Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.888
Filtrar
1.
BMC Genomics ; 25(1): 828, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227786

RESUMEN

Disease can act as a driving force in shaping genetic makeup across populations, even species, if the impacts influence a particularly sensitive part of their life cycles. White-nose disease is caused by a fungal pathogen infecting bats during hibernation. The mycosis has caused massive population declines of susceptible species in North America, particularly in the genus Myotis. However, Myotis bats appear to tolerate infection in Eurasia, where the fungal pathogen has co-evolved with its bat hosts for an extended period of time. Therefore, with susceptible and tolerant populations, the fungal disease provides a unique opportunity to tease apart factors contributing to tolerance at a genomic level to and gain an understanding of the evolution of non-harmful in host-parasite interactions. To investigate if the fungal disease has caused adaptation on a genomic level in Eurasian bat species, we adopted both whole-genome sequencing approaches and a literature search to compile a set of 300 genes from which to investigate signals of positive selection in genomes of 11 Eurasian bats at the codon-level. Our results indicate significant positive selection in 38 genes, many of which have a marked role in responses to infection. Our findings suggest that white-nose syndrome may have applied a significant selective pressure on Eurasian Myotis-bats in the past, which can contribute their survival in co-existence with the pathogen. Our findings provide an insight on the selective pressure pathogens afflict on their hosts using methodology that can be adapted to other host-pathogen study systems.


Asunto(s)
Quirópteros , Selección Genética , Quirópteros/microbiología , Quirópteros/genética , Animales , Interacciones Huésped-Patógeno/genética , Genoma , Micosis/microbiología , Micosis/veterinaria , Evolución Molecular , Genómica/métodos , Secuenciación Completa del Genoma
2.
J Comp Pathol ; 213: 73-77, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39146622

RESUMEN

A 10-year-old spayed mixed breed dog presented with severe neurological signs. Computed tomography revealed a cranial mediastinal mass, osteolysis of the right second rib and second thoracic vertebra, tracheobronchial and mesenteric lymph node enlargement, pneumonia and pleural effusion. Magnetic resonance imaging detected lesions in the white matter of the right frontal lobe and left cerebral hemisphere with contrast-enhanced T1-weighted images showing demarcated enhancement. On cut section, the surface of the right cerebral frontal lobe and left cerebral hemisphere corticomedullary junctions were indistinct and the white matter was discoloured. Microscopically, multicentric granulomatous inflammation was seen in the brain, cranial mediastinal mass, masses on the right second rib, tracheobronchial and mesenteric lymph nodes, heart, kidneys, lungs and oesophagus. Necrosis and hyaline fungal structures were frequently observed in the centre of the granulomas. These fungi had septae, Y-shaped branching and were 2-3 µm in width. Sequence analysis of DNA from formalin-fixed paraffin-embedded samples identified the fungi as Schizophyllum commune. Based on these findings, this case was diagnosed as disseminated S. commune infection. This is the first report of granulomatous encephalitis caused by S. commune in a dog.


Asunto(s)
Enfermedades de los Perros , Encefalitis , Schizophyllum , Animales , Perros , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/patología , Encefalitis/veterinaria , Granuloma/veterinaria , Femenino , Micosis/veterinaria
3.
Environ Res ; 261: 119752, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117053

RESUMEN

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has caused substantial declines in Bd-susceptible amphibian species worldwide. However, some populations of Bd-susceptible frogs have managed to survive at existing metal-polluted sites, giving rise to the hypothesis that frogs might persist in the presence of Bd if Bd is inhibited by metals at concentrations that frogs can tolerate. We tested this hypothesis by measuring the survival of Bd zoospores, the life stage that infects amphibians, and calculated the LC50 after exposure to environmentally-relevant elevated concentrations of copper (Cu), zinc (Zn), and their combination (Cu + Zn) in two repeated 4-day acute exposure runs. We also measured the chronic sensitivity of Bd to these metals over three generations by measuring the number of colonies and live zoospores and calculating EC50 concentrations after 42 days of exposure. We then compared acute and chronic sensitivity of Bd with amphibian sensitivities by constructing species sensitivity distributions (SSDs) using LC50 and EC50 data obtained from the literature. Acute sensitivity data showed that Bd zoospore survival decreased with increasing metal concentrations and exposure durations relative to the control, with the highest LC50 values for Cu and Zn being 2.5 µg/L and 250 µg/L, respectively. Chronic exposures to metals resulted in decreased numbers of Bd colonies and live zoospores after 42 days, with EC50 values of 0.75 µg/L and 1.19 µg/L for Cu and Zn, respectively. Bd zoospore survival was 10 and 8 times more sensitive to Cu and Zn, respectively in acute, and 2 and 5 times more sensitive to Cu and Zn in chronic exposure experiments than the most sensitive amphibian species recorded. Our findings are consistent with the hypothesis that metals in existing metal-polluted sites may have a greater impact on Bd relative to amphibians' performance, potentially enabling Bd-susceptible amphibians to persist with Bd at these sites.


Asunto(s)
Batrachochytrium , Animales , Batrachochytrium/efectos de los fármacos , Cobre/toxicidad , Zinc/toxicidad , Zinc/farmacología , Anfibios/microbiología , Micosis/veterinaria , Micosis/microbiología , Contaminantes Ambientales/toxicidad
4.
PLoS One ; 19(8): e0309192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39208240

RESUMEN

Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.


Asunto(s)
Batrachochytrium , Animales , Batrachochytrium/genética , Línea Celular , Micosis/microbiología , Micosis/veterinaria , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fluorescencia , Fibroblastos/microbiología , Fibroblastos/metabolismo
5.
Dis Aquat Organ ; 159: 15-27, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087616

RESUMEN

The chytrid Batrachochytrium dendrobatidis (Bd) is a widespread fungus causing amphibian declines across the globe. Although data on Bd occurrence in Eastern Europe are scarce, a recent species distribution model (SDM) for Bd reported that western and north-western parts of Ukraine are highly suitable to the pathogen. We verified the SDM-predicted range of Bd in Ukraine by sampling amphibians across the country and screening for Bd using qPCR. A total of 446 amphibian samples (tissue and skin swabs) from 11 species were collected from 36 localities. We obtained qPCR-positive results for 33 samples including waterfrogs (Pelophylax esculentus complex) and fire- and yellow-bellied toads (Bombina spp.) from 8 localities. We found that Bd-positive localities had significantly higher predicted Bd habitat suitability than sites that were pathogen-free. Amplification and sequencing of the internal transcribed spacer (ITS) region of samples with the highest Bd load revealed matches with ITS haplotypes of the globally distributed BdGPL strain, and a single case of the BdASIA-2/BdBRAZIL haplotype. We found that Bd was non-randomly distributed across Ukraine, with infections present in the western and north-central forested peripheries of the country with a relatively cool, moist climate. On the other hand, our results suggest that Bd is absent or present in low abundance in the more continental central, southern and eastern regions of Ukraine, corroborating the model-predicted distribution of chytrid fungus. These areas could potentially serve as climatic refugia for Bd-susceptible amphibian hosts.


Asunto(s)
Batrachochytrium , Micosis , Ucrania/epidemiología , Animales , Micosis/veterinaria , Micosis/epidemiología , Micosis/microbiología , Batrachochytrium/genética , Batrachochytrium/aislamiento & purificación , Anfibios/microbiología , Modelos Biológicos , Quitridiomicetos/aislamiento & purificación , Quitridiomicetos/genética
6.
Metabolomics ; 20(5): 100, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190217

RESUMEN

White-nose syndrome (WNS) is a fungal wildlife disease of bats that has caused precipitous declines in certain Nearctic bat species. A key driver of mortality is premature exhaustion of fat reserves, primarily white adipose tissue (WAT), that bats rely on to meet their metabolic needs during winter. However, the pathophysiological and metabolic effects of WNS have remained ill-defined. To elucidate metabolic mechanisms associated with WNS mortality, we infected a WNS susceptible species, the Little Brown Myotis (Myotis lucifugus), with Pseudogymnoascus destructans (Pd) and collected WAT biopsies for histology and targeted lipidomics. These results were compared to the WNS-resistant Big Brown Bat (Eptesicus fuscus). A similar distribution in broad lipid class was observed in both species, with total WAT primarily consisting of triacylglycerides. Baseline differences in WAT chemical composition between species showed that higher glycerophospholipids (GPs) levels in E. fuscus were dominated by unsaturated or monounsaturated moieties and n-6 (18:2, 20:2, 20:3, 20:4) fatty acids. Conversely, higher GP levels in M. lucifugus WAT were primarily compounds containing n-3 (20:5 and 22:5) fatty acids. Following Pd-infection, we found that perturbation to WAT reserves occurs in M. lucifugus, but not in the resistant E. fuscus. A total of 66 GPs (primarily glycerophosphocholines and glycerophosphoethanolamines) were higher in Pd-infected M. lucifugus, indicating perturbation to the WAT structural component. In addition to changes in lipid chemistry, smaller adipocyte sizes and increased extracellular matrix deposition was observed in Pd-infected M. lucifugus. This is the first study to describe WAT GP composition of bats with different susceptibilities to WNS and highlights that recovery from WNS may require repair from adipose remodeling in addition to replenishing depot fat during spring emergence.


Asunto(s)
Tejido Adiposo Blanco , Ascomicetos , Quirópteros , Quirópteros/microbiología , Quirópteros/metabolismo , Animales , Tejido Adiposo Blanco/metabolismo , Micosis/metabolismo , Micosis/microbiología , Micosis/veterinaria , Micosis/patología , Lipidómica , Blanco
7.
PLoS One ; 19(7): e0307833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39047007

RESUMEN

The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease amphibian chytridiomycosis, which has contributed to population declines in many species of amphibians throughout the world. Previous observational studies have shown that nematodes, waterfowl, lizards, other dipterans, and crayfish have properties which may allow them to harbor and spread Bd; therefore, we sought to determine the carrier capabilities of invertebrates to a further extent in a laboratory setting. We use the insect Drosophila melanogaster as a model organism to quantify the potential relationship between insects and Bd. Our findings show that D. melanogaster can test positive for Bd for up to five days post-exposure and can transmit Bd to conspecifics without suffering mortality. Insects of various types interact with the amphibian habitat and amphibians themselves, making this a potentially important route of transmission between amphibians and of dispersal across the environment.


Asunto(s)
Batrachochytrium , Drosophila melanogaster , Animales , Drosophila melanogaster/microbiología , Batrachochytrium/patogenicidad , Anfibios/microbiología , Micosis/veterinaria , Micosis/microbiología , Quitridiomicetos/patogenicidad , Quitridiomicetos/fisiología
8.
Dis Aquat Organ ; 159: 1-7, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989788

RESUMEN

Chytridiomycosis is a devastating disease and is a key cause of amphibian population declines around the world. Despite active research on this amphibian disease system for over 2 decades, we still do not have treatment methods that are safe and that can be broadly used across species. Here, we show evidence that voriconazole is a successful method of treatment for 1 species of amphibian in captivity and that this treatment could offer benefits over other treatment options like heat or itraconazole, which are not able to be used for all species and life stages. We conducted 2 treatments of chytridiomycosis using voriconazole. The treatment was effective and resulted in 100% pathogen clearance, and mortality ceased. Additionally, treating frogs with voriconazole requires less handling than treatment methods like itraconazole and requires no specialized equipment, like heat treatment. We highlight that clinical treatment trials should be conducted to identify an optimum dosage and treatment time and that trials should test whether this treatment is safe and effective for tadpoles and other species.


Asunto(s)
Antifúngicos , Quitridiomicetos , Micosis , Voriconazol , Animales , Voriconazol/uso terapéutico , Antifúngicos/uso terapéutico , Micosis/veterinaria , Micosis/tratamiento farmacológico , Micosis/microbiología , Quitridiomicetos/efectos de los fármacos , Anuros
9.
Elife ; 122024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082933

RESUMEN

Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.


Asunto(s)
Batrachochytrium , Mastocitos , Piel , Xenopus laevis , Animales , Mastocitos/inmunología , Mastocitos/microbiología , Mastocitos/metabolismo , Xenopus laevis/microbiología , Xenopus laevis/inmunología , Piel/microbiología , Piel/inmunología , Micosis/inmunología , Micosis/veterinaria , Micosis/microbiología , Microbiota
10.
Proc Biol Sci ; 291(2027): 20241157, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081176

RESUMEN

Outbreaks of emerging infectious diseases are influenced by local biotic and abiotic factors, with host declines occurring when conditions favour the pathogen. Deterioration in the population of the micro-endemic Tanzanian Kihansi spray toad (Nectophrynoides asperginis) occurred after the construction of a hydropower dam, implicating habitat modification in this species decline. Population recovery followed habitat augmentation; however, a subsequent outbreak of chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) led to the spray toad's extinction in the wild. We show using spatiotemporal surveillance and mitogenome assembly of Bd from archived toad mortalities that the outbreak was caused by invasion of the BdCAPE lineage and not the panzootic lineage BdGPL. Molecular dating reveals an emergence of BdCAPE across southern Africa overlapping with the timing of the spray toad's extinction. That our post-outbreak surveillance of co-occurring amphibian species in the Udzungwa Mountains shows widespread infection by BdCAPE yet no signs of ill-health or decline suggests these other species can tolerate Bd when environments are stable. We conclude that, despite transient success in mitigating the impact caused by dams' construction, invasion by BdCAPE caused the ultimate die-off that led to the extinction of the Kihansi spray toad.


Asunto(s)
Batrachochytrium , Extinción Biológica , Genoma Mitocondrial , Micosis , Animales , Micosis/veterinaria , Micosis/epidemiología , Micosis/microbiología , Anuros/microbiología , Tanzanía , Bufonidae/microbiología , Quitridiomicetos/fisiología
11.
PLoS One ; 19(6): e0305228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870137

RESUMEN

The chytrid fungus Batrachochytrium salamandrivorans [Bsal] is causing declines in the amphibian populations. After a decade of mapping the pathogen in Europe, where it is causing dramatic outbreaks, and North America, where its arrival would affect to the salamander's biodiversity hotspot, little is known about its current status in Asia, from presumably is native. Japan has several species considered as potential carriers, but no regulation is implemented against Bsal spreading. Previous Bsal known presence detected various cases on the Okinawa Island, southwestern Japan. Previous studies on its sister species, B. dendrobatidis presented a high genomic variation in this area and particularly on Cynops ensicauda. Here, we have done the largest monitoring to date in Japan on the Cynops genus, focusing on Okinawa Island and updating its distribution and providing more information to unravel the still unknown origin of Bsal. Interestingly, we have provided revealing facts about different detectability depending on the used molecular techniques and changes in its Japanese distribution. All in all, the Bsal presence in Japan, together with its low variability in the sequenced amplicons, and the lack of apparent mortalities, may indicate that this part of Asia has a high diversity of chytrids.


Asunto(s)
Batrachochytrium , Urodelos , Animales , Batrachochytrium/genética , Biodiversidad , Quitridiomicetos/genética , Variación Genética , Japón , Micosis/microbiología , Micosis/veterinaria , Micosis/epidemiología , Filogenia , Urodelos/microbiología
12.
J Zoo Wildl Med ; 55(2): 453-461, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875202

RESUMEN

Chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) has been documented in greater sirens (Siren lacertina) in the wild and in the pet trade. This study evaluated the use of terbinafine-impregnated implants for chytridiomycosis prophylaxis in greater sirens exposed to Bd. Implants were placed intracoelomically in both control (blank implant, n = 4) and treatment (24.5 mg of terbinafine implant, n = 4) groups. Sirens were exposed to Bd zoospores via 24-h immersion bath at 1 and 2 mon postimplant placement. Blood was collected monthly for plasma terbinafine levels, and skin swabs were collected weekly for Bd quantitative PCR. Animals with terbinafine implants had detectable concentrations of plasma terbinafine ranging from 17 to 102 ng/ml. Only one terbinafine-implanted animal had a peak concentration above the published minimum inhibitory concentration for terbinafine against Bd zoospores (63 ng/ml); however, it is unknown how plasma terbinafine concentrations relate to concentrations in the skin. There was no difference between the two treatment groups in clinical signs or Bd clearance rate, and no adverse effects from implants were observed. These findings indicate using intracoelomic drug implants for drug delivery in amphibians is safe; however, terbinafine efficacy in preventing Bd chytridiomycosis in sirens remains unclear. Further investigation of the use of intracoelomic implants and identification of effective drugs and doses in other amphibian species against Bd and other infectious diseases is warranted, as this may provide a practical method for long-term drug delivery in wildlife.


Asunto(s)
Antifúngicos , Terbinafina , Terbinafina/administración & dosificación , Terbinafina/uso terapéutico , Terbinafina/farmacología , Animales , Proyectos Piloto , Antifúngicos/administración & dosificación , Antifúngicos/uso terapéutico , Antifúngicos/farmacocinética , Implantes de Medicamentos , Batrachochytrium/efectos de los fármacos , Masculino , Micosis/veterinaria , Micosis/tratamiento farmacológico , Anfibios
13.
J Zoo Wildl Med ; 55(2): 540-546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875213

RESUMEN

This report describes Schizangiella infections in colubrid and viperid snakes. A captive eastern ratsnake (Pantherophis alleghaniensis) was presented for a large intraoral mass associated with the mandible. The mass was debulked and histologic examination revealed severe, granulomatous stomatitis with intralesional fungi exhibiting morphologic features consistent with Schizangiella serpentis. PCR and sequencing of affected tissues confirmed S. serpentis. Because of declining health, the ratsnake was euthanized and postmortem examination identified a disseminated S. serpentis infection involving the skeletal musculature, lung, kidney, mesentery, and mandible. A wild-caught timber rattlesnake (Crotalus horridus) was presented for cutaneous lesions, weakness, and lethargy and later died. Postmortem examination revealed a mass-like structure in the esophagus characterized by high numbers of Schizangiella-like fungi associated with extensive granulomatous inflammation; the snake also had cutaneous mycosis suggestive of ophidiomycosis. This is the first report to document the unique morphologic features of S. serpentis in tissues and the presentation of schizangiellosis in snakes. Schizangiellosis should be considered as a differential diagnosis for nodular lesions involving the oral cavity and/or the gastrointestinal tract of snakes.


Asunto(s)
Crotalus , Animales , Colubridae , Micosis/veterinaria , Micosis/microbiología , Micosis/patología , Micosis/diagnóstico , Thelazioidea/aislamiento & purificación , Animales de Zoológico , Masculino , Femenino , Serpientes Venenosas
14.
Nature ; 631(8020): 344-349, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926575

RESUMEN

Many threats to biodiversity cannot be eliminated; for example, invasive pathogens may be ubiquitous. Chytridiomycosis is a fungal disease that has spread worldwide, driving at least 90 amphibian species to extinction, and severely affecting hundreds of others1-4. Once the disease spreads to a new environment, it is likely to become a permanent part of that ecosystem. To enable coexistence with chytridiomycosis in the field, we devised an intervention that exploits host defences and pathogen vulnerabilities. Here we show that sunlight-heated artificial refugia attract endangered frogs and enable body temperatures high enough to clear infections, and that having recovered in this way, frogs are subsequently resistant to chytridiomycosis even under cool conditions that are optimal for fungal growth. Our results provide a simple, inexpensive and widely applicable strategy to buffer frogs against chytridiomycosis in nature. The refugia are immediately useful for the endangered species we tested and will have broader utility for amphibian species with similar ecologies. Furthermore, our concept could be applied to other wildlife diseases in which differences in host and pathogen physiologies can be exploited. The refugia are made from cheap and readily available materials and therefore could be rapidly adopted by wildlife managers and the public. In summary, habitat protection alone cannot protect species that are affected by invasive diseases, but simple manipulations to microhabitat structure could spell the difference between the extinction and the persistence of endangered amphibians.


Asunto(s)
Anuros , Quitridiomicetos , Resistencia a la Enfermedad , Especies en Peligro de Extinción , Micosis , Refugio de Fauna , Animales , Anuros/inmunología , Anuros/microbiología , Anuros/fisiología , Temperatura Corporal/inmunología , Temperatura Corporal/fisiología , Temperatura Corporal/efectos de la radiación , Quitridiomicetos/inmunología , Quitridiomicetos/patogenicidad , Quitridiomicetos/fisiología , Resistencia a la Enfermedad/inmunología , Resistencia a la Enfermedad/fisiología , Resistencia a la Enfermedad/efectos de la radiación , Ecosistema , Micosis/veterinaria , Micosis/microbiología , Micosis/inmunología , Luz Solar , Animales Salvajes/inmunología , Animales Salvajes/microbiología , Animales Salvajes/fisiología , Especies Introducidas
16.
PLoS One ; 19(5): e0298591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758948

RESUMEN

Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.


Asunto(s)
Batrachochytrium , Micosis , Urodelos , Animales , Batrachochytrium/genética , Batrachochytrium/patogenicidad , Micosis/veterinaria , Micosis/microbiología , Micosis/epidemiología , Urodelos/microbiología , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Salamandra/microbiología , Europa (Continente)/epidemiología , Quitridiomicetos
17.
Environ Microbiol Rep ; 16(3): e13274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38775382

RESUMEN

The pathogenic fungus Batrachochytrium dendrobatidis has caused declines of amphibians worldwide. Yet our understanding of how water quality influences fungal pathogenicity is limited. Here, we reviewed experimental studies on the effect of water quality on this pathogen to determine which parameters impacted disease dynamics consistently. The strongest evidence for protective effects is salinity which shows strong antifungal properties in hosts at natural levels. Although many fungicides had detrimental effects on the fungal pathogen in vitro, their impact on the host is variable and they can worsen infection outcomes. However, one fungicide, epoxiconazole, reduced disease effects experimentally and likely in the field. While heavy metals are frequently studied, there is weak evidence that they influence infection outcomes. Nitrogen and phosphorous do not appear to impact pathogen growth or infection in the amphibian host. The effects of other chemicals, like pesticides and disinfectants on infection were mostly unclear with mixed results or lacking an in vivo component. Our study shows that water chemistry does impact disease dynamics, but the effects of specific parameters require more investigation. Improving our understanding of how water chemistry influences disease dynamics will help predict the impact of chytridiomycosis, especially in amphibian populations affected by land use changes.


Asunto(s)
Anfibios , Batrachochytrium , Calidad del Agua , Animales , Batrachochytrium/efectos de los fármacos , Anfibios/microbiología , Micosis/microbiología , Micosis/veterinaria , Micosis/prevención & control , Salinidad , Fungicidas Industriales/farmacología , Quitridiomicetos/efectos de los fármacos , Quitridiomicetos/patogenicidad , Plaguicidas/farmacología , Desinfectantes/farmacología , Antifúngicos/farmacología
18.
Ecol Lett ; 27(5): e14431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712705

RESUMEN

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Asunto(s)
Batrachochytrium , Interacciones Huésped-Patógeno , Animales , Batrachochytrium/genética , Batrachochytrium/fisiología , Anuros/microbiología , Anfibios/microbiología , Micosis/veterinaria , Micosis/microbiología , Adaptación Fisiológica , Filogenia
19.
Dis Aquat Organ ; 158: 123-132, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813853

RESUMEN

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.


Asunto(s)
Clima , Micosis , Animales , Micosis/veterinaria , Micosis/epidemiología , Micosis/microbiología , Uruguay/epidemiología , Batrachochytrium/genética , Anuros/microbiología , Quitridiomicetos/aislamiento & purificación
20.
Dis Aquat Organ ; 158: 173-178, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813857

RESUMEN

Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.


Asunto(s)
Descontaminación , Guantes Protectores , Animales , Descontaminación/métodos , Guantes Protectores/microbiología , Batrachochytrium , ADN de Hongos , Micosis/veterinaria , Micosis/prevención & control , Micosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA