Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 641
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731455

RESUMEN

Phytophthora capsici is an important plant pathogenic oomycete that causes great losses to vegetable production around the world. Antofine is an important alkaloid isolated from Cynanchum komarovii Al. Iljinski and exhibits significant antifungal activity. In this study, the effect of antofine on the mycelial growth, morphology, and physiological characteristics of P. capsici was investigated using colorimetry. Meanwhile, the activity of mitochondrial respiratory chain complexes of P. capsici was evaluated following treatment with a 30% effective concentration (EC30), as well as EC50 and EC70, of antofine for 0, 12, 24, and 48 h. The results showed that antofine had a significant inhibitory effect against P. capsici, with an EC50 of 5.0795 µg/mL. After treatment with antofine at EC50 and EC70, the mycelia were rough, less full, and had obvious depression; they had an irregular protrusion structure; and they had serious wrinkles. In P. capsici, oxalic acid and exopolysaccharide contents decreased significantly, while cell membrane permeability and glycerol content increased when treated with antofine. Reactive oxygen species (ROS) entered a burst state in P. capsici after incubation with antofine for 3 h, and fluorescence intensity was 2.43 times higher than that of the control. The activities of the mitochondrial respiratory chain complex II, III, I + III, II + III, V, and citrate synthase in P. capsici were significantly inhibited following treatment with antofine (EC50 and EC70) for 48 h compared to the control. This study revealed that antofine is likely to affect the pathways related to the energy metabolism of P. capsici and thus affect the activity of respiratory chain complexes. These results increase our understanding of the action mechanism of antofine against P. capsici.


Asunto(s)
Phytophthora , Especies Reactivas de Oxígeno , Phytophthora/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antifúngicos/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
2.
Curr Microbiol ; 81(7): 183, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771359

RESUMEN

The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Monascus , Micelio , Monascus/química , Monascus/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Micelio/química , Micelio/efectos de la radiación , Micelio/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Productos Biológicos/farmacología , Productos Biológicos/química , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/efectos de la radiación , Mezclas Complejas/farmacología , Mezclas Complejas/química , Pigmentos Biológicos/farmacología , Fotoquimioterapia
3.
Bioresour Technol ; 401: 130715, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641304

RESUMEN

To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.


Asunto(s)
Antibacterianos , Fermentación , Espectinomicina , Tilosina , Tilosina/farmacología , Antibacterianos/farmacología , Espectinomicina/farmacología , Micelio/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Biodegradación Ambiental , Genes Bacterianos
4.
J Agric Food Chem ; 72(18): 10282-10294, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657235

RESUMEN

This study explores the antipathogenic properties of volatile organic compounds (VOCs) produced by Bacillus velezensis LT1, isolated from the rhizosphere soil of Coptis chinensis. The impact of these VOCs on the mycelial growth of Sclerotium rolfsii LC1, the causative agent of southern blight in C. chinensis, was evaluated using a double Petri-dish assay. The biocontrol efficacy of these VOCs was further assessed through leaf inoculation and pot experiments. Antifungal VOCs were collected using headspace solid-phase microextraction (SPME), and their components were identified via gas chromatography-mass spectrometry (GC-MS). The results revealed that the VOCs significantly inhibited the mycelial growth and sclerotia germination of S. rolfsii LC1 and disrupted the morphological integrity of fungal mycelia. Under the influence of these VOCs, genes associated with chitin synthesis were upregulated, while those related to cell wall degrading enzymes were downregulated. Notably, 2-dodecanone and 2-undecanone exhibited inhibition rates of 81.67% and 80.08%, respectively. This research provides a novel approach for the prevention and management of southern blight in C. chinensis, highlighting the potential of microbial VOCs in biocontrol strategies.


Asunto(s)
Bacillus , Basidiomycota , Coptis , Enfermedades de las Plantas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Bacillus/química , Bacillus/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Basidiomycota/química , Basidiomycota/metabolismo , Coptis/química , Coptis/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Cromatografía de Gases y Espectrometría de Masas , Micelio/química , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos
5.
Microb Pathog ; 190: 106604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490458

RESUMEN

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Asunto(s)
Alternaria , Bacillus subtilis , Fungicidas Industriales , Lipopéptidos , Nitrilos , Enfermedades de las Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Alternaria/efectos de los fármacos , Alternaria/crecimiento & desarrollo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Nitrilos/farmacología , Lipopéptidos/farmacología , ARN Ribosómico 16S/genética , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Péptidos Cíclicos/farmacología
6.
Z Naturforsch C J Biosci ; 79(3-4): 89-92, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38421614

RESUMEN

A novel isocoumarin was isolated from the mycelia of the dark septate endophytic fungus Phialocephala fortinii. The chemical structure was determined to be 8-hydroxy-6-methoxy-3,7-dimethyl-1H-2-benzopyran-1-one based on mass spectrometry, 1H-nuclear magnetic resonance (NMR), and 13C-NMR spectroscopic analyses, including 2D-NMR experiments. The isolated compound inhibited root growth of Arabidopsis thaliana, suggesting its potential as a plant growth regulator.


Asunto(s)
Arabidopsis , Ascomicetos , Isocumarinas , Raíces de Plantas , Isocumarinas/química , Isocumarinas/farmacología , Isocumarinas/aislamiento & purificación , Ascomicetos/química , Raíces de Plantas/microbiología , Arabidopsis/microbiología , Espectroscopía de Resonancia Magnética , Endófitos/química , Micelio/crecimiento & desarrollo , Micelio/química , Micelio/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/química , Estructura Molecular
7.
Sci Rep ; 12(1): 2191, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140298

RESUMEN

Recently, plant essential oils (EOs) have attracted special attention in plant disease control and food preservation. Since ancient times, essential oils extracted from plants have exhibited many biological characteristics, especially antimicrobial properties. Recent studies have described the potentials of EOs and derivatives to inhibit the growth and reproduction of microorganisms, mainly in response of overwhelming concerns of consumers about food safety. In the context of returning to nature, with the advancement of science and technology and improved living standards, people have begun to seek solutions for food hygiene without chemical additives. Therefore, biological pesticides and plant-oriented chemicals have received special attention from scientists because they are environmentally friendly and nonhazardous, sustainable, and effective alternatives against many noxious phytopathogens. Present study is intended to appraise the fungicidal properties of ginger EOs to combat leaf blight disease of taro, which threatens global taro production. Farmers often hinge on extremely toxic synthetic fungicides to manage diseases, but the residual effects and resistance of chemicals are unavoidable. The microwave-assisted hydrodistillation method was used for ginger EOs extraction and an FTIR (ATR) spectrometer was used to evaluate their chemical composition and citral was identified as most abundant compound (89.05%) in oil. The pathogen isolated from lesions of diseased taro plants was identified as Phytophthora colocasiae and used as test fungus in the present study. Ginger EO was evaluated in-vitro for antifungal properties against mycelium growth, sporangium production, zoospore germination, leaf, and corm necrosis inhibition. Repeated experiments have shown that the concentration of ginger essential oil (1250 ppm) proved to be the lowest dose to obtain 100% inhibition of fungal growth and spore germination, sporangia formation and leaf necrosis assessment. These results are derived from this fungal species and a hypothesis that involves further research on other plant pathogens to demonstrate the overall potency of essential oils. This study references the easy, economic, and environmental management and control of plant diseases using essential oils and byproducts.


Asunto(s)
Antifúngicos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Phytophthora/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Zingiber officinale/química , Colocasia/efectos de los fármacos , Colocasia/parasitología , Hongos/efectos de los fármacos , Germinación/efectos de los fármacos , Micelio/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Esporangios/efectos de los fármacos , Esporas/efectos de los fármacos
8.
Toxins (Basel) ; 14(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202169

RESUMEN

Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 µg/mL. Compared with the control group, 40 µg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.


Asunto(s)
Antifúngicos/química , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micotoxinas/biosíntesis , Micotoxinas/química , Timol/química , Transcriptoma
9.
Molecules ; 27(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163975

RESUMEN

Cordyceps cicadae (CC), an entomogenous fungus that has been reported to have therapeutic glaucoma, is a major cause of blindness worldwide and is characterized by progressive retinal ganglion cell (RGC) death, mostly due to elevated intraocular pressure (IOP). Here, an ethanolic extract of C. cicadae mycelium (CCME), a traditional medicinal mushroom, was studied for its potential in lowering IOP in rat and rabbit models. Data showed that CCME could significantly (60.5%) reduce the IOP induced by microbead occlusion after 56 days of oral administration. The apoptosis of retinal ganglion cells (RGCs) in rats decreased by 77.2%. CCME was also shown to lower the IOP of normal and dextrose-infusion-induced rabbits within 60 min after oral feeding. There were dose effects, and the effect was repeatable. The active ingredient, N6-(2-hydroxyethyl)-adenosine (HEA), was also shown to alleviate 29.6% IOP at 0.2 mg/kg body weight in this rabbit model. CCME was confirmed with only minor inhibition in the phosphorylated myosin light chain 2 (pMLC2) pathway.


Asunto(s)
Cordyceps/enzimología , Cordyceps/metabolismo , Presión Intraocular/fisiología , Adenosina/farmacología , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Glaucoma/metabolismo , Presión Intraocular/efectos de los fármacos , Masculino , Micelio/efectos de los fármacos , Conejos , Ratas , Ratas Sprague-Dawley , Células Ganglionares de la Retina/efectos de los fármacos
10.
PLoS One ; 17(1): e0262836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051224

RESUMEN

Alternaria porri (Ellis) Clf. causes purple blotch disease on Allium plants which results in the reduction of crop yields and quality. In this study, to efficiently find natural antifungal compounds against A. porri, we optimized the culture condition for the spore production of A. porri and the disease development condition for an in vivo antifungal assay. From tested plant materials, the methanol extracts derived from ten plant species belonging to the families Cupressaceae, Fabaceae, Dipterocarpaceae, Apocynaceae, Lauraceae, and Melastomataceae were selected as potent antifungal agents against A. porri. In particular, the methanol extract of Caryodaphnopsis baviensis (Lec.) A.-Shaw completely inhibited the growth of A. porri at a concentration of 111 µg/ml. Based on chromatographic and spectroscopic analyses, a neolignan compound magnolol was identified as the antifungal compound of the C. baviensis methanol extract. Magnolol showed a significant inhibitory activity against the spore germination and mycelial growth of A. porri with IC50 values of 4.5 and 5.4 µg/ml, respectively. Furthermore, when magnolol was sprayed onto onion plants at a concentration of 500 µg/ml, it showed more than an 80% disease control efficacy for the purple blotch diseases. In terms of the antifungal mechanism of magnolol, we explored the in vitro inhibitory activity on individual oxidative phosphorylation complexes I-V, and the results showed that magnolol acts as multiple inhibitors of complexes I-V. Taken together, our results provide new insight into the potential of magnolol as an active ingredient with antifungal inhibitory action to control purple blotch on onions.


Asunto(s)
Alternaria/efectos de los fármacos , Antifúngicos/farmacología , Compuestos de Bifenilo/farmacología , Lauraceae/química , Lignanos/farmacología , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Extractos Vegetales/farmacología , Metanol/química , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo
11.
Sci Rep ; 12(1): 340, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013424

RESUMEN

Electrical activity of fungus Pleurotus ostreatus is characterised by slow (h) irregular waves of baseline potential drift and fast (min) action potential likes spikes of the electrical potential. An exposure of the myceliated substrate to a chloroform vapour lead to several fold decrease of the baseline potential waves and increase of their duration. The chloroform vapour also causes either complete cessation of spiking activity or substantial reduction of the spiking frequency. Removal of the chloroform vapour from the growth containers leads to a gradual restoration of the mycelium electrical activity.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Cloroformo/farmacología , Micelio/efectos de los fármacos , Pleurotus/efectos de los fármacos , Micelio/crecimiento & desarrollo , Pleurotus/crecimiento & desarrollo , Factores de Tiempo , Volatilización
12.
Microbiol Spectr ; 10(1): e0006321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34985327

RESUMEN

Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.


Asunto(s)
Aspergillus fumigatus/química , Aspergillus fumigatus/crecimiento & desarrollo , Medios de Cultivo/metabolismo , Espectrofotometría/métodos , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Pared Celular/genética , Pared Celular/metabolismo , Medios de Cultivo/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Hifa/química , Hifa/efectos de los fármacos , Hifa/genética , Hifa/crecimiento & desarrollo , Micelio/química , Micelio/efectos de los fármacos , Micelio/genética , Micelio/crecimiento & desarrollo
13.
J Toxicol Environ Health A ; 85(2): 43-55, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34459359

RESUMEN

Monilinia fructicola (Wint.) Honey is a plant pathogenic fungus that infects stone fruits such as peach, nectarine and plum, which are high demand cultivars found in Brazil. This pathogen may remain latent in the host, showing no apparent signs of disease, and consequently may spread to different countries. The aim of this study was to evaluate the activity of hydroalcoholic extract (HydE) obtained from Lactarius deliciosus (L.) Sf. Gray a mushroom, against M. fructicola phytopathogenic-induced mycelial growth. In addition, the purpose of this study was to examine phytotoxicity attributed to HydE using Brassica oleracea seeds, as well as cytotoxic analysis of this extract on cells of mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) (ATCC TIB-67). The L. deliciosus HydE inhibited fungal growth and reduced phytopathogen mycelial development at a concentration of 1.25 mg/ml. Our results demonstrated that the extract exhibited phytotoxicity as evidenced by (1) interference on germination percentage and rate index, (2) decreased root and initial growth measures, and (3) lower fresh weight of seedlings but no cytotoxicity in Vero cell lines. Data suggest that the use of the L. deliciosus extracts may be beneficial for fungal control without any apparent adverse actions on mouse BALB/c monocyte macrophage cell line (J774A.1 cell line) viability.


Asunto(s)
Antifúngicos/farmacología , Basidiomycota/química , Agentes de Control Biológico/farmacología , Animales , Antifúngicos/química , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Agentes de Control Biológico/química , Brasil , Línea Celular , Supervivencia Celular/efectos de los fármacos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Frutas/microbiología , Germinación/efectos de los fármacos , Ratones , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Fenol/análisis , Enfermedades de las Plantas/microbiología , Semillas/crecimiento & desarrollo , Semillas/microbiología
14.
Int J Biol Macromol ; 192: 210-218, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619278

RESUMEN

Schizophyllum commune (S. commune) polysaccharides are biomacromolecules with multiple biological activities and wide applications. In this study, polysaccharide production through submerged fermentation of S. commune using different surfactants was investigated. The addition of 1 g/L of polyoxyethylene sorbitan monooleate (Tween 80) at the beginning of the fermentation showed the best promotional effects on collective exopolysaccharide (EPS) production (which increased by 37.17%) while shortening the production cycle by 2 days. The monosaccharide composition of the EPS produced when the added Tween 80 was similar to that of the control; however, the molecular weight (Mw) was lower. Notably, the addition of Tween 80 significantly increased the ATP levels and the transcription levels of phosphoglucomutase and ß-glucan synthase genes in the polysaccharide synthesis pathway. The addition of Tween 80 reduced the pellet size of the mycelium compared to that of the control, but did not significantly change the microstructure of the mycelial cells. This study proposes an efficient strategy for the production of polysaccharides through submerged fermentation of S. commune, and elucidates the detailed mechanism of using Tween 80 as a fermentation stimulatory reagent.


Asunto(s)
Fermentación , Polisacáridos/biosíntesis , Schizophyllum/efectos de los fármacos , Schizophyllum/metabolismo , Tensoactivos/farmacología , Adenosina Trifosfato/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Membrana Celular/metabolismo , Pared Celular/química , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Permeabilidad , Polisorbatos/metabolismo , Polisorbatos/farmacología , Tensoactivos/metabolismo
15.
World J Microbiol Biotechnol ; 37(12): 203, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34669053

RESUMEN

White mold disease, caused by the phytopathogen Sclerotinia sclerotiorum, provokes severe productivity losses in several economically important crops. Biocontrol agents, especially antagonist filamentous fungi, are environmentally friendly alternatives to the chemical fungicides used in white mold management. The objective of this study was to screen for basidiomycete fungi capable of inhibiting S. sclerotiorum and investigate their bioactive metabolites responsible for antifungal activities. Two out of 17 tested basidiomycete isolates inhibited the mycelial growth of S. sclerotiorum in pair culture experiments on agar plates, namely Oudemansiella canarii BRM-044600 and Laetisaria arvalis ATCC52088. O. canarii BRM-044600 liquid culture filtrate exhibited the greatest antifungal activity and was selected for further investigation. UHPLC-MS analysis suggests that six putative strobilurins, including strobilurin A and/or stereoisomers of this compound (m/z 259.1299, [M + H]+) and three putative strobilurins with m/z 257.1184 ([M + H]+) are likely responsible for the antifungal activity observed in the culture filtrate. For the first time, this work demonstrated the potential of O. canarii for white mold biocontrol and strobilurin production.


Asunto(s)
Agaricales/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Metabolismo Secundario , Basidiomycota , Agentes de Control Biológico/farmacología , Ácidos Grasos Insaturados/metabolismo , Fungicidas Industriales/farmacología , Pruebas de Sensibilidad Microbiana , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Estereoisomerismo , Estrobilurinas/metabolismo
16.
Int J Biol Macromol ; 188: 751-763, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34384804

RESUMEN

The aim of the present study was to encapsulate linalool into chitosan nanocomposite (Nm-linalool) for developing novel controlled release delivery system in order to protect stored rice against fungal infestation, aflatoxin B1 (AFB1) contamination, and lipid peroxidation. The chitosan-linalool nanocomposite showed spherical shapes, smooth surface with monomodal distribution as revealed by SEM and AFM investigation. FTIR and XRD represented peak shifting and changes in degree of crystallinity after incorporation of linalool into chitosan nanocomposite. Nanoencapsulation of linalool showed higher zeta potential and lowered polydispersity index. TGA analysis reflected the stability of Nm-linalool with reduced weight loss at varying temperatures. Biphasic pattern, with initial rapid release followed by sustained release illustrated controlled delivery of linalool from chitosan nanocomposite, a prerequisite for shelf-life enhancement of stored food products. Chitosan nanocomposite incorporating linalool displayed prominent antifungal and antiaflatoxigenic activity during in vitro as well as in situ investigation in rice with improved antioxidant potentiality. Further, Nm-linalool displayed considerable reduction of lipid peroxidation in rice without exerting any adverse impact on organoleptic attributes. In conclusion, the investigation strengthens the application of chitosan-linalool nanocomposite as an innovative controlled nano-delivery system for its practical application as novel environmentally friendly eco-smart preservative in food and agricultural industries.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Materiales Biocompatibles/química , Fenómenos Químicos , Quitosano/química , Conservación de Alimentos , Nanocompuestos/química , Aflatoxina B1/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Coloides/química , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Hongos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Micelio/efectos de los fármacos , Nanocompuestos/ultraestructura , Oryza/microbiología , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Termogravimetría , Difracción de Rayos X
17.
J Basic Microbiol ; 61(10): 923-939, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34374439

RESUMEN

Pea (Pisum sativum L.) is of global importance as a food crop for its edible pod and seed. A new disease causing the tan to light brown blighted stems and pods has occurred in pea (P. sativum L.) plants in Chapainawabganj district, Bangladesh. A fungus with white-appressed mycelia and large sclerotia was consistently isolated from symptomatic tissues. The fungus formed funnel-shaped apothecia with sac-like ascus and endogenously formed ascospores. Healthy pea plants inoculated with the fungus produced typical white mold symptoms. The internal transcribed spacer sequences of the fungus were 100% similar to Sclerotinia sclerotiorum, considering the fungus to be the causative agent of white mold disease in pea, which was the first record in Bangladesh. Mycelial growth and sclerotial development of S. sclerotiorum were favored at 20°C and pH 5.0. Glucose was the best carbon source to support hyphal growth and sclerotia formation. Bavistin and Amistar Top inhibited the radial growth of the fungus completely at the lowest concentration. In planta, foliar application of Amistar Top showed the considerable potential to control the disease at 1.0% concentration until 7 days after spraying, while Bavistin prevented infection significantly until 15 days after spraying. A large majority (70.93%) of genotypes, including tested released pea cultivars, were susceptible, while six genotypes (6.98%) appeared resistant to the disease. These results on identification, characterization, host resistance, and fungicidal control of white mold could be valuable to achieve improved management of a new disease problem for pea cultivation.


Asunto(s)
Ascomicetos/patogenicidad , Pisum sativum/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/aislamiento & purificación , Fungicidas Industriales/farmacología , Genotipo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Virulencia
18.
Molecules ; 26(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201482

RESUMEN

Fusarium wilt of potato is one of the most common diseases of potato in China, and is becoming a serious threat in potato production. It has been reported that osthole from Cnidium monnieri (L.) Cusson can inhibit plant pathogens. Here, we test the anti-fungal activity of C. monnieri osthole against Fusarium oxysporum in potatoes. The results showed that at a concentration of 5 mg/mL, osthole was able to obviously inhibit mycelial growth of F. oxysporum. We found that osthole caused changes of mycelial morphology, notably hyphal swelling and darkening. Osthole significantly reduced the spore germination of Fusarium by 57.40%. In addition, osthole also inhibited the growth of other pathogens such as Fusarium moniliforme J. Sheld, Thanatephorus cucumeris Donk, and Alternaria alternata (Fr.) Keissl, but not Alternaria solani Jonesetgrout and Valsa mali Miyabe and G. Yamada. Our results suggest that osthole has considerable potential as an agent for the prevention and treatment of potato Fusarium wilt.


Asunto(s)
Cnidium/química , Cumarinas/administración & dosificación , Fusarium/efectos de los fármacos , Micelio/efectos de los fármacos , Solanum tuberosum/efectos de los fármacos , Alternaria/efectos de los fármacos , Ascomicetos/efectos de los fármacos , Basidiomycota/efectos de los fármacos , Micelio/citología , Solanum tuberosum/microbiología
19.
Curr Issues Mol Biol ; 43(1): 365-383, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203617

RESUMEN

Although the individual consumption of medicinal mushrooms, including Phellinus linteus (PL), Ganoderma lucidum (GL), and Inonotus obliquus (IO), is known to be neuroprotective, the associated mechanisms underlying their therapeutic synergism on focal cerebral ischemia (fCI) have yet to be elucidated. This study aimed to demonstrate the neuroprotective effects of mixed mushroom mycelia (MMM) against experimental fCI. The water-fractions, ethanolic-fractions, and ethyl acetate-fractions of the MMM (PL, GL, and IO) grown in a barley medium using solid-state fermentation techniques were prepared and their protective effects against glutamate-induced excitotoxicity were compared in PC-12 cells. After the identification of the water extracts of MMM (wMMM) as the most suitable form, which possessed the lowest toxicity and highest efficacy, further analyses for evaluating the anti-apoptotic effects of wMMM, including Hoechst 33258-based nuclear staining, fluorescence-activated cell sorting, and reactive oxygen species (ROS) detection assays, were performed. Rats were subjected to a 90 min middle cerebral artery occlusion and reperfusion, after which a wMMM treatment resulted in significant dose-dependent improvements across a number of parameters. Furthermore, measurements of intracellular ROS and levels of antioxidant enzymes revealed a wMMM-mediated ROS attenuation and antioxidant enzyme upregulation. We suggest that wMMM is neuroprotective against fCI through its anti-apoptotic and anti-oxidative effects.


Asunto(s)
Agaricales/química , Isquemia Encefálica/prevención & control , Hordeum/química , Micelio/química , Fármacos Neuroprotectores/farmacología , Agua/química , Agaricales/crecimiento & desarrollo , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Isquemia Encefálica/metabolismo , Medios de Cultivo/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
20.
J Basic Microbiol ; 61(8): 736-744, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34252217

RESUMEN

Primordia formation is the first and most critical step in the development of fruiting bodies of edible fungi. In this study, the effects of exogenous ascorbic acid (ASA) on the Pleurotus ostreatus mycelia growth and primordia formation were researched and the results showed that the growth rate of P. ostreatus mycelia was accelerated and the time of primordia formation was advanced. The protein content and ascorbate oxidase (AAO) activity analysis showed that with the increase of ASA concentration, the protein content of mycelia first decreased and then increased, and in a certain concentration range, exogenous ASA could significantly promote the activity of AAO. Further expression analysis of the development regulating genes (Pofst3 and Pofst4) as well as blue light receptor coding genes (PoWC-1 and PoWC-2) showed the expression levels of those four genes all changed after the exogenous ASA addition, which indicated that the expression changes of PoWC-1 and PoWC-2, two key genes in the light morphogenesis, might affect the expression levels of development regulating genes Pofst3 and Pofst4, so as to lead to the formation of primordia in advance.


Asunto(s)
Ácido Ascórbico/farmacología , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Pleurotus/efectos de los fármacos , Pleurotus/crecimiento & desarrollo , Ascorbato Oxidasa , Ácido Ascórbico/metabolismo , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Micelio/genética , Micelio/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...