Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Toxicol ; 40(1): 26-39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33176523

RESUMEN

Predictive indicators of testicular toxicity could improve drug development by allowing early in-life screening for this adverse effect before it becomes severe. We hypothesized that circulating microRNAs (miRNAs) could serve as testicular toxicity biomarkers in dogs. Herein, we describe the results of an exploratory study conducted to discover biomarkers of drug-induced testicular injury. Following a dose-selection study using the testicular toxicant ethylene glycol monomethyl ether (EGME), we chose a dose of 50 mg/kg/d EGME to avoid systemic toxicity and treated 2 groups of dogs (castrated, non-castrated) for 14 to 28 days. Castrated animals were used as negative controls to identify biomarkers specific for testicular toxicity because EGME can cause toxicity to organ systems in addition to the testis. Blood was collected daily during the dosing period, followed by recovery for 29 to 43 days with less frequent sampling. Dosing was well tolerated, resulting in mild-to-moderate degeneration in testes and epididymides. Global profiling of serum miRNAs at selected dosing and recovery time points was completed by small RNA sequencing. Bioinformatics data analysis using linear modeling demonstrated several circulating miRNAs that were differentially abundant during the dosing period compared with baseline and/or castrated control samples. Confirmatory reverse transcription quantitative polymerase chain reaction data in these animals was unable to detect sustained alterations of miRNAs in serum, except for 1 potential candidate cfa-miR-146b. Taken together, we report the results of a comprehensive exploratory study and suggest future directions for follow-up research to address the challenge of developing diagnostic biomarkers of testicular toxicity.


Asunto(s)
MicroARN Circulante/efectos de los fármacos , Desarrollo de Medicamentos/métodos , Glicoles de Etileno/toxicidad , Marcadores Genéticos/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Perros , Masculino
2.
Neurobiol Dis ; 144: 105048, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32800995

RESUMEN

Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy. MicroRNAs are short non-coding RNA molecules which negatively regulate gene expression, exerting profound influence on target pathways and cellular processes. The presence of microRNAs in biofluids, ease of detection, resistance to degradation and functional role in epilepsy render them excellent candidate biomarkers. Here we performed the first multi-model, genome-wide profiling of plasma microRNAs during epileptogenesis and in chronic temporal lobe epilepsy animals. From video-EEG monitored rats and mice we serially sampled blood samples and identified a set of dysregulated microRNAs comprising increased miR-93-5p, miR-142-5p, miR-182-5p, miR-199a-3p and decreased miR-574-3p during one or both phases. Validation studies found miR-93-5p, miR-199a-3p and miR-574-3p were also dysregulated in plasma from patients with intractable temporal lobe epilepsy. Treatment of mice with common anti-epileptic drugs did not alter the expression levels of any of the five miRNAs identified, however administration of an anti-epileptogenic microRNA treatment prevented dysregulation of several of these miRNAs. The miRNAs were detected within the Argonuate2-RISC complex from both neurons and microglia indicating these miRNA biomarker candidates can likely be traced back to specific brain cell types. The current studies identify additional circulating microRNA biomarkers of experimental and human epilepsy which may support diagnosis of temporal lobe epilepsy via a quick, cost-effective rapid molecular-based test.


Asunto(s)
MicroARN Circulante/genética , Epilepsia del Lóbulo Temporal/genética , Animales , Anticonvulsivantes/farmacología , Barrera Hematoencefálica/metabolismo , MicroARN Circulante/efectos de los fármacos , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia del Lóbulo Temporal/sangre , Epilepsia del Lóbulo Temporal/inducido químicamente , Agonistas de Aminoácidos Excitadores/toxicidad , Ácido Kaínico/toxicidad , Masculino , Ratones , Agonistas Muscarínicos/toxicidad , Vía Perforante , Pilocarpina/toxicidad , Ratas
3.
Front Immunol ; 11: 1240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655560

RESUMEN

microRNAs (miRNAs) are conserved non-coding small nucleotide molecules found in nearly all species and breastmilk. miRNAs present in breastmilk are very stable to freeze-thaw, RNase treatment, and low pH as they are protected inside exosomes. They are involved in regulating several physiologic and pathologic processes, including immunologic pathways, and we have demonstrated better immune response to vaccines in piglets fed with human milk (HM) in comparison to dairy-based formula (MF). To understand if neonatal diet impacts circulatory miRNA expression, serum miRNA expression was evaluated in piglets fed HM or MF while on their neonatal diet at postnatal day (PND) 21 and post-weaning to solid diet at PND 35 and 51. MF fed piglets showed increased expression of 14 miRNAs and decreased expression of 10 miRNAs, relative to HM fed piglets at PND 21. At PND 35, 9 miRNAs were downregulated in the MF compared to the HM group. At PND 51, 10 miRNAs were decreased and 17 were increased in the MF relative to HM suggesting the persistent effect of neonatal diet. miR-148 and miR-181 were decreased in MF compared to HM at PND 21. Let-7 was decreased at PND 35 while miR-199a and miR-199b were increased at PND 51 in MF compared to HM. Pathway analysis suggested that many of the miRNAs are involved in immune function. In conclusion, we observed differential expression of blood miRNAs at both PND 21 and PND 51. miRNA found in breastmilk were decreased in the serum of the MF group, suggesting that diet impacts circulating miRNA profiles at PND 21. The miRNAs continue to be altered at PND 51 suggesting a persistent effect of the neonatal diet. The sources of miRNAs in circulation need to be evaluated, as the piglets were fed the same solid diet leading up to PND 51 collections. In conclusion, the HM diet appears to have an immediate and persistent effect on the miRNA profile and likely regulates the pathways that impact the immune system and pose benefits to breastfed infants.


Asunto(s)
MicroARN Circulante/efectos de los fármacos , Dieta , Sustitutos de la Leche/farmacología , Leche Humana , Animales , Animales Recién Nacidos , Humanos , Modelos Animales , Porcinos
4.
J Clin Endocrinol Metab ; 103(3): 1206-1213, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309589

RESUMEN

Context: Expression of microRNAs (miRs) related to bone metabolism in the serum may be affected by antiosteoporotic treatment. Objective: To investigate the effect of two antiosteoporotic agents with opposite effects on bone metabolism on miR expression profile in the serum. Design: Observational, open label, nonrandomized clinical trial. Setting: The outpatient clinics for Metabolic Bone Diseases of 424 General Military Hospital, Thessaloniki, Greece. Patients and Interventions: Postmenopausal women with low bone mass were treated with either teriparatide (TPTD; n = 30) or denosumab (n = 30) for 12 months. Main Outcome Measures: Changes in the serum expression of selected miRs linked to bone metabolism at 3 and 12 months of treatment. Secondary measurements: associations of measured miRs with changes in bone mineral density (BMD) at 12 months and the bone turnover markers (BTMs) C-terminal cross-linking telopeptide of type I collagen and procollagen type I N-terminal propeptide at 3 and 12 months. Results: We found significantly decreased relative expression of miR-33-3p at 3 months (P = 0.03) and of miR-133a at 12 months (P = 0.042) of TPTD treatment. BMD values at 12 months of TPTD treatment were significantly and inversely correlated with miR-124-3p expression at 3 months (P = 0.008). Relative expression of miR-24-3p and miR-27a was correlated with changes in BTMs during TPTD treatment and of miR-21-5p, miR-23a-3p, miR-26a-5p, miR-27a, miR-222-5p, and miR-335-5p with changes in BTMs during denosumab treatment. Conclusions: Circulating miRs are differentially affected by treatment with TPTD and denosumab. TPTD affects the relative expression of miRs related to the expression of RUNX-2 (miR-33) and DKK-1 gene (miR-133).


Asunto(s)
Conservadores de la Densidad Ósea/administración & dosificación , MicroARN Circulante/efectos de los fármacos , Denosumab/administración & dosificación , Osteoporosis Posmenopáusica/tratamiento farmacológico , Teriparatido/administración & dosificación , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Colágeno Tipo I/sangre , Subunidad alfa 1 del Factor de Unión al Sitio Principal/sangre , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Persona de Mediana Edad , Osteoporosis Posmenopáusica/sangre , Fragmentos de Péptidos/sangre , Péptidos/sangre , Procolágeno/sangre , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...