaV1.3 protein are overexpressed in prostate tumours and CACNA1D was overexpressed in androgen-sensitive prostate cancer cells. In LNCaP, ADT or ENZ increased CACNA1D time-dependently whereas total protein showed little change. Untreated LNCaP were unresponsive to depolarising high K+/Bay K (to activate CaV1.3); moreover, currents were rarely detected. ADT or ENZ-treated LNCaP exhibited nifedipine-sensitive Ca2+-transients; ADT-treated LNCaP exhibited mibefradil-sensitive or, occasionally, nifedipine-sensitive inward currents. CACNA1D knockdown reduced the subpopulation of treated-LNCaP with CaV1.3 activity. VCaP displayed nifedipine-sensitive high K+/Bay K transients (responding subpopulation was increased by ENZ), and Ni2+-sensitive currents. Hormone therapy enables depolarization/Bay K-evoked Ca2+-transients and detection of CaV1.3 and CaV3.2 currents. Physiological and genomic CACNA1D/CaV1.3 mechanisms are likely active during hormone therapy-their modulation may offer therapeutic advantage.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Andrógenos , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Nifedipino/farmacología , Mibefradil/farmacología , Línea Celular Tumoral , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Canales de Calcio Tipo L/genética
3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077291

RESUMEN

The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.


Asunto(s)
Canales de Calcio Tipo T , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/metabolismo , Señalización del Calcio , Humanos , Mibefradil/farmacología
4.
BMC Nephrol ; 23(1): 211, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710406

RESUMEN

BACKGROUND: T-type calcium channels (TTCC) are low voltage activated channels that are widely expressed in the heart, smooth muscle and neurons. They are known to impact on cell cycle progression in cancer and smooth muscle cells and more recently, have been implicated in rat and human mesangial cell proliferation. The aim of this study was to investigate the roles of the different isoforms of TTCC in mouse mesangial cells to establish which may be the best therapeutic target for treating mesangioproliferative kidney diseases.  METHODS: In this study, we generated single and double knockout (SKO and DKO) clones of the TTCC isoforms CaV3.1 and CaV3.2 in mouse mesangial cells using CRISPR-cas9 gene editing. The downstream signals linked to this channel activity were studied by ERK1/2 phosphorylation assays in serum, PDGF and TGF-ß1 stimulated cells. We also examined their proliferative responses in the presence of the TTCC inhibitors mibefradil and TH1177. RESULTS: We demonstrate a complete loss of ERK1/2 phosphorylation in response to multiple stimuli (serum, PDGF, TGF-ß1) in CaV3.1 SKO clone, whereas the CaV3.2 SKO clone retained these phospho-ERK1/2 responses. Stimulated cell proliferation was not profoundly impacted in either SKO clone and both clones remained sensitive to non-selective TTCC blockers, suggesting a role for more than one TTCC isoform in cell cycle progression. Deletion of both the isoforms resulted in cell death. CONCLUSION: This study confirms that TTCC are expressed in mouse mesangial cells and that they play a role in cell proliferation. Whereas the CaV3.1 isoform is required for stimulated phosphorylation of ERK1/2, the Ca V3.2 isoform is not. Our data also suggest that neither isoform is necessary for cell proliferation and that the anti-proliferative effects of mibefradil and TH1177 are not isoform-specific. These findings are consistent with data from in vivo rat mesangial proliferation Thy1 models and support the future use of genetic mouse models to test the therapeutic actions of TTCC inhibitors.


Asunto(s)
Canales de Calcio Tipo T , Células Mesangiales , Animales , Humanos , Células Mesangiales/metabolismo , Mibefradil/metabolismo , Mibefradil/farmacología , Ratones , Fosforilación , Ratas , Factor de Crecimiento Transformador beta1/metabolismo
5.
Mol Neurobiol ; 59(5): 2932-2945, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35243582

RESUMEN

Medulloblastoma (MB) is the most common malignant paediatric brain tumour. In our previous studies, we developed a novel 3D assay for MB cells that was used to screen a panel of plasma membrane calcium channel modulators for their effect on the 3D growth of D341 MB cells. These studies identified T-type (CaV3) channel inhibitors, mibefradil and NNC-55-0396 (NNC) as selective inhibitors of MB cell growth. Mibefradil was originally approved for the treatment of hypertension and angina pectoris, and recently successfully completed a phase I trial for recurrent high-grade glioma. NNC is an analogue of mibefradil with multiple advantages compared to mibefradil that makes it attractive for potential future clinical trials. T-type channels have a unique low voltage-dependent activation/inactivation, and many studies suggest that they have a direct regulatory role in controlling Ca2+ signalling in non-excitable tissues, including cancers. In our previous study, we also identified overexpression of CaV3.2 gene in MB tissues compared to normal brain tissues. In this study, we aimed to characterise the effect of mibefradil and NNC on MB cells and elucidate their mechanism of action. This study demonstrates that the induction of toxicity in MB cells is selective to T-type but not to L-type Ca2+ channel inhibitors. Addition of CaV3 inhibitors to vincristine sensitised MB cells to this MB chemotherapeutic agent, suggesting an additive effect. Furthermore, CaV3 inhibitors induced cell death in MB cells via apoptosis. Supported by proteomics data and cellular assays, apoptotic cell death was associated with reduced mitochondrial membrane potential and reduced ATP levels, which suggests that both compounds alter the metabolism of MB cells. This study offers new insights into the action of mibefradil and NNC and will pave the way to test these molecules or their analogues in pre-clinical MB models alone and in combination with vincristine to assess their suitability as a potential MB therapy.


Asunto(s)
Canales de Calcio Tipo T , Neoplasias Cerebelosas , Meduloblastoma , Apoptosis , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/metabolismo , Niño , Humanos , Meduloblastoma/tratamiento farmacológico , Mibefradil/farmacología , Mibefradil/uso terapéutico , Recurrencia Local de Neoplasia , Vincristina/farmacología
6.
Int Arch Allergy Immunol ; 183(6): 579-590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100604

RESUMEN

INTRODUCTION: The mucociliary transport function of the airway epithelium is largely dependent on ciliary beating. The control signal of ciliary beating is thought to be intracellular Ca2+. We herein investigated the expression of T-type voltage-gated calcium channel (VGCC), a generator of intracellular Ca2+ oscillation, in the human nasal mucosa. METHODS: The inferior turbinate was collected from patients with chronic hypertrophic rhinitis. The expression of T-type VGCC α1 subunits was examined by immunohistochemistry, transmission immunoelectron microscopy, Western blot, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Participation of T-type VGCC in the ciliary beat regulation was examined by pharmacological inhibition tests using specific blockers of T-type VGCC in ex vivo measurements of the ciliary beat frequency (CBF) and ATP release and in intracellular Ca2+ imaging of isolated ciliated cells. RESULTS: Immunohistochemical staining showed the expressions of T-type VGCC α1 subunits, Cav3.1 and Cav3.3, on the surface of the epithelial cells. At the ultrastructural level, immunoreactivity for Cav3.1 was localized on the surface of the cilia, and that for Cav3.3 was localized in the cilia and at the base of the cilia. The existence of Cav3.1 and Cav3.3 was confirmed at the protein level by Western blot and at the transcriptional level by real-time RT-PCR. Specific blockers of T-type VGCC, mibefradil and NNC 55-0396, significantly inhibited CBF. These blockers also inhibited a CBF increase induced by 8-bromo-cAMP/8-bromo-cGMP and significantly lowered the intracellular Ca2+ level of isolated ciliated cells in a time-dependent manner. On the other hand, the ATP release from the nasal mucosa was not changed by mibefradil or NNC 55-0396. CONCLUSION: These results indicate that T-type VGCC α1 subunits, Cav3.1 and Cav3.3, exist at the cilia of the nasal epithelial cells and participate in the regulation of ciliary beating and that these channels act downstream of cAMP/cGMP.


Asunto(s)
Canales de Calcio Tipo T , Cilios , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Cilios/fisiología , GMP Cíclico , Células Epiteliales/metabolismo , Humanos , Mibefradil/metabolismo , Mibefradil/farmacología , Mucosa Nasal/metabolismo
7.
Clin Exp Pharmacol Physiol ; 49(1): 25-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438468

RESUMEN

Atrial fibrillation (AF) is associated with atrial conduction disturbances caused by electrical and/or structural remodelling. In the present study, we hypothesized that connexin might interact with the calcium channel through forming a protein complex and, then, participates in the pathogenesis of AF. Western blot and whole-cell patch clamp showed that protein levels of Cav1.2 and connexin 43 (Cx43) and basal ICa,L were decreased in AF subjects compared to sinus rhythm (SR) controls. In cultured atrium-derived myocytes (HL-1 cells), knocking-down of Cx43 or incubation with 30 mmol/L glycyrrhetinic acid significantly inhibited protein levels of Cav1.2 and Cav3.1 and the current density of ICa,L and ICa,T . Incubation with nifedipine or mibefradil decreased the protein level of Cx43 in HL-1 cells. Moreover, Cx43 was colocalized with Cav1.2 and Cav3.1 in atrial myocytes. Therefore, Cx43 might regulate the ICa,L and ICa,T through colocalization with calcium channel subunits in atrial myocytes, representing a potential pathogenic mechanism in AF.


Asunto(s)
Remodelación Atrial , Canales de Calcio/fisiología , Conexina 43/fisiología , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Fibrilación Atrial/metabolismo , Remodelación Atrial/fisiología , Western Blotting , Canales de Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/fisiología , Línea Celular , Células Cultivadas , Conexina 43/metabolismo , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Humanos , Mibefradil/farmacología , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Nifedipino/farmacología , Técnicas de Placa-Clamp
8.
Neuropeptides ; 90: 102185, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419803

RESUMEN

It has been shown that systemic and local administration of ultra-low dose morphine induced a hyperalgesic response via mu-opioid receptors. However, its exact mechanism(s) has not fully been clarified. It is documented that mu-opioid receptors functionally couple to T-type voltage dependent Ca+2 channels. Here, we investigated the role of T-type calcium channels, amiloride and mibefradil, on the induction of low-dose morphine hyperalgesia in male Wistar rats. The data showed that morphine (0.01 µg i.t. and 1 µg/kg i.p.) could elicit hyperalgesia as assessed by the tail-flick test. Administration of amiloride (5 and 10 µg i.t.) and mibefradil (2.5 and 5 µg i.t.) completely blocked low-dose morphine-induced hyperalgesia in spinal dorsal horn. Amiloride at doses of 1 and 5 mg/kg (i.p.) and mibefradil (9 mg/kg ip) 10 min before morphine (1 µg/kg i.p.) inhibited morphine-induced hyperalgesia. Our results indicate a role for T-type calcium channels in low dose morphine-induced hyperalgesia in rats.


Asunto(s)
Analgésicos Opioides/efectos adversos , Canales de Calcio Tipo T/efectos de los fármacos , Hiperalgesia/inducido químicamente , Morfina/efectos adversos , Amilorida/farmacología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Inyecciones Intraperitoneales , Masculino , Mibefradil/farmacología , Morfina/administración & dosificación , Morfina/antagonistas & inhibidores , Dimensión del Dolor/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Opioides mu
9.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924361

RESUMEN

TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.


Asunto(s)
Ameloblastos/metabolismo , Calcio/metabolismo , Canales Catiónicos TRPM/metabolismo , Ameloblastos/citología , Ameloblastos/efectos de los fármacos , Anilidas/farmacología , Animales , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Incisivo/citología , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Mibefradil/farmacología , Ratones , Modelos Biológicos , Naltrexona/análogos & derivados , Naltrexona/farmacología , Ratas , Tiadiazoles/farmacología
10.
Mediators Inflamm ; 2020: 3691701, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33223955

RESUMEN

Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Flunarizina/farmacología , Lipopolisacáridos/metabolismo , Mibefradil/farmacología , Lesión Pulmonar Aguda/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Citocinas/metabolismo , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
11.
J Cardiovasc Pharmacol ; 76(2): 246-254, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32433360

RESUMEN

Cardiac hypertrophy causes heart failure and is associated with hyperglycemia in patients with diabetes mellitus. Mibefradil, which acts as a T-type calcium channel blocker, exerts beneficial effects in patients with heart failure. In this study, we explored the effects and mechanism of mibefradil on high-glucose-induced cardiac hypertrophy in H9c2 cells. H9c2 cells were incubated in a high-glucose medium and then treated with different concentrations of mibefradil in the presence or absence of the Akt inhibitor MK2206 or mTOR inhibitor rapamycin. Cell size was evaluated through immunofluorescence, and mRNA expression of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain) was assessed by using quantitative real-time polymerase chain reaction. Changes in the expression of p-PI3K, p-Akt, and p-mTOR were evaluated using Western blotting, and autophagosome formation was detected using transmission electron microscopy. Our results indicate that mibefradil reduced the size of H9c2 cells, decreased mRNA expression of atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain, and decreased the level of autophagic flux. However, MK2206 and rapamycin induced autophagy and reversed the effects of mibefradil on high-glucose-induced H9c2 cells. In conclusion, mibefradil ameliorated high-glucose-induced cardiac hypertrophy by activating the PI3K/Akt/mTOR pathway and inhibiting excessive autophagy. Our study shows that mibefradil can be used therapeutically to ameliorate cardiac hypertrophy in patients with diabetes mellitus.


Asunto(s)
Autofagia/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Cardiomegalia/prevención & control , Glucosa/toxicidad , Mibefradil/farmacología , Miocitos Cardíacos/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/enzimología , Cardiomegalia/patología , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Fosforilación , Ratas , Transducción de Señal
12.
Drug Metab Pharmacokinet ; 35(3): 253-265, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32331852

RESUMEN

Modes of interactions of small ligands with CYP3A4 have been defined using the Template established in our previous studies (DMPK. 34: 113-125 2019 and 34 351-364 2019). Interactions of polyaromatic hydrocarbons such as benzo[a]pyrene, pyrene and dibenzo[a,j]acridine were refined with the idea of Right-side movement of ligands at Rings A and B of Template. Expected formation of metabolites from the placements faithfully matched with experimentally observed sites of their metabolisms and also with preferred orders of regio-isomeric metabolite abundances in recombinant CYP3A4 system. In comparison of CYP3A4-ligand data with the placements on simulations, a futile sitting of non-substituted and free rotatable phenyl structures was suggested as a cause of poor oxidations of the phenyl parts of CYP3A4 ligands. These data were in turn indicative of the role of the rotation-ceasing action for the function. Typical inhibitors, ketoconazole, nicardipine, mibefradil and GF-I-1 shared mutuality on their sittings, in which the inhibitor molecules hold a CYP3A4 residue from dual sides on Template. In addition, clotrimazole would be stuck between facial- and rear-side walls of CYP3A4 and interact with ferric iron through nitrogen atom of the imidazole part. These data offered structural bases of CYP3A4-inhibitory actions of ligands.


Asunto(s)
Cumarinas/química , Inhibidores del Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/química , Cetoconazol/química , Mibefradil/química , Nicardipino/química , Cumarinas/farmacología , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Humanos , Cetoconazol/farmacología , Ligandos , Mibefradil/farmacología , Estructura Molecular , Nicardipino/farmacología
13.
Synapse ; 74(9): e22155, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32215948

RESUMEN

Epileptogenesis is a dynamical process that involves synaptic plasticity changes such as synaptic reorganization of excitatory and inhibitory systems and axonal sprouting in the hippocampus, which is one of the most studied epileptogenic regions in the brain. However, the early events that trigger these changes are not understood well. We investigated short-term and long-term synaptic plasticity parameters and T-type Ca2+ channel activity changes in the early phase of a rat kindling model. Chronic pentylenetetrazole (PTZ) application was used in order to induce the kindling process in rats. The recordings were obtained from hippocampal slices in the CA1 region at 25th day of PTZ application. Tetraethylammonium was used in order to induce long-term potentiation and T-type Ca2+ channel activity was assessed in the presence of mibefradil. We found that tetraethylammonium-induced long-term potentiation was not prevented by mibefradil in the kindling group in contrast to control group. We also found an increase in paired-pulse ratios in the PTZ-applied group. Our findings indicate an increase in the "T-type Ca2+ channel component of LTP" in the kindling group, which may be an early mechanism in epileptogenesis.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Canales de Calcio Tipo T/metabolismo , Epilepsia/metabolismo , Potenciación a Largo Plazo , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiopatología , Bloqueadores de los Canales de Calcio/farmacología , Epilepsia/etiología , Epilepsia/fisiopatología , Masculino , Mibefradil/farmacología , Pentilenotetrazol/toxicidad , Ratas , Ratas Wistar , Tetraetilamonio/farmacología
14.
Biochem Biophys Res Commun ; 525(4): 1011-1017, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32178872

RESUMEN

In seminiferous epithelium, tight junctions (TJs) between adjacent Sertoli cells constitute the blood-testis barrier and must change synchronically for germ cells to translocate from the basal to the adluminal compartment during the spermatogenic cycle. Rho GTPase activation through stimulation with specific L-selectin ligands has been proposed to modulate tight junctional dynamics. However, little is known regarding the role of Ca+2 dynamics in Sertoli cell and how Ca+2 relays L-selectin signals to modulate Rho GTPase activity in Sertoli cells, thus prompting us to investigate the Ca+2 flux induced by L-selectin ligand in ASC-17D cells. Using fluorescent real-time image, we first demonstrated the increase of intracellular Ca+2 level following L-selectin ligand stimulation. This Ca+2 increase was inhibited in ASC-17D cells pretreated with nifedipine, the L-type voltage-operated Ca+2 channel (VOCC) blocker, but not mibefradil, the T-type VOCC blocker. We then demonstrated the up-regulation of Rho and Rac1 in ASC-17D cells following the administration of L-selectin ligand, and the pre-treatment with nifedipine, but not mibefradil, prior to L-selectin ligand-binding abolished the activation of both Rho and Rac1. Together, we conclude that the activation of L-selectin induces Ca+2 influx through the L-type VOCC, which up-regulates Rho and Rac1 proteins, in ASC-17D cells.


Asunto(s)
Calcio/metabolismo , Selectina L/metabolismo , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio , Línea Celular , Ligandos , Masculino , Mibefradil/farmacología , Nifedipino/farmacología , Imagen Óptica , Ratas , Células de Sertoli/efectos de los fármacos , Células de Sertoli/enzimología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética
15.
Sci Rep ; 10(1): 70, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31919478

RESUMEN

The spontaneous contractions of collecting lymphatic vessels provide an essential propulsive force to return lymph centrally. These contractions are driven by an intrinsic electrical pacemaker, working through an unknown underlying ionic mechanism that becomes compromised in some forms of lymphedema. In previous studies, T-type voltage-gated Ca2+ channels (VGCCs) were implicated in this pacemaking mechanism, based on the effects of the reputedly selective T-type VGCC inhibitors mibefradil and Ni2+. Our goal was to test this idea in a more definitive way using genetic knock out mice. First, we demonstrated through both PCR and immunostaining that mouse lymphatic muscle cells expressed Cav3.1 and Cav3.2 and produced functional T-type VGCC currents when patch clamped. We then employed genetic deletion strategies to selectively test the roles of each T-type VGCC isoform in the regulation of lymphatic pacemaking. Surprisingly, global deletion of either, or both, isoform(s) was without significant effect on either the frequency, amplitude, or fractional pump flow of lymphatic collectors from two different regions of the mouse, studied ex vivo. Further, both WT and Cav3.1-/-; 3.2-/- double knock-out lymphatic vessels responded similarly to mibefradil and Ni2+, which substantially reduced contraction amplitudes and slightly increased frequencies at almost all pressures in both strains: a pattern consistent with inhibition of L-type rather than T-type VGCCs. Neither T-type VGCC isoform was required for ACh-induced inhibition of contraction, a mechanism by which those channels in smooth muscle are thought to be targets of endothelium-derived nitric oxide. Sharp intracellular electrode measurements in lymphatic smooth muscle revealed only subtle, but not significant, differences in the resting membrane potential and action potential characteristics between vessels from wild-type and Cav3.1-/-; 3.2-/- double knock-out mice. In contrast, smooth-muscle specific deletion of the L-type VGCC, Cav1.2, completely abolished all lymphatic spontaneous contractions. Collectively our results suggest that, although T-type VGCCs are expressed in mouse lymphatic smooth muscle, they do not play a significant role in modulating the frequency of the ionic pacemaker or the amplitude of spontaneous contractions. We conclude that the effects of mibefradil and Ni2+ in other lymphatic preparations are largely or completely explained by off-target effects on L-type VGCCs, which are essential for controlling both the frequency and strength of spontaneous contractions.


Asunto(s)
Canales de Calcio Tipo T/genética , Vasos Linfáticos/fisiología , Contracción Muscular/fisiología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/deficiencia , Canales de Calcio Tipo T/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Mibefradil/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Níquel/farmacología , Marcapaso Artificial , Ratas , Ratas Wistar
16.
Prostate ; 79(13): 1580-1586, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31334879

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) is the treatment of choice for metastatic prostate cancer (PCa). After an initial response to ADT, PCa cells can generate castration resistant (CRPC) or neuroendocrine (NEPC) malignancies, which are incurable. T-type calcium channels (TTCCs) are emerging as promising therapeutic targets for several cancers, but their role in PCa progression has never been investigated. METHODS: To examine the role of TTCCs in PCa, we analyzed their expression level, copy number variants (CNV) and prognostic significance using clinical datasets (Oncomine and cBioPortal). We then evaluated TTCC expression in a panel of PCa cell lines and measured the effect of their inhibition on cell proliferation and survival using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and caspase assays. RESULTS: TTCCs were upregulated in PCas harboring androgen receptor (AR) mutations; CNV rate was positively associated with PCa progression. Higher expression of one TTCC isoform (CACNA1G) predicted poorer postoperative prognosis in early stage PCa samples. Pharmacological or small interfering RNA (siRNA)-based inhibition of TTCCs caused a decrease in PC-3 cell survival and proliferation. CONCLUSIONS: Our results show that TTCCs are overexpressed in advanced forms of PCa and correlate with a poorer prognosis. TTCC inhibition reduces cell proliferation and survival, suggesting that there may be possible value in the therapeutic targeting of TTCCs in advanced PCa.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/deficiencia , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/biosíntesis , Línea Celular Tumoral , Proliferación Celular/fisiología , Etosuximida/farmacología , Humanos , Masculino , Mibefradil/farmacología , Terapia Molecular Dirigida , Células PC-3 , Pronóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Regulación hacia Arriba
17.
Br J Pharmacol ; 176(19): 3845-3856, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31271653

RESUMEN

BACKGROUND AND PURPOSE: Mibefradil, a T-type Ca2+ channel blocker, has been investigated for treating solid tumours. However, its underlying mechanisms are still unclear. Here, we have investigated the pharmacological actions of mibefradil on Orai store-operated Ca2+ channels. EXPERIMENTAL APPROACH: Human Orai1-3 cDNAs in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells with stromal interaction molecule 1 (STIM1) stable expression. The Orai currents were recorded by whole-cell and excised-membrane patch clamp. Ca2+ influx or release was measured by Fura-PE3/AM. Cell growth and death were monitored by WST-1, LDH assays and flow cytometry. KEY RESULTS: Mibefradil inhibited Orai1, Orai2, and Orai3 currents dose-dependently. The IC50 for Orai1, Orai2, and Orai3 channels was 52.6, 14.1, and 3.8 µM respectively. Outside-out patch demonstrated that perfusion of 10-µM mibefradil to the extracellular surface completely blocked Orai3 currents and single channel activity evoked by 2-APB. Intracellular application of mibefradil did not alter Orai3 channel activity. Mibefradil at higher concentrations (>50 µM) inhibited Ca2+ release but had no effect on cytosolic STIM1 translocation evoked by thapsigargin. Inhibition on Orai channels by mibefradil was structure-related, as other T-type Ca2+ channel blockers with different structures, such as ethosuximide and ML218, had no or minimal effects on Orai channels. Moreover, mibefradil inhibited cell proliferation, induced apoptosis, and arrested cell cycle progression. CONCLUSIONS AND IMPLICATIONS: Mibefradil is a potent cell surface blocker of Orai channels, demonstrating a new pharmacological action of this compound in regulating cell growth and death, which could be relevant to its anti-cancer activity.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Mibefradil/farmacología , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI2/antagonistas & inhibidores , Calcio/análisis , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células HEK293 , Humanos , Mibefradil/química , Proteína ORAI1/metabolismo , Proteína ORAI2/metabolismo , Imagen Óptica
18.
Reprod Fertil Dev ; 31(9): 1463-1472, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31030724

RESUMEN

The mechanism that causes the detachment of spermatozoa from the oviductal reservoir around the time of ovulation remains to be elucidated. Because the cumulus cells of the bovine oocyte are known to secrete progesterone (P4), and P4 has been shown to act upon cation channels of spermatozoa (CatSper) in human spermatozoa, it was hypothesised that P4 could induce hyperactivation due to an influx of extracellular calcium, and this would facilitate detachment of spermatozoa from oviductal epithelial cells. Therefore, this study aimed to investigate the role and mechanism of action of P4 in the release of spermatozoa from bovine oviduct epithelial cells (BOEC). Initial dose-response assessments on sperm hyperactivation determined the optimum concentration of P4 (10 nM), mibefradil (a non-specific Ca2+ channel antagonist; 5µM), NNC 55-0396 dihydrochloride (NNC; a CatSper antagonist; 2µM), mifepristone (a classical and membrane P4 receptor antagonist; 400nM) and AG205 (a membrane P4 receptor antagonist; 10µM). BOEC explants were incubated with frozen-thawed bovine spermatozoa for 30min, following which loosely bound spermatozoa were removed. Two experiments were completed. In Experiment 1, BOECs were treated for 30min with either no treatment, P4, NNC, mibefradil, P4+mibefradil, P4+NNC, P4+mibefradil+NNC or P4+EGTA. In Experiment 2, BOECs were treated for 30min with either no treatment, P4, mifepristone, AG205, mifepristone+AG205, P4+mifepristone, P4+AG205 or P4+mifepristone+AG205. The number of spermatozoa remaining bound per millimetre squared of BOEC explant was determined. Progesterone stimulated the release of bound spermatozoa from BOEC explants, whereas NNC, mibefradil and EGTA inhibited this release. The release of spermatozoa by P4 was inhibited in the presence of both mifepristone and AG205, whereas the combination of both had the greatest inhibitory action on P4 release of spermatozoa. These findings suggest the presence of a P4 membrane receptor on bovine spermatozoa and that P4-induced release of spermatozoa from BOECs is likely mediated by extracellular Ca2+.


Asunto(s)
Calcio/metabolismo , Células Epiteliales/efectos de los fármacos , Oviductos/efectos de los fármacos , Progesterona/farmacología , Receptores de Progesterona/metabolismo , Espermatozoides/efectos de los fármacos , Animales , Bencimidazoles/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Bovinos , Ciclopropanos/farmacología , Células Epiteliales/citología , Femenino , Antagonistas de Hormonas/farmacología , Masculino , Mibefradil/farmacología , Mifepristona/farmacología , Naftalenos/farmacología , Oviductos/citología , Receptores de Progesterona/antagonistas & inhibidores , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-29684576

RESUMEN

Daphnia magna heartbeat is myogenic-originating within the animal's heart. However, the mechanism for this myogenic automaticity is unknown. The mechanism underlying the automaticity of vertebrate myogenic hearts involves cells (pacemaker cells), which have a distinct set of ion channels that include hyperpolarization activated cyclic nucleotide-gated (HCN) and T-type calcium ion channels. We hypothesized that these ion channels also underlie the automatic myogenic heartbeat of Daphnia magna. The drugs, ZD7288 and mibefradil dihydrochloride, block HCN and T-type calcium ion channels respectively. Application of these drugs, in separate experiments, show that they inhibit the heartbeat of Daphnia magna in a dose-dependent manner. Calculation of the percent difference between the heart rate of pretreatment (before drug application) and heart rate following drug application (post-treatment) allowed us to graph a dose-response curve for both ZD7288 and mibefradil, revealing that ZD7288 produces a greater effect on decreasing heart rate. This indicates the HCN ion channels play a foremost role in generating Daphnia magna heartbeat. Our results show conclusively that HCN and T-type calcium ion channels underlie the automatic myogenic heartbeat in Daphnia magna-and suggest a conserved mechanism for generating myogenic heartbeat within the animal kingdom. Thus, Daphnia magna represents a credible model system for further exploration of cardiac physiology.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Cardiotónicos/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Daphnia/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Mibefradil/farmacología , Pirimidinas/farmacología , Animales , Bloqueadores de los Canales de Calcio/administración & dosificación , Cardiotónicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Mibefradil/administración & dosificación , Pirimidinas/administración & dosificación
20.
Life Sci ; 192: 144-150, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183797

RESUMEN

AIMS: Ca2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca2+ currents and proliferation in pituitary tumor GH3 cells. MAIN METHODS: Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. KEY FINDINGS: Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. SIGNIFICANCE: We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca2+ current density and this phenomenon impacts proliferation rate in GH3 cells.


Asunto(s)
Canales de Calcio/metabolismo , AMP Cíclico/metabolismo , Animales , Bucladesina/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo T/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colforsina/farmacología , Mibefradil/farmacología , Técnicas de Placa-Clamp , Neoplasias Hipofisarias/metabolismo , Ratas , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...