Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.044
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767851

RESUMEN

Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.


Asunto(s)
Contaminación de Alimentos , Inocuidad de los Alimentos , Micotoxinas , Nanopartículas , Micotoxinas/análisis , Micotoxinas/química , Nanopartículas/química , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos/métodos , Aptámeros de Nucleótidos/química , Calidad de los Alimentos , Técnicas Biosensibles/métodos
2.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668610

RESUMEN

Ribosome-inactivating proteins (RIPs) are a group of proteins with rRNA N-glycosylase activity that irreversibly inhibit protein synthesis and consequently cause cell death. Recently, an RIP called ledodin has been found in shiitake; it is cytotoxic, strongly inhibits protein synthesis, and shows rRNA N-glycosylase activity. In this work, we isolated and characterized a 50 kDa cytotoxic protein from shiitake that we named edodin. Edodin inhibits protein synthesis in a mammalian cell-free system, but not in insect-, yeast-, and bacteria-derived systems. It exhibits rRNA N-glycosylase and DNA-nicking activities, which relate it to plant RIPs. It was also shown to be toxic to HeLa and COLO 320 cells. Its structure is not related to other RIPs found in plants, bacteria, or fungi, but, instead, it presents the characteristic structure of the fold type I of pyridoxal phosphate-dependent enzymes. Homologous sequences have been found in other fungi of the class Agaricomycetes; thus, edodin could be a new type of toxin present in many fungi, some of them edible, which makes them of great interest in health, both for their involvement in food safety and for their potential biomedical and biotechnological applications.


Asunto(s)
Ribosomas , Hongos Shiitake , Humanos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Hongos Shiitake/química , Células HeLa , Animales , Micotoxinas/toxicidad , Micotoxinas/química , Proteínas Inactivadoras de Ribosomas/química , Proteínas Inactivadoras de Ribosomas/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/toxicidad , Proteínas Fúngicas/farmacología , Proteínas Fúngicas/metabolismo , Línea Celular Tumoral
3.
Vopr Pitan ; 93(1): 103-111, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38555614

RESUMEN

Tomatoes and tomato products are widely produced and consumed throughout the world. Alternaria spp. are the main cause of alternariosis (black mold disease) on fresh tomatoes, both in the field and after harvesting. Alternaria toxins are widespread contaminants of tomato products. The aim of the present study was to evaluate the contamination of tomato processing products from the domestic market with Alternaria toxins, as well as to assess their intake by humans through the consumption of tomato juices. Material and methods. The content of Alternaria toxins (alternatiol, alternariol monomethyl ether, altenuene, tentoxin, tenuazonic acid) was determined in 64 samples of tomato products (paste, ketchup, juice) by high-performance liquid chromatography coupled to tandem mass-spectrometric detection (HPLC-MS/MS). Results. The priority Alternaria toxins for tomato paste, ketchup and juice were tenuazonic acid (61% of 64 samples, in amounts from 20.0 to 1065.5 µg/kg), altenuene (52%, 8.9-200.1 µg/kg) and alternariol (27%, 12.2-561.6 µg/kg). Samples of tomato paste turned out to be the most contaminated with Alternaria toxins while tomato juice samples were the least contaminated. At the same time, several toxins were found in 91% of tomato paste samples, 35% of ketchups, and 23% of tomato juices. Conclusion. To the best of our knowledge, the present study is the first survey devoted to Alternaria toxins contamination of tomato paste, ketchup and tomato juice sold on the Russian market. The high frequency of their contamination with tenuazonic acid, altenuene and, to a lesser extent, alternariol has been established, which indicates a potential risk to human health when tomato processing products are consumed. This indicates the need for a hygienic assessment of contamination the above products with tenuazonic acid, altenuene and alternariol. When calculating the potential intake of Alternaria toxins for different age population groups, it was shown that high levels of alternariol (up to 56.77 ng/kg body weight per day) could be obtained under daily consumption of tomato juice by adults and children under three years of age, as well as tenuazonic acid when consuming tomato juice contaminated at the 95th percentile level as part of the diet in organized groups for orphans and children without parental care.


Asunto(s)
Lactonas , Micotoxinas , Solanum lycopersicum , Niño , Humanos , Preescolar , Ácido Tenuazónico/análisis , Micotoxinas/análisis , Micotoxinas/química , Alternaria , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis
4.
Food Chem Toxicol ; 186: 114556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432441

RESUMEN

Mycotoxins can be found in food and feed storage as well as in several kinds of foodstuff and are capable of harming mammals and some of them even in small doses. This study investigated on the undifferentiated neuronal cell line SH-SY5Y the effects of two mycotoxins: patulin (PAT) and citrinin (CTN), which are predominantly produced by fungi species Penicillium and Aspergillus. Here, the individual and combined cytotoxicity of PAT and CTN was investigated using the cytotoxic assay MTT. Our findings indicate that after 24 h of treatment, the IC50 value for PAT is 2.01 µM, which decreases at 1.5 µM after 48 h. In contrast, CTN did not attain an IC50 value at the tested concentration. Therefore, we found PAT to be the more toxic compared to CTN. However, the combined treatment suggests an additive toxic effect. With 2,7-dichlorodihydrofluorescin diacetate (DCFH-DA) DCFH-DA assay, ROS generation was demonstrated after CTN treatment, but PAT showed only small changes. The mixture presented a very constant behavior over time. Finally, the median-effect/combination index (CI-) isobologram equation demonstrated an additive effect after 24 h, but an antagonistic effect after 48 h for the interaction of the two mycotoxins.


Asunto(s)
Citrinina , Fluoresceínas , Neuroblastoma , Patulina , Animales , Humanos , Línea Celular , Citrinina/toxicidad , Mamíferos , Patulina/toxicidad , Patulina/metabolismo , Micotoxinas/química , Micotoxinas/metabolismo
5.
Food Chem Toxicol ; 186: 114516, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382872

RESUMEN

Zearalenone (ZEA), one of the usual mycotoxins, has been recognized in many areas and crops, posing a significant threat to the living organisms even to human beings. However, the mechanisms of locomotive defects remain unknown. Herein, zebrafish larvae was employed to investigate ZEA effects on developmental indexes, muscle and neural toxicity, apoptosis, transcriptome and motor behaviors of zebrafish larvae. Zebrafish larvae exposed to ZEA (0, 0.5, 1, 2 and 4 µM) showed no change in survival rate, but the malformation rate of zebrafish larvae increased dramatically manifesting with severe body bending and accomplished with adverse effects on hatching rate and body length. Moreover, the larvae manifested with defective muscle and abnormal neural development, resulting in decreased swimming ability, which probably due to the abnormal overactivation of apoptosis. And this was confirmed by enriched caspase 8-mediated apoptosis signaling pathway in the following transcriptome analysis. Meanwhile, there was a recovery in swimming behaviors in the larvae co-exposed in ZEA and caspase 8 inhibitor. These findings provide an important evidence for risk assessment and potential treatment target of ZEA exposure.


Asunto(s)
Discinesias , Zearalenona , Animales , Humanos , Apoptosis , Caspasa 8/genética , Caspasa 8/metabolismo , Larva , Músculos/metabolismo , Zearalenona/toxicidad , Zearalenona/metabolismo , Pez Cebra , Micotoxinas/química , Micotoxinas/metabolismo
6.
Org Lett ; 26(3): 597-601, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38198624

RESUMEN

Fusaramin (1) was isolated as a mitochondrial inhibitor. However, the fungal producer stops producing 1, which necessitates us to supply 1 by total synthesis. We proposed the complete stereochemical structure based on the biosynthetic pathway of sambutoxin. We have established concise and robust total synthesis of 1, enabling us to determine the complete stereochemical structure and to elucidate the structure-activity relationship, and uncover the hidden antiplant pathogenic fungal activity.


Asunto(s)
Antiinfecciosos , Hongos , Antiinfecciosos/química , Relación Estructura-Actividad , Micotoxinas/química
7.
Molecules ; 28(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836726

RESUMEN

Mycotoxins and pesticides are the most concerning chemical contaminants that can affect the quality of Pu-erh tea during its production and storage. This study presents a method that can simultaneously determine 31 pesticide residues and six mycotoxins in Pu-erh tea within 11 min using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) after QuEChERS extraction. The lower limit of quantification (LOQ) for all analytes ranged between 0.06 and 50 ppb. Recoveries for each pesticide and mycotoxin ranged between 62.0 and 130.3%, with intra- and inter-day precisions lower than 15%. Good linear relationships were obtained, with correlation coefficients of r2 > 0.991 for all analytes. The established method was applied to 31 Pu-erh tea samples, including raw and ripened Pu-erh tea with different storage times. As a result, pesticide residues were not detected in any of the collected samples, and the mycotoxins detected in the samples were well below the official maximum residue limits (MRLs). Notably, the levels of aflatoxin B1 (AFB1), aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2) were lower than 1 ppb in the samples stored for more than 30 years.


Asunto(s)
Micotoxinas , Residuos de Plaguicidas , Cromatografía Líquida de Alta Presión/métodos , Micotoxinas/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Residuos de Plaguicidas/análisis , Té/química
8.
J Hazard Mater ; 458: 131836, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331057

RESUMEN

Ochratoxin A (OTA) is among the most prevalent mycotoxins detected in agroproducts, posing serious threats to human and livestock health. Using enzymes to conduct OTA detoxification is an appealing potential strategy. The recently identified amidohydrolase from Stenotrophomonas acidaminiphila, termed ADH3, is the most efficient OTA-detoxifying enzyme reported thus far and can hydrolyze OTA to nontoxic ochratoxin α (OTα) and L-ß-phenylalanine (Phe). To elucidate the catalytic mechanism of ADH3, we solved the single-particle cryo-electron microscopy (cryo-EM) structures of apo-form, Phe- and OTA-bound ADH3 to an overall resolution of 2.5-2.7 Å. The role of OTA-binding residues was investigated by structural, mutagenesis and biochemical analyses. We also rationally engineered ADH3 and obtained variant S88E, whose catalytic activity was elevated by 3.7-fold. Structural analysis of variant S88E indicates that the E88 side chain provides additional hydrogen bond interactions to the OTα moiety. Furthermore, the OTA-hydrolytic activity of variant S88E expressed in Pichia pastoris is comparable to that of Escherichia coli-expressed enzyme, revealing the feasibility of employing the industrial yeast strain to produce ADH3 and its variants for further applications. These results unveil a wealth of information about the catalytic mechanism of ADH3-mediated OTA degradation and provide a blueprint for rational engineering of high-efficiency OTA-detoxifying machineries.


Asunto(s)
Agroquímicos , Amidohidrolasas , Restauración y Remediación Ambiental , Micotoxinas , Micotoxinas/química , Micotoxinas/toxicidad , Restauración y Remediación Ambiental/métodos
9.
Toxins (Basel) ; 15(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36977117

RESUMEN

The contamination of fermented feeds and foods with fungi and mycotoxins is a major food safety issue worldwide. Certain lactic acid bacteria (LAB), generally recognized as safe (GRAS) fermentation probiotics, are able to reduce microbial and mycotoxins contamination. In this study, Lactiplantibacillus (L.) plantarum Q1-2 and L. salivarius Q27-2 with antifungal properties were screened as inoculants for mixed fermenting feed, and the fermentation and nutritional qualities, microbial community, and mycotoxins of mixed fermented feed were analyzed at different fermentation periods (1, 3, 7, 15, and 30 days, respectively). The findings indicated that the utilization of Q1-2 and Q27-2 strains in fermenting feed led to a decrease in pH and an increase in lactic acid concentration and the proportion of Lactiplantibacillus, while effectively restraining the proliferation of undesirable microorganisms. In particular, Q1-2 reduced the relative abundance of fungi including Fusarium and Aspergillus. Compared to the control group, the Q1-2 and Q27-2 groups reduced aflatoxin B1 by 34.17% and 16.57%, and deoxynivalenol by up to 90.61% and 51.03%. In short, these two LAB inoculants could reduce the contents of aflatoxin B1 and deoxynivalenol to the limited content levels stipulated by the Chinese National Standard GB 13078-2017. These findings suggest that the LAB strains of Q1-2 and Q27-2 have potential applications in the feed industry for the mitigation of mycotoxin pollution, thereby enhancing the quality of animal feed.


Asunto(s)
Lactobacillales , Micotoxinas , Animales , Micotoxinas/química , Aflatoxina B1/análisis , Hongos , Alimentación Animal/análisis
10.
Langmuir ; 39(7): 2797-2807, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36763007

RESUMEN

In view of the animal feeds inevitably contaminated by multiple mycotoxins, eco-friendly and efficient palygorskite-montmorillonite (Pal-Mt) materials were prepared to remove polar aflatoxin B1 (AFB1) and weak polar zearalenone (ZEN) from mixed mycotoxins aqueous solution. The adsorption properties and bonding mechanisms between Pal-Mt materials and mycotoxins (AFB1 and ZEN) were investigated systematically. The as-prepared Pal-Mt showed excellent adsorption capacity for AFB1 and ZEN in single- and binary-mycotoxin systems, indicating the effectiveness of Pal-Mt acting as multiple mycotoxin adsorbents. The kinetics of adsorption for ZEN was fast due to the adsorption on the external surface (film and intraparticle diffusion), while AFB1 molecules permeated into mesopores after the external adsorption for the more planar structure. Adsorption isotherms demonstrated that heterogeneous surface adsorption appeared between Pal-Mt and AFB1, and monolayer adsorption occurred on Pal-Mt and ZEN for different polarities of mycotoxins. Thermodynamic parameters illustrated that the adsorption process of both AFB1 and ZEN onto Pal-Mt was spontaneous and endothermic. The adsorption mechanism studies suggested that hydrogen bonding, electrostatic attraction, calcium bridging linkage, and ion-dipole played fundamental roles in the interaction between Pal-Mt and these two mycotoxins.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Zearalenona/química , Aflatoxina B1/química , Bentonita/química , Micotoxinas/química , Adsorción
11.
J Agric Food Chem ; 71(1): 311-319, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36571252

RESUMEN

Mycotoxins have substantial impacts on agricultural production and food preservation. Some have high similarities in bioactivity but subtle differences on structures from various fungal producers. Understanding of their complex cross-biosynthesis will provide new insights into enzyme functions and food safety. Here, based on structurally related mycotoxins, such as aurovertins, asteltoxin, and citreoviridin, we showed that methyltransferase (MT)-catalyzed methylation is required for efficient oxidation and polyketide stability. MTs have broad interactions with polyketide synthases and flavin-containing monooxygenases (FMOs), while MT AstB is required for FMO AstC functionality in vivo. FMOs have common catalysis on pyrone-polyene intermediates but different catalytic specificity and efficiency on oxidative intermediates for the selective production of more toxic and complex mycotoxins. Thus, the subtle protein interaction and elaborate versatile catalysis of biosynthetic enzymes contribute to the efficient and selective biosynthesis of these structure-related mycotoxins and provide the basis to re-evaluate and control mycotoxins for agricultural and food safety.


Asunto(s)
Micotoxinas , Policétidos , Micotoxinas/química , Policétidos/metabolismo , Metiltransferasas , Sintasas Poliquetidas/metabolismo , Catálisis
12.
J Anal Toxicol ; 47(1): 26-32, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35294965

RESUMEN

Consumption of mushrooms can become unsafe for the consumer in case of confusion. Some fungi of Cortinarius genus contain the nephrotoxic mycotoxin orellanine responsible for their toxicity. Related case poisoning diagnosis is a challenge for both clinicians and analysts because of a long latency period between intake and toxic syndrome, the lack of available information in literature and the numerous pitfalls of orellanine identification/quantification in biological samples. In this situation, we propose an analytical method designed for the orellanine detection and/or quantification in biological matrices such as plasma, urine and whole blood, in a context of related intoxication suspected case. Using 1 mL biological sample volume, this liquid chromatographic with high-resolution mass spectrometry detection method (i) exhibits a limit of quantification for orellanine of 0.5 µg/L in plasma and urine and (ii) enables orellanine detection in whole blood with a limit of detection of 0.5 µg/L. This validated analytical method was successfully applied to 10 suspected intoxication cases.


Asunto(s)
Intoxicación por Setas , Micotoxinas , Humanos , Intoxicación por Setas/diagnóstico , Cromatografía Liquida , Micotoxinas/análisis , Micotoxinas/química , Micotoxinas/toxicidad , Espectrometría de Masas , Cromatografía Líquida de Alta Presión
13.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430830

RESUMEN

Alternaria mycotoxins, including alternariol (AOH), alternariol-9-monomethylether (AME), and their masked/modified derivatives (e.g., sulfates or glycosides), are common food contaminants. Their acute toxicity is relatively low, while chronic exposure can lead to the development of adverse health effects. Masked/modified metabolites can probably release the more toxic parent mycotoxin due to their enzymatic hydrolysis in the intestines. Previously, we demonstrated the complex formation of AOH with serum albumins and cyclodextrins; these interactions were successfully applied for the extraction of AOH from aqueous matrices (including beverages). Therefore, in this study, the interactions of AME, alternariol-3-sulfate (AS), and alternariol-9-monomethylether-3-sulfate (AMS) were investigated with albumins (human, bovine, porcine, and rat) and with cyclodextrins (sulfobutylether-ß-cyclodextrin, sugammadex, and cyclodextrin bead polymers). Our major results/conclusions are the following: (1) The stability of mycotoxin-albumin complexes showed only minor species dependent variations. (2) AS and AMS formed highly stable complexes with albumins in a wide pH range, while AME-albumin interactions preferred alkaline conditions. (3) AME formed more stable complexes with the cyclodextrins examined than AS and AMS. (4) Beta-cyclodextrin bead polymer proved to be highly suitable for the extraction of AME, AS, and AMS from aqueous solution. (5) Albumins and cyclodextrins are promising binders of the mycotoxins tested.


Asunto(s)
Ciclodextrinas , Micotoxinas , Animales , Bovinos , Humanos , Ratas , Ciclodextrinas/química , Micotoxinas/química , Albúmina Sérica , Sulfatos , Porcinos
14.
Int J Biol Macromol ; 218: 866-877, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35907453

RESUMEN

New combined proteinous (enzymatic) nanobiocatalysts capable of destructing mycotoxins in mixtures were developed and investigated in vitro and in vivo. Candidate enzymes for such combined biocatalysts were computationally screened using molecular docking of mycotoxins to the proteins. Catalytic characteristics of the 7 selected enzymes were estimated in the potential reactions with various mycotoxins (aflatoxin B1, citrinin, deoxynivalenol, ergotamine, fumonisin B1, gliotoxin, ochratoxin A, patulin, sterigmatocystin, T-2 toxin, zearalenone) at different pH values. To stabilize the enzymes hydrolyzing the mycotoxins, special biopolymers were selected using computer modeling. The poly(glutamic acid) was revealed as universal partner for the polyelectrolyte complexes with the selected enzymes. Finally, Sprague-Dawley rats were used for in vivo feeding experiments with feed contaminated by mycotoxin mixture at doses being up to orders of magnitude higher than maximum allowable limits. The treatment of contaminated feed by novel combined enzyme nanocomplexes significantly decreased negative effects of mycotoxin mixture on blood biochemical parameters which indicated huge damage to liver and kidneys of intoxicated animals. Such nanobiocatalysts and enzymatic treatment itself seem to be promising way for ensuring both food and feed chemical safety.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Simulación del Acoplamiento Molecular , Micotoxinas/química , Ratas , Ratas Sprague-Dawley
15.
J Adv Res ; 39: 15-47, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35777905

RESUMEN

INTRODUCTION: Mycotoxins are toxic metabolites produced by fungi that commonly contaminate foods. As recommended by the World Health Organization, total diet study (TDS) is the most efficient and effective way to estimate the dietary intakes of certain chemical substances for general populations. It requires sensitive and reliable analytical methods applicable to a wide range of complex food matrices and ready-to-eat dishes. OBJECTIVES: A novel strategy with high selectivity and sensitivity, incorporating three methods based on ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), was designed for measuring 43 mycotoxins in dietary samples in a China TDS. METHODS: The 43 mycotoxins were divided into 3 groups for analysis to achieve better performance. For each group, an UHPLC-MS/MS method was developed to determine the target compounds after clean-up by solid phase extraction. A total of 21 isotope internal standards were employed for accurate quantitation. Method validation in terms of linearity, selectivity, sensitivity, accuracy, and precision was performed for all the 43 mycotoxins in 12 complex food matrices. RESULTS: The limits of detection (LODs) and limits of quantitation (LOQs) were 0.002-1 ng mL-1 and 0.006-3 ng mL-1, respectively. The method recoveries of the 43 mycotoxins spiked in 12 food categories were in the range of 60.3%-175.9% after internal standard correction, with relative standard deviations (RSDs) below 13.9%. For practical application, this method was utilized for 72 dietary samples collected from 6 provinces in the 6th China TDS. More than 80% of the samples were found contaminated by mycotoxins. DON, SMC, FB1, ZEN, BEA, ENNB1, and ENNB were most detected. CONCLUSIONS: The proposed methods with high sensitivity, accuracy, and robustness provide powerful tools for multi-mycotoxin monitoring and dietary exposure assessment, allowing 43 mycotoxins, including some emerging mycotoxins, to be accurately investigated in a total diet study for the first time.


Asunto(s)
Micotoxinas , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Dieta , Micotoxinas/análisis , Micotoxinas/química , Extracción en Fase Sólida , Espectrometría de Masas en Tándem/métodos
16.
J Vet Intern Med ; 36(4): 1502-1507, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35792718

RESUMEN

BACKGROUND: Outbreaks of liver disease in horses are common but the etiology of most remains unknown. Forage mycotoxins have been suspected to be a cause. OBJECTIVES: To examine the association between outbreaks of liver disease and the presence of mycotoxins in forage stored on the same premises. ANIMALS: Premises were identified where ≥4 horses were contemporaneously affected by liver disease, and a control group was formed from premises where ≥4 horses had been examined and found to have no evidence of liver disease. METHODS: Forage was collected from 29 case and 12 control premises. The forage was analyzed for mycotoxin content using a liquid chromatography/mass spectrometry method, targeting 54 mycotoxins. The presence and distribution of mycotoxins between case and control samples was compared. RESULTS: Mycotoxins were found in 23/29 (79%) case samples and 10/12 (83%) control samples (P > .99; relative risk, 0.93; 95% confidence interval [CI], 0.64-1.75). Median (interquartile range [IQR]) total mycotoxin concentration was similar in case and control samples (85.8 µg/kg [1.6-268] vs. 315 µg/kg [6.3-860]; P = .16). Ten mycotoxins were found exclusively in case premises comprising fumonisin B1, 15-acetyldeoxynivalenol, deoxynivalenol, zearalenone, aflatoxins B1 and G1, methylergonovine, nivalenol, verruculogen, and wortmannin. The median (IQR) concentration of fumonisin B1 was significantly higher in case versus control samples (0 µg/kg [0-81.7] vs. 0 µg/kg [0-0]; P = .04). CONCLUSIONS AND CLINICAL IMPORTANCE: Several mycotoxins with known hepatotoxic potential were found, alone or in combination, exclusively at case premises, consistent with the hypothesis that forage-associated mycotoxicosis may be a cause of outbreaks of liver disease in horses in the United Kingdom.


Asunto(s)
Enfermedades de los Caballos , Hepatopatías , Micotoxinas , Zearalenona , Animales , Contaminación de Alimentos/análisis , Enfermedades de los Caballos/inducido químicamente , Caballos , Hepatopatías/etiología , Hepatopatías/veterinaria , Micotoxinas/análisis , Micotoxinas/química , Micotoxinas/toxicidad , Reino Unido , Zearalenona/análisis
17.
Toxins (Basel) ; 14(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35202100

RESUMEN

Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.


Asunto(s)
Bioensayo/métodos , Hongos/metabolismo , Micotoxinas/química , Micotoxinas/metabolismo , Animales , Técnicas Biosensibles , Humanos , Micotoxinas/toxicidad , Nanotecnología
18.
Toxins (Basel) ; 14(2)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202169

RESUMEN

Fusarium graminearum is a harmful pathogen causing head blight in cereals such as wheat and barley, and thymol has been proven to inhibit the growth of many pathogens. This study aims to explore the fungistatic effect of thymol on F. graminearum and its mechanism. Different concentrations of thymol were used to treat F. graminearum. The results showed that the EC50 concentration of thymol against F. graminearum was 40 µg/mL. Compared with the control group, 40 µg/mL of thymol reduced the production of Deoxynivalenol (DON) and 3-Ac-DON by 70.1% and 78.2%, respectively. Our results indicate that thymol can effectively inhibit the growth and toxin production of F. graminearum and cause an extensive transcriptome response. Transcriptome identified 16,727 non-redundant unigenes and 1653 unigenes that COG did not annotate. The correlation coefficients between samples were all >0.941. When FC was 2.0 times, a total of 3230 differential unigenes were identified, of which 1223 were up-regulated, and 2007 were down-regulated. Through the transcriptome, we confirmed that the expression of many genes involved in F. graminearum growth and synthesis of DON and other secondary metabolites were also changed. The gluconeogenesis/glycolysis pathway may be a potential and important way for thymol to affect the growth of F. graminearum hyphae and the production of DON simultaneously.


Asunto(s)
Antifúngicos/química , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Micotoxinas/biosíntesis , Micotoxinas/química , Timol/química , Transcriptoma
19.
Toxins (Basel) ; 14(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051005

RESUMEN

Aflatoxin B1 (AFB1) and ochratoxin A (OTA) naturally co-occur in several foods, but no studies have followed the fate of mycotoxins' interactions along the gastrointestinal tract using in vitro digestion models. This study used a novel semi-dynamic model that mimics gradual acidification and gastric emptying, coupled with a static colonic fermentation phase, in order to monitor mycotoxins' bioaccessibility by the oral route. AFB1 and OTA bioaccessibility patterns differed in single or co-exposed scenarios. When co-exposed (MIX meal), AFB1 bioaccessibility at the intestinal level increased by ~16%, while OTA bioaccessibility decreased by ~20%. Additionally, a significant increase was observed in both intestinal cell viability and NO production. With regard to mycotoxin-probiotic interactions, the MIX meal showed a null effect on Lactobacillus and Bifidobacterium strain growth, while isolated AFB1 reduced bacterial growth parameters. These results were confirmed at phylum and family levels using a gut microbiota approach. After colonic fermentation, the fecal supernatant did not trigger the NF-kB activation pathway, indicating reduced toxicity of mycotoxins. In conclusion, if single exposed, AFB1 will have a significant impact on intestinal viability and probiotic growth, while OTA will mostly trigger NO production; in a co-exposure situation, both intestinal viability and inflammation will be affected, but the impact on probiotic growth will be neglected.


Asunto(s)
Aflatoxina B1/metabolismo , Contaminación de Alimentos , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/química , Micotoxinas/química , Micotoxinas/metabolismo , Ocratoxinas/metabolismo , Colon/efectos de los fármacos , Digestión/efectos de los fármacos , Fermentación/efectos de los fármacos , Venenos/metabolismo , Portugal
20.
J Nat Prod ; 85(1): 25-33, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35045259

RESUMEN

The number of species in Aspergillus section Flavi has recently increased to 36 and includes some of the most important and well-known species in the genus Aspergillus. Numerous secondary metabolites, especially mycotoxins, have been reported from species such as A. flavus; however many of the more recently described species are less studied from a chemical point of view. This paper describes the use of MS/MS-based molecular networking to investigate the metabolome of A. caelatus leading to the discovery of several new diketopiperazine dimers and aspergillicins. An MS-guided isolation procedure yielded six new compounds, including asperazines D-H (1-5) and aspergillicin H (6). Asperazines G and H are artifacts derived from asperazines E and F formed during the separation process by formic acid. Two known compounds, aspergillicins A and C (7 and 8), were isolated from the same strain. Structures were elucidated by analyzing their HR-MS/MS and NMR spectroscopic data. The absolute configuration of asperazines D-F and aspergillicin H were deduced from the combination of NMR, Marfey's method, and ECD analyses.


Asunto(s)
Aspergillus/química , Depsipéptidos/química , Dicetopiperazinas/química , Dimerización , Micotoxinas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...