Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.955
Filtrar
1.
Commun Biol ; 7(1): 551, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720110

RESUMEN

Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.


Asunto(s)
Neoplasias Colorrectales , Epigenoma , Infecciones por Fusobacterium , Fusobacterium nucleatum , Oxígeno , Transcriptoma , Humanos , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiología , Fusobacterium nucleatum/patogenicidad , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Células HCT116 , Infecciones por Fusobacterium/genética , Infecciones por Fusobacterium/microbiología , Infecciones por Fusobacterium/metabolismo , Oxígeno/metabolismo , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica
2.
Eur J Med Res ; 29(1): 273, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720348

RESUMEN

BACKGROUND: Previous studies suggested that zinc finger protein 536 (ZNF536) was abundant in the central brain and regulated neuronal differentiation. However, the role of ZNF536 in cancer has remained unclear. METHODS: ZNF536 mutation, copy number alteration, DNA methylation, and RNA expression were explored using public portals. Data from The Cancer Genome Atlas (TCGA) were utilized to analyze pathways and tumor microenvironment (TME), with a focus on prognosis in both TCGA and immunotherapy pan-cancer cohorts. Methylated ZNF536 from small cell lung cancer (SCLC) cell lines were utilized to train with probes for conducting enrichment analysis. Single-cell RNA profile demonstrated the sublocalization and co-expression of ZNF536, and validated its targets by qPCR. RESULTS: Genetic alterations in ZNF536 were found to be high-frequency and a single sample could harbor different variations. ZNF536 at chromosome 19q12 exerted a bypass effect on CCNE1, supported by CRISPR data. For lung cancer, ZNF536 mutation was associated with longer survival in primary lung adenocarcinoma (LUAD), but its prognosis was poor in metastatic LUAD and SCLC. Importantly, ZNF536 mutation and amplification had opposite prognoses in Stand Up To Cancer-Mark Foundation (SU2C-MARK) LUAD cohort. ZNF536 mutation altered the patterns of genomic alterations in tumors, and had distinct impacts on the signaling pathways and TME compared to ZNF536 amplification. Additionally, ZNF536 expression was predominantly in endocrine tumors and brain tissues. High-dimensional analysis supported this finding and further revealed regulators of ZNF536. Considering that the methylation of ZNF536 was involved in the synaptic pathway associated with neuroendocrine neoplasms, demonstrating both diagnostic and prognostic value. Moreover, we experimentally verified ZNF536 upregulated neuroendocrine markers. CONCLUSIONS: Our results showed that ZNF536 alterations in cancer, including variations in copy number, mutation, and methylation. We proved the involvement of ZNF536 in neuroendocrine regulation, and identified highly altered ZNF536 as a potential biomarker for immunotherapy.


Asunto(s)
Neoplasias Pulmonares , Mutación , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Pronóstico , Metilación de ADN , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica
3.
Technol Cancer Res Treat ; 23: 15330338241241484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725284

RESUMEN

Introduction: Endoplasmic reticulum stress (ERS) was a response to the accumulation of unfolded proteins and plays a crucial role in the development of tumors, including processes such as tumor cell invasion, metastasis, and immune evasion. However, the specific regulatory mechanisms of ERS in breast cancer (BC) remain unclear. Methods: In this study, we analyzed RNA sequencing data from The Cancer Genome Atlas (TCGA) for breast cancer and identified 8 core genes associated with ERS: ELOVL2, IFNG, MAP2K6, MZB1, PCSK6, PCSK9, IGF2BP1, and POP1. We evaluated their individual expression, independent diagnostic, and prognostic values in breast cancer patients. A multifactorial Cox analysis established a risk prognostic model, validated with an external dataset. Additionally, we conducted a comprehensive assessment of immune infiltration and drug sensitivity for these genes. Results: The results indicate that these eight core genes play a crucial role in regulating the immune microenvironment of breast cancer (BRCA) patients. Meanwhile, an independent diagnostic model based on the expression of these eight genes shows limited independent diagnostic value, and its independent prognostic value is unsatisfactory, with the time ROC AUC values generally below 0.5. According to the results of logistic regression neural networks and risk prognosis models, when these eight genes interact synergistically, they can serve as excellent biomarkers for the diagnosis and prognosis of breast cancer patients. Furthermore, the research findings have been confirmed through qPCR experiments and validation. Conclusion: In conclusion, we explored the mechanisms of ERS in BRCA patients and identified 8 outstanding biomolecular diagnostic markers and prognostic indicators. The research results were double-validated using the GEO database and qPCR.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Estrés del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Humanos , Femenino , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Pronóstico , Estrés del Retículo Endoplásmico/genética , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Biología Computacional/métodos , Bases de Datos Genéticas , Curva ROC , Estimación de Kaplan-Meier , Transcriptoma
4.
Medicine (Baltimore) ; 103(19): e38146, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728446

RESUMEN

Breast cancer is a prevalent ailment among women, and the inflammatory response plays a crucial role in the management and prediction of breast cancer (BRCA). However, the new subtypes based on inflammation in BRCA research are still undefined. The databases including The Cancer Genome Atlas and gene expression omnibus were utilized to gather clinical data and somatic mutation information for approximately 1069 BRCA patients. Through Consensus Clustering, novel subtypes linked to inflammation were identified. A comparative analysis was conducted on the prognosis, and immune cell infiltration, and somatic mutation of the new subtypes. Additionally, an investigation into drug therapy and immunotherapy was conducted to distinguish high-risk individuals from low-risk ones. The findings of this investigation proposed the categorization of BRCA into innovative subtypes predicated on the inflammatory response and 6 key genes were a meaningful approach. Specifically, the low-, medium-, and high-inflammation subtypes exhibited varying degrees of association with clinicopathological features, tumor microenvironment, and prognosis. Notably, the high-inflammation subtype was characterized by a strong correlation with immunosuppressive microenvironments and a higher frequency of somatic mutations, which was an indication of poorer health. This study revealed that a brand-new classification could throw new light on the effective prognosis. The integration of multiple key genes was a new characterization that could promote more immunotherapy strategies and contribute to predicting the efficacy of the chemotherapeutic drugs.


Asunto(s)
Neoplasias de la Mama , Inflamación , Microambiente Tumoral , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Femenino , Inflamación/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Mutación , Inmunoterapia/métodos , Persona de Mediana Edad , Biomarcadores de Tumor/genética
5.
Medicine (Baltimore) ; 103(19): e38091, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728467

RESUMEN

To screen immune-related prognostic biomarkers in low-grade glioma (LGG), and reveal the potential regulatory mechanism. The differential expressed genes (DEGs) between alive and dead patients were initially identified, then the key common genes between DEGs and immune-related genes were obtained. Regarding the key DEGs associated with the overall survival (OS), their clinical value was assessed by Kaplan-Meier, RCS, logistic regression, ROC, and decision curve analysis methods. We also assessed the role of immune infiltration on the association between key DEGs and OS. All the analyses were based on the TGCA-LGG data. Finally, we conducted the molecular docking analysis to explore the targeting binding of key DEGs with the therapeutic agents in LGG. Among 146 DEGs, only interleukin-6 (IL-6) was finally screened as an immune-related biomarker. High expression of IL-6 significantly correlated with poor OS time (all P < .05), showing a linear relationship. The combination of IL-6 with IDH1 mutation had the most favorable prediction performance on survival status and they achieved a good clinical net benefit. Next, we found a significant relationship between IL-6 and immune microenvironment score, and the immune microenvironment played a mediating effect on the association of IL-6 with survival (all P < .05). Detailly, IL-6 was positively related to M1 macrophage infiltration abundance and its biomarkers (all P < .05). Finally, we obtained 4 therapeutic agents in LGG targeting IL-6, and their targeting binding relationships were all verified. IL6, as an immune-related biomarker, was associated with the prognosis in LGG, and it can be a therapeutic target in LGG.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Interleucina-6 , Microambiente Tumoral , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Glioma/inmunología , Glioma/genética , Glioma/mortalidad , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Biomarcadores de Tumor/genética , Femenino , Estimación de Kaplan-Meier , Regulación Neoplásica de la Expresión Génica
6.
Braz J Med Biol Res ; 57: e13378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716982

RESUMEN

Forkhead Box O1 (FOXO1) has been reported to play important roles in many tumors. However, FOXO1 has not been studied in pan-cancer. The purpose of this study was to reveal the roles of FOXO1 in pan-cancer (33 cancers in this study). Through multiple public platforms, a pan-cancer analysis of FOXO1 was conducted to obtained FOXO1 expression profiles in various tumors to explore the relationship between FOXO1 expression and prognosis of these tumors and to disclose the potential mechanism of FOXO1 in these tumors. FOXO1 was associated with the prognosis of multiple tumors, especially LGG (low grade glioma), OV (ovarian carcinoma), and KIRC (kidney renal clear cell carcinoma). FOXO1 might play the role of an oncogenic gene in LGG and OV, while playing the role of a cancer suppressor gene in KIRC. FOXO1 expression had a significant correlation with the infiltration of some immune cells in LGG, OV, and KIRC. By combining FOXO1 expression and immune cell infiltration, we found that FOXO1 might influence the overall survival of LGG through the infiltration of myeloid dendritic cells or CD4+ T cells. Functional enrichment analysis and gene set enrichment analysis showed that FOXO1 might play roles in tumors through immunoregulatory interactions between a lymphoid and a non-lymphoid cell, TGF-beta signaling pathway, and transcriptional misregulation in cancer. FOXO1 was associated with the prognosis of multiple tumors, especially LGG, OV, and KIRC. In these tumors, FOXO1 might play its role via the regulation of the immune microenvironment.


Asunto(s)
Proteína Forkhead Box O1 , Neoplasias , Humanos , Biomarcadores de Tumor/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/inmunología , Neoplasias/genética , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética
7.
Cell Death Dis ; 15(5): 326, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729966

RESUMEN

Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.


Asunto(s)
Neoplasias Colorrectales , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Microambiente Tumoral/genética , Transcriptoma/genética , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Perfilación de la Expresión Génica , Masculino , Femenino
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731846

RESUMEN

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas B-raf , Células del Estroma , Factor de Crecimiento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Microambiente Tumoral/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Mutación , Transcriptoma , Transducción de Señal , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Adenoma/genética , Adenoma/patología , Adenoma/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732035

RESUMEN

Intraductal carcinoma of the prostate (IDCP) has recently attracted increasing interest owing to its unfavorable prognoses. To effectively identify the IDCP-specific gene expression profile, we took a novel approach of characterizing a typical IDCP case using spatial gene expression analysis. A formalin-fixed, paraffin-embedded sample was subjected to Visium CytAssist Spatial Gene Expression analysis. IDCP within invasive prostate cancer sites was recognized as a distinct cluster separate from other invasive cancer clusters. Highly expressed genes defining the IDCP cluster, such as MUC6, MYO16, NPY, and KLK12, reflected the aggressive nature of high-grade prostate cancer. IDCP sites also showed increased hypoxia markers HIF1A, BNIP3L, PDK1, and POGLUT1; decreased fibroblast markers COL1A2, DCN, and LUM; and decreased immune cell markers CCR5 and FCGR3A. Overall, these findings indicate that the hypoxic tumor microenvironment and reduced recruitment of fibroblasts and immune cells, which reflect morphological features of IDCP, may influence the aggressiveness of high-grade prostate cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , Microambiente Tumoral , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica/métodos , Carcinoma Ductal/genética , Carcinoma Ductal/patología , Carcinoma Ductal/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transcriptoma , Receptores CCR5
10.
Mol Cancer ; 23(1): 87, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702773

RESUMEN

BACKGROUND: Intratumoral heterogeneity (ITH) and tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) play important roles in tumor evolution and patient outcomes. However, the precise characterization of diverse cell populations and their crosstalk associated with PDAC progression and metastasis is still challenging. METHODS: We performed single-cell RNA sequencing (scRNA-seq) of treatment-naïve primary PDAC samples with and without paired liver metastasis samples to understand the interplay between ITH and TME in the PDAC evolution and its clinical associations. RESULTS: scRNA-seq analysis revealed that even a small proportion (22%) of basal-like malignant ductal cells could lead to poor chemotherapy response and patient survival and that epithelial-mesenchymal transition programs were largely subtype-specific. The clonal homogeneity significantly increased with more prevalent and pronounced copy number gains of oncogenes, such as KRAS and ETV1, and losses of tumor suppressor genes, such as SMAD2 and MAP2K4, along PDAC progression and metastasis. Moreover, diverse immune cell populations, including naïve SELLhi regulatory T cells (Tregs) and activated TIGIThi Tregs, contributed to shaping immunosuppressive TMEs of PDAC through cellular interactions with malignant ductal cells in PDAC evolution. Importantly, the proportion of basal-like ductal cells negatively correlated with that of immunoreactive cell populations, such as cytotoxic T cells, but positively correlated with that of immunosuppressive cell populations, such as Tregs. CONCLUSION: We uncover that the proportion of basal-like subtype is a key determinant for chemotherapy response and patient outcome, and that PDAC clonally evolves with subtype-specific dosage changes of cancer-associated genes by forming immunosuppressive microenvironments in its progression and metastasis.


Asunto(s)
Evolución Clonal , Neoplasias Hepáticas , Neoplasias Pancreáticas , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Evolución Clonal/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Transición Epitelial-Mesenquimal/genética , Biomarcadores de Tumor/genética , Pronóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Masculino , Femenino , Análisis de Expresión Génica de una Sola Célula
11.
Aging (Albany NY) ; 16(8): 6898-6920, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38709170

RESUMEN

BACKGROUND: Cervical squamous carcinoma (CESC) is the main subtype of cervical cancer. Unfortunately, there are presently no effective treatment options for advanced and recurrent CESC. Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells that resemble secondary lymphoid organs; nevertheless, there is no summary of the clinical importance of TLS in CESC. METHODS: A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were used to analyze the pattern of TLS and its immuno-correlations in CESC. Additionally, an independent in-house cohort was collected to validate the correlation between TLS and TME features. RESULTS: In the current study, we found that the presence of TLS could predict better prognosis in CESC and was correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations. In addition, TLS was associated with reduced proliferation activity in tumor cells, indicating the negative correlation between TLS and the degree of malignancy. Last but not least, in two independent immunotherapy cohorts, tumors with the presence of TLS were more sensitive to immunotherapy. CONCLUSION: Overall, TLS is related to an inflamed TME and identified immune-hot tumors, which could be an indicator for the identification of immunological features in CESC.


Asunto(s)
Carcinoma de Células Escamosas , Estructuras Linfoides Terciarias , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Femenino , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Pronóstico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Inmunoterapia , Transcriptoma
12.
Front Immunol ; 15: 1323199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742112

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods: We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion: Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Biología Computacional/métodos , Pronóstico , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Quimiocina CXCL9/genética , Perfilación de la Expresión Génica , Masculino , Femenino , Transcriptoma
13.
J Cancer Res Clin Oncol ; 150(5): 246, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722401

RESUMEN

BACKGROUND: Recent studies have emphasized the importance of the biological processes of different forms of cell death in tumor heterogeneity and anti-tumor immunity. Nonetheless, the relationship between cuproptosis and lung adenocarcinoma (LUAD) remains largely unexplored. METHODS: Data for 793 LUAD samples and 59 normal lung tissues obtained from TCGA-LUAD cohort GEO datasets were used in this study. A total of 165 LUAD tissue samples and paired normal lung tissue samples obtained from our hospital were used to verify the prognostic value of dihydrolipoamide S-acetyltransferase (DLAT) and dihydrolipoamide branched chain transacylase E2 (DBT) for LUAD. The cuproptosis-related molecular patterns of LUAD were identified using consensus molecular clustering. Recursive feature elimination with random forest and a tenfold cross-validation method was applied to construct the cuproptosis score (CPS) for LUAD. RESULTS: Bioinformatic and immunohistochemistry (IHC) analyses revealed that 13 core genes of cuproptosis were all significantly elevated in LUAD tissues, among which DBT and DLAT were associated with poor prognosis (DLAT, HR = 6.103; DBT, HR = 4.985). Based on the expression pattern of the 13 genes, two distinct cuproptosis-related patterns have been observed in LUAD: cluster 2 which has a relatively higher level of cuproptosis was characterized by immunological ignorance; conversely, cluster 1 which has a relatively lower level of cuproptosis is characterized by TILs infiltration and anti-tumor response. Finally, a scoring scheme termed the CPS was established to quantify the cuproptosis-related pattern and predict the prognosis and the response to immune checkpoint blockers of each individual patient with LUAD. CONCLUSION: Cuproptosis was found to influence tumor microenvironment (TME) characteristics and heterogeneity in LUAD. Patients with a lower CPS had a relatively better prognosis, more abundant immune infiltration in the TME, and an enhanced response to immune checkpoint inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Pronóstico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Femenino , Biomarcadores de Tumor/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad
14.
Sci Rep ; 14(1): 10482, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714855

RESUMEN

The mitogen-activated protein kinase (MAPK) pathway plays a critical role in tumor development and immunotherapy. Nevertheless, additional research is necessary to comprehend the relationship between the MAPK pathway and the prognosis of bladder cancer (BLCA), as well as its influence on the tumor immune microenvironment. To create prognostic models, we screened ten genes associated with the MAPK pathway using COX and least absolute shrinkage and selection operator (LASSO) regression analysis. These models were validated in the Genomic Data Commons (GEO) cohort and further examined for immune infiltration, somatic mutation, and drug sensitivity characteristics. Finally, the findings were validated using The Human Protein Atlas (HPA) database and through Quantitative Real-time PCR (qRT-PCR). Patients were classified into high-risk and low-risk groups based on the prognosis-related genes of the MAPK pathway. The high-risk group had poorer overall survival than the low-risk group and showed increased immune infiltration compared to the low-risk group. Additionally, the nomograms built using the risk scores and clinical factors exhibited high accuracy in predicting the survival of BLCA patients. The prognostic profiling of MAPK pathway-associated genes represents a potent clinical prediction tool, serving as the foundation for precise clinical treatment of BLCA.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/mortalidad , Neoplasias de la Vejiga Urinaria/patología , Pronóstico , Sistema de Señalización de MAP Quinasas/genética , Masculino , Femenino , Nomogramas , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Anciano , Persona de Mediana Edad
15.
Sci Rep ; 14(1): 10348, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710798

RESUMEN

The complete compound of gefitinib is effective in the treatment of lung adenocarcinoma. However, the effect on lung adenocarcinoma (LUAD) during its catabolism has not yet been elucidated. We carried out this study to examine the predictive value of gefitinib metabolism-related long noncoding RNAs (GMLncs) in LUAD patients. To filter GMLncs and create a prognostic model, we employed Pearson correlation, Lasso, univariate Cox, and multivariate Cox analysis. We combined risk scores and clinical features to create nomograms for better application in clinical settings. According to the constructed prognostic model, we performed GO/KEGG and GSEA enrichment analysis, tumor immune microenvironment analysis, immune evasion and immunotherapy analysis, somatic cell mutation analysis, drug sensitivity analysis, IMvigor210 immunotherapy validation, stem cell index analysis and real-time quantitative PCR (RT-qPCR) analysis. We built a predictive model with 9 GMLncs, which showed good predictive performance in validation and training sets. The calibration curve demonstrated excellent agreement between the expected and observed survival rates, for which the predictive performance was better than that of the nomogram without a risk score. The metabolism of gefitinib is related to the cytochrome P450 pathway and lipid metabolism pathway, and may be one of the causes of gefitinib resistance, according to analyses from the Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Immunological evasion and immunotherapy analysis revealed that the likelihood of immune evasion increased with risk score. Tumor microenvironment analysis found most immune cells at higher concentrations in the low-risk group. Drug sensitivity analysis found 23 sensitive drugs. Twenty-one of these drugs exhibited heightened sensitivity in the high-risk group. RT-qPCR analysis validated the characteristics of 9 GMlncs. The predictive model and nomogram that we constructed have good application value in evaluating the prognosis of patients and guiding clinical treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Gefitinib , Neoplasias Pulmonares , ARN Largo no Codificante , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Gefitinib/uso terapéutico , Gefitinib/farmacología , ARN Largo no Codificante/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Pronóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Resistencia a Antineoplásicos/genética , Nomogramas , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Persona de Mediana Edad , Anciano
16.
Mol Genet Genomics ; 299(1): 51, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743077

RESUMEN

This study examines the prognostic role and immunological relevance of EMP1 (epithelial membrane protein-1) in a pan-cancer analysis, with a focus on ovarian cancer. Utilizing data from TCGA, CCLE, and GTEx databases, we assessed EMP1 mRNA expression and its correlation with tumor progression, prognosis, and immune microenvironment across various cancers. Our results indicate that EMP1 expression is significantly associated with poor prognosis in multiple cancer types, including ovarian, bladder, testicular, pancreatic, breast, brain, and uveal melanoma. Immune-related analyses reveal a positive correlation between EMP1 and immune cell infiltration, particularly neutrophils, macrophages, and dendritic cells, as well as high expression of immune checkpoint such as CD274, HAVCR2, IL10, PDCD1LG2, and TGFB1 in most tumors. In vivo experiments confirm that EMP1 promotes ovarian cancer cell proliferation, metastasis, and invasion. In conclusion, EMP1 emerges as a potential prognostic biomarker and therapeutic target in various cancers, particularly ovarian cancer, due to its influence on tumor progression and immune cell dynamics. Further research is warranted to elucidate the precise mechanisms of EMP1 in cancer biology and to translate these findings into clinical applications.


Asunto(s)
Biomarcadores de Tumor , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Pronóstico , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Animales , Proliferación Celular/genética , Línea Celular Tumoral , Ratones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Glicoproteínas de Membrana/genética
17.
Sci Rep ; 14(1): 11006, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744944

RESUMEN

With cancer immunotherapy and precision medicine dynamically evolving, there is greater need for pre-clinical models that can better replicate the intact tumor and its complex tumor microenvironment (TME). Precision-cut tumor slices (PCTS) have recently emerged as an ex vivo human tumor model, offering the opportunity to study individual patient responses to targeted therapies, including immunotherapies. However, little is known about the physiologic status of PCTS and how culture conditions alter gene expression. In this study, we generated PCTS from head and neck cancers (HNC) and mesothelioma tumors (Meso) and undertook transcriptomic analyses to understand the changes that occur in the timeframe between PCTS generation and up to 72 h (hrs) in culture. Our findings showed major changes occurring during the first 24 h culture period of PCTS, involving genes related to wound healing, extracellular matrix, hypoxia, and IFNγ-dependent pathways in both tumor types, as well as tumor-specific changes. Collectively, our data provides an insight into PCTS physiology, which should be taken into consideration when designing PCTS studies, especially in the context of immunology and immunotherapy.


Asunto(s)
Perfilación de la Expresión Génica , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Transcriptoma , Medicina de Precisión/métodos , Inmunoterapia/métodos
18.
Nat Commun ; 15(1): 4067, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744958

RESUMEN

The complexity of the tumor microenvironment poses significant challenges in cancer therapy. Here, to comprehensively investigate the tumor-normal ecosystems, we perform an integrative analysis of 4.9 million single-cell transcriptomes from 1070 tumor and 493 normal samples in combination with pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint inhibitor-treated bulk tumors. We define a myriad of cell states constituting the tumor-normal ecosystems and also identify hallmark gene signatures across different cell types and organs. Our atlas characterizes distinctions between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of cellular interactions and spatial co-localization patterns. Co-occurrence analysis reveals interferon-enriched community states including tertiary lymphoid structure (TLS) components, which exhibit differential rewiring between tumor, adjacent normal, and healthy normal tissues. The favorable response of interferon-enriched community states to immunotherapy is validated using immunotherapy-treated cancers (n = 1261) including our lung cancer cohort (n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched from non-enriched cell types among immunotherapy-favorable components. Our systematic dissection of tumor-normal ecosystems provides a deeper understanding of inter- and intra-tumoral heterogeneity.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Transcriptoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Perfilación de la Expresión Génica , Interferones/metabolismo
19.
Cell Mol Biol Lett ; 29(1): 73, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745115

RESUMEN

Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-ß, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.


Asunto(s)
Quimiocinas CXC , Citocinas , Progresión de la Enfermedad , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Masculino , Citocinas/metabolismo , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Microambiente Tumoral/genética , Inflamación/metabolismo , Inflamación/genética , Animales , Transducción de Señal
20.
PeerJ ; 12: e17338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708353

RESUMEN

Background: This study was performed to determine the biological processes in which NKX2-1 is involved and thus its role in the development of lung squamous cell carcinoma (LUSC) toward improving the prognosis and treatment of LUSC. Methods: Raw RNA sequencing (RNA-seq) data of LUSC from The Cancer Genome Atlas (TCGA) were used in bioinformatics analysis to characterize NKX2-1 expression levels in tumor and normal tissues. Survival analysis of Kaplan-Meier curve, the time-dependent receiver operating characteristic (ROC) curve, and a nomogram were used to analyze the prognosis value of NKX2-1 for LUSC in terms of overall survival (OS) and progression-free survival (PFS). Then, differentially expressed genes (DEGs) were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were used to clarify the biological mechanisms potentially involved in the development of LUSC. Moreover, the correlation between the NKX2-1 expression level and tumor mutation burden (TMB), tumor microenvironment (TME), and immune cell infiltration revealed that NKX2-1 participates in the development of LUSC. Finally, we studied the effects of NKX2-1 on drug therapy. To validate the protein and gene expression levels of NKX2-1 in LUSC, we employed immunohistochemistry(IHC) datasets, The Gene Expression Omnibus (GEO) database, and qRT-PCR analysis. Results: NKX2-1 expression levels were significantly lower in LUSC than in normal lung tissue. It significantly differed in gender, stage and N classification. The survival analysis revealed that high expression of NKX2-1 had shorter OS and PFS in LUSC. The multivariate Cox regression hazard model showed the NKX2-1 expression as an independent prognostic factor. Then, the nomogram predicted LUSC prognosis. There are 51 upregulated DEGs and 49 downregulated DEGs in the NKX2-1 high-level groups. GO, KEGG and GSEA analysis revealed that DEGs were enriched in cell cycle and DNA replication.The TME results show that NKX2-1 expression was positively associated with mast cells resting, neutrophils, monocytes, T cells CD4 memory resting, and M2 macrophages but negatively associated with M1 macrophages. The TMB correlated negatively with NKX2-1 expression. The pharmacotherapy had great sensitivity in the NKX2-1 low-level group, the immunotherapy is no significant difference in the NKX2-1 low-level and high-level groups. The analysis of GEO data demonstrated concurrence with TCGA results. IHC revealed NKX2-1 protein expression in tumor tissues of both LUAD and LUSC. Meanwhile qRT-PCR analysis indicated a significantly lower NKX2-1 expression level in LUSC compared to LUAD. These qRT-PCR findings were consistent with co-expression analysis of NKX2-1. Conclusion: We conclude that NKX2-1 is a potential biomarker for prognosis and treatment LUSC. A new insights of NKX2-1 in LUSC is still needed further research.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Factor Nuclear Tiroideo 1 , Microambiente Tumoral , Humanos , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Nomogramas , Estimación de Kaplan-Meier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...