Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.684
Filtrar
1.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976012

RESUMEN

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Asunto(s)
Acuaporina 4 , Astrocitos , Encefalomielitis Autoinmune Experimental , Ácidos Grasos Volátiles , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Triptófano , Animales , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Triptófano/metabolismo , Triptófano/farmacología , Femenino , Transducción de Señal/efectos de los fármacos , Acuaporina 4/metabolismo , Acuaporina 4/genética , Microbioma Gastrointestinal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos
2.
Arch Microbiol ; 206(8): 346, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976078

RESUMEN

This review offers a comprehensive analysis of the intricate relationship between the gut virome and diabetes, elucidating the mechanisms by which the virome engages with both human cells and the intestinal bacteriome. By examining a decade of scientific literature, we provide a detailed account of the distinct viral variations observed in type 1 diabetes (T1D) and type 2 diabetes (T2D). Our synthesis reveals that the gut virome significantly influences the development of both diabetes types through its interactions, which indirectly modulate immune and inflammatory responses. In T1D, the focus is on eukaryotic viruses that stimulate the host's immune system, whereas T2D is characterized by a broader spectrum of altered phage diversities. Promisingly, in vitro and animal studies suggest fecal virome transplantation as a potential therapeutic strategy to alleviate symptoms of T2D and obesity. This study pioneers a holistic overview of the gut virome's role in T1D and T2D, its interplay with host immunity, and the innovative potential of fecal transplantation therapy in clinical diabetes management.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Viroma , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/virología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/virología , Animales , Bacteriófagos/genética , Bacteriófagos/fisiología , Virus/genética , Virus/clasificación
4.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967598

RESUMEN

BACKGROUND: Bile acids mediate gut-liver cross-talk through bile acid receptors. Serum, hepatic, and microbial bile acid metabolism was evaluated in HCV-compensated chronic liver disease. METHODS: Patients underwent liver biopsy; portal and peripheral blood were obtained before (HCVi), and 6 months after sustained virologic response (SVR), splenic blood was obtained only after SVR. The fecal microbiome and liver transcriptome were evaluated using RNA-Seq. Twenty-four bile acids were measured in serum, summed as free, taurine-conjugated bile acids (Tau-BAs), and glycine-conjugated bile acids. RESULTS: Compared to SVR, HCVi showed elevated conjugated bile acids, predominantly Tau-BA, compounded in HCVi cirrhosis. In the liver, transcription of bile acids uptake, synthesis, and conjugation was decreased with increased hepatic spillover into systemic circulation in HCVi. There was no difference in the transcription of microbial bile acid metabolizing genes in HCVi. Despite an overall decrease, Tau-BA remained elevated in SVR cirrhosis, mainly in splenic circulation. Only conjugated bile acids, predominantly Tau-BA, correlated with serum proinflammatory markers and hepatic proinflammatory pathways, including NLRP3 and NFKB. Among hepatic bile acid receptors, disease-associated conjugated bile acids showed the strongest association with hepatic spingosine-1-phosphate receptor 2 (S1PR2). CONCLUSIONS: Enhanced expression of hepatic S1PR2 in HCVi and HCVi-cirrhosis and strong associations of S1PR2 with Tau-BAs suggest pathological relevance of Tau-BA-hepatic S1PR2 signaling in chronic liver disease. These findings have therapeutic implications in chronic liver diseases.


Asunto(s)
Ácidos y Sales Biliares , Hígado , Receptores de Esfingosina-1-Fosfato , Taurina , Humanos , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/sangre , Masculino , Taurina/sangre , Femenino , Persona de Mediana Edad , Hígado/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/metabolismo , Hepatitis C Crónica/complicaciones , Cirrosis Hepática/metabolismo , Cirrosis Hepática/virología , Microbioma Gastrointestinal , Respuesta Virológica Sostenida , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adulto , Anciano
5.
Sci Rep ; 14(1): 15842, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982163

RESUMEN

This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.


Asunto(s)
Heces , Microbioma Gastrointestinal , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Humanos , Microbioma Gastrointestinal/fisiología , Heces/microbiología , Heces/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Fermentación , Fibras de la Dieta/metabolismo , Inulina/metabolismo , Microextracción en Fase Sólida/métodos
6.
Sci Rep ; 14(1): 15798, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982226

RESUMEN

The present study aimed to explore the underlying mechanism of bile reflux-inducing chronic atrophic gastritis (CAG) with colonic mucosal lesion. The rat model of CAG with colonic mucosal lesion was induced by free-drinking 20 mmol/L sodium deoxycholate to simulate bile reflux and 2% cold sodium salicylate for 12 weeks. In comparison to the control group, the model rats had increased abundances of Bacteroidetes and Firmicutes but had decreased abundances of Proteobacteria and Fusobacterium. Several gut bacteria with bile acids transformation ability were enriched in the model group, such as Blautia, Phascolarctobacter, and Enterococcus. The cytotoxic deoxycholic acid and lithocholic acid were significantly increased in the model group. Transcriptome analysis of colonic tissues presented that the down-regulated genes enriched in T cell receptor signaling pathway, antigen processing and presentation, Th17 cell differentiation, Th1 and Th2 cell differentiation, and intestinal immune network for IgA production in the model group. These results suggest that bile reflux-inducing CAG with colonic mucosal lesion accompanied by gut dysbacteriosis, mucosal immunocompromise, and increased gene expressions related to repair of intestinal mucosal injury.


Asunto(s)
Colon , Ácido Desoxicólico , Gastritis Atrófica , Microbioma Gastrointestinal , Mucosa Intestinal , Animales , Gastritis Atrófica/microbiología , Gastritis Atrófica/inmunología , Gastritis Atrófica/patología , Gastritis Atrófica/inducido químicamente , Ratas , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de los fármacos , Masculino , Colon/patología , Colon/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Modelos Animales de Enfermedad , Inmunidad Mucosa/efectos de los fármacos , Ratas Sprague-Dawley , Enfermedad Crónica
7.
BMC Microbiol ; 24(1): 253, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982403

RESUMEN

BACKGROUND: Gut microbes play an important role in the growth and health of neonatal piglets. Probiotics can promote the healthy growth of neonatal piglets by regulating their gut microbes. The study investigated the effects of spraying Lactiplantibacillus plantarum P-8 (L. plantarum P-8) fermentation broth on the growth performance and gut microbes of neonatal piglets. RESULTS: The animals were randomly divided into probiotics groups (109 neonatal piglets) and control groups (113 neonatal piglets). The probiotics group was sprayed with L. plantarum P-8 fermented liquid from 3 day before the expected date of the sow to the 7-day-old of piglets, while the control group was sprayed with equal dose of PBS. Average daily gain (ADG), immune and antioxidant status and metagenome sequencing were used to assess the changes in growth performance and gut microbiota of neonatal piglets. The results showed that L. plantarum P-8 treatment significantly improved the average daily gain (P < 0.05) of neonatal piglets. L. plantarum P-8 increased the activities of CAT and SOD but reduced the levels of IL-2 and IL-6, effectively regulating the antioxidant capacity and immunity in neonatal piglets. L. plantarum P-8 adjusted the overall structure of gut microflora improving gut homeostasis to a certain extent, and significantly increased the relative abundance of gut beneficial bacteria such as L. mucosae and L. plantarum. CONCLUSION: Spraying L. plantarum P-8 can be a feasible and effective probiotic intervention not only improving the growth of neonatal piglets, regulating the antioxidant capacity and immunity of neonatal piglets, but also improving the gut homeostasis to a certain extent.


Asunto(s)
Animales Recién Nacidos , Microbioma Gastrointestinal , Probióticos , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Porcinos , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus plantarum , Fermentación , Antioxidantes/metabolismo , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Heces/microbiología
8.
Front Cell Infect Microbiol ; 14: 1420389, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983117

RESUMEN

The intestinal microbiota assumes a pivotal role in modulating host metabolism, immune responses, overall health, and additional physiological dimensions. The structural and functional characteristics of the intestinal microbiota may cause alterations within the host's body to a certain extent. The composition of the gut microbiota is associated with environmental factors, dietary habits, and other pertinent conditions. The investigation into the gut microbiota of yaks remained relatively underexplored. An examination of yak gut microbiota holds promise in elucidating the complex relationship between microbial communities and the adaptive responses of the host to its environment. In this study, yak were selected from two distinct environmental conditions: those raised in sheds (NS, n=6) and grazed in Nimu County (NF, n=6). Fecal samples were collected from the yaks and subsequently processed for analysis through 16S rDNA and ITS sequencing methodologies. The results revealed that different feeding styles result in significant differences in the Alpha diversity of fungi in the gut of yaks, while the gut microbiota of captive yaks was relatively conserved. In addition, significant differences appeared in the abundance of microorganisms in different taxa, phylum Verrucomicrobiota was significantly enriched in group NF while Firmicutes was higher in group NS. At the genus level, Akkermansia, Paenibacillus, Roseburia, Dorea, UCG_012, Anaerovorax and Marvinbryantia were enriched in group NF while Desemzia, Olsenella, Kocuria, Ornithinimicrobium and Parvibacter were higher in group NS (P<0.05 or P<0.01). There was a significant difference in the function of gut microbiota between the two groups. The observed variations are likely influenced by differences in feeding methods and environmental conditions both inside and outside the pen. The findings of this investigation offer prospective insights into enhancing the yak breeding and expansion of the yak industry.


Asunto(s)
Bacterias , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Bovinos , Microbioma Gastrointestinal/genética , Heces/microbiología , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , China , Filogenia , ADN Bacteriano/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , ADN Ribosómico/genética , ADN Ribosómico/química , Análisis de Secuencia de ADN , Biodiversidad
9.
Front Immunol ; 15: 1416961, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983862

RESUMEN

Depression, projected to be the predominant contributor to the global disease burden, is a complex condition with diverse symptoms including mood disturbances and cognitive impairments. Traditional treatments such as medication and psychotherapy often fall short, prompting the pursuit of alternative interventions. Recent research has highlighted the significant role of gut microbiota in mental health, influencing emotional and neural regulation. Fecal microbiota transplantation (FMT), the infusion of fecal matter from a healthy donor into the gut of a patient, emerges as a promising strategy to ameliorate depressive symptoms by restoring gut microbial balance. The microbial-gut-brain (MGB) axis represents a critical pathway through which to potentially rectify dysbiosis and modulate neuropsychiatric outcomes. Preclinical studies reveal that FMT can enhance neurochemicals and reduce inflammatory markers, thereby alleviating depressive behaviors. Moreover, FMT has shown promise in clinical settings, improving gastrointestinal symptoms and overall quality of life in patients with depression. The review highlights the role of the gut-brain axis in depression and the need for further research to validate the long-term safety and efficacy of FMT, identify specific therapeutic microbial strains, and develop targeted microbial modulation strategies. Advancing our understanding of FMT could revolutionize depression treatment, shifting the paradigm toward microbiome-targeting therapies.


Asunto(s)
Eje Cerebro-Intestino , Depresión , Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Depresión/terapia , Depresión/microbiología , Disbiosis/terapia , Animales , Resultado del Tratamiento
10.
World J Gastroenterol ; 30(24): 3076-3085, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983956

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection is closely associated with gastrointestinal diseases. Our preliminary studies have indicated that H. pylori infection had a significant impact on the mucosal microbiome structure in patients with gastric ulcer (GU) or duodenal ulcer (DU). AIM: To investigate the contributions of H. pylori infection and the mucosal microbiome to the pathogenesis and progression of ulcerative diseases. METHODS: Patients with H. pylori infection and either GU or DU, and healthy individuals without H. pylori infection were included. Gastric or duodenal mucosal samples was obtained and subjected to metagenomic sequencing. The compositions of the microbial communities and their metabolic functions in the mucosal tissues were analyzed. RESULTS: Compared with that in the healthy individuals, the gastric mucosal microbiota in the H. pylori-positive patients with GU was dominated by H. pylori, with significantly reduced biodiversity. The intergroup differential functions, which were enriched in the H. pylori-positive GU patients, were all derived from H. pylori, particularly those concerning transfer RNA queuosine-modification and the synthesis of demethylmenaquinones or menaquinones. A significant enrichment of the uibE gene was detected in the synthesis pathway. There was no significant difference in microbial diversity between the H. pylori-positive DU patients and healthy controls. CONCLUSION: H. pylori infection significantly alters the gastric microbiota structure, diversity, and biological functions, which may be important contributing factors for GU.


Asunto(s)
Úlcera Duodenal , Mucosa Gástrica , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Úlcera Gástrica , Humanos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/aislamiento & purificación , Helicobacter pylori/genética , Úlcera Duodenal/microbiología , Úlcera Duodenal/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Úlcera Gástrica/microbiología , Adulto , Estudios de Casos y Controles , Anciano , Metagenómica/métodos , Duodeno/microbiología , Disbiosis/microbiología
11.
World J Gastroenterol ; 30(24): 3123-3125, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38983955

RESUMEN

Immune-related adverse events (irAEs) are complications of the use of immune checkpoint inhibitors (ICIs). ICI-associated gastritis is one of the main irAEs. The gastric microbiota is often related to the occurrence and development of many gastric diseases. Gastric microbiota adjustment may be used to treat gastric disorders in the future. Faecal microbiota transplantation can alter the gut microbiota of patients and has been used for treating ICI-associated colitis. Therefore, we propose gastric microbiota transplantation as a supplementary treatment for patients with ICI-associated gastritis who do not respond well to conventional therapy.


Asunto(s)
Trasplante de Microbiota Fecal , Gastritis , Microbioma Gastrointestinal , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Gastritis/microbiología , Gastritis/inmunología , Gastritis/terapia , Gastritis/inducido químicamente , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Microbiota Fecal/métodos , Trasplante de Microbiota Fecal/efectos adversos , Resultado del Tratamiento , Estómago/microbiología , Estómago/inmunología , Estómago/cirugía , Mucosa Gástrica/microbiología , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Mucosa Gástrica/efectos de los fármacos
12.
Helicobacter ; 29(4): e13079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984661

RESUMEN

BACKGROUND: Eradicating Helicobacter pylori infection by bismuth quadruple therapy (BQT) is effective. However, the effect of BQT and subsequent fecal microbiota transplant (FMT) on the gut microbiota is less known. MATERIALS AND METHODS: This prospective randomized controlled trial was conducted at a tertiary hospital in China from January 2019 to October 2020, with the primary endpoints the effect of BQT on the gut microbiota and the effect of FMT on the gut microbiota after bismuth quadruple therapy eradication therapy. A 14-day BQT with amoxicillin and clarithromycin was administered to H. pylori-positive subjects, and after eradication therapy, patients received a one-time FMT or placebo treatment. We then collected stool samples to assess the effects of 14-day BQT and FMT on the gut microbiota. 16 s rDNA and metagenomic sequencing were used to analyze the structure and function of intestinal flora. We also used Gastrointestinal Symptom Rating Scale (GSRS) to evaluate gastrointestinal symptom during treatment. RESULTS: A total of 30 patients were recruited and 15 were assigned to either FMT or placebo groups. After eradication therapy, alpha-diversity was decreased in both groups. At the phylum level, the abundance of Bacteroidetes and Firmicutes decreased, while Proteobacteria increased. At the genus level, the abundance of beneficial bacteria decreased, while pathogenic bacteria increased. Eradication therapy reduced some resistance genes abundance while increased the resistance genes abundance linked to Escherichia coli. While they all returned to baseline by Week 10. Besides, the difference was observed in Week 10 by the diarrhea score between two groups. Compared to Week 2, the GSRS total score and diarrhea score decreased in Week 3 only in FMT group. CONCLUSIONS: The balance of intestinal flora in patients can be considerably impacted by BQT in the short term, but it has reverted back to baseline by Week 10. FMT can alleviate gastrointestinal symptoms even if there was no evidence it promoted restoration of intestinal flora.


Asunto(s)
Antibacterianos , Bismuto , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Infecciones por Helicobacter/terapia , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Trasplante de Microbiota Fecal/métodos , Masculino , Femenino , Persona de Mediana Edad , Helicobacter pylori/efectos de los fármacos , Adulto , Antibacterianos/uso terapéutico , Estudios Prospectivos , Bismuto/uso terapéutico , Quimioterapia Combinada , China , Amoxicilina/uso terapéutico , Claritromicina/uso terapéutico , Resultado del Tratamiento , Anciano , Heces/microbiología
13.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967596

RESUMEN

With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Mitocondrias , Humanos , Microbioma Gastrointestinal/fisiología , Mitocondrias/metabolismo , Probióticos/uso terapéutico , Hígado Graso/metabolismo , Hígado Graso/microbiología , Hígado Graso/terapia , Prebióticos , Antibacterianos/uso terapéutico , Animales , Estrés Oxidativo
14.
JAMA Netw Open ; 7(7): e2418129, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967929

RESUMEN

Importance: Probiotics are often considered in children to prevent antibiotic-associated diarrhea. However, the underlying mechanistic effects and impact of probiotics on antibiotic-induced microbiota changes are not well understood. Objective: To investigate the effects of a multispecies probiotic on the gut microbiota composition in children receiving antibiotics. Design, Setting, and Participants: This is a secondary analysis of a randomized, quadruple-blind, placebo-controlled clinical trial from February 1, 2018, to May 31, 2021, including 350 children receiving broad-spectrum antibiotics in the inpatient and outpatient settings. Patients were followed up until 1 month after the intervention period. Fecal samples and data were analyzed between September 1, 2022, and February 28, 2023. Eligibility criteria included 3 months to 18 years of age and recruitment within 24 hours following initiation of broad-spectrum systemic antibiotics. In total, 646 eligible patients were approached and 350 participated in the trial. Intervention: Participants were randomly assigned to receive daily placebo or a multispecies probiotic formulation consisting of 8 strains from 5 different genera during antibiotic treatment and for 7 days afterward. Main Outcomes and Measures: Fecal stool samples were collected at 4 predefined times: (1) inclusion, (2) last day of antibiotic use, (3) last day of the study intervention, and (4) 1 month after intervention. Microbiota analysis was performed by 16S ribosomal RNA gene sequencing. Results: A total of 350 children were randomized and collected stool samples from 88 were eligible for the microbiota analysis (54 boys and 34 girls; mean [SD] age, 47.09 [55.64] months). Alpha diversity did not significantly differ between groups at the first 3 times. Shannon diversity (mean [SD], 3.56 [0.75] vs 3.09 [1.00]; P = .02) and inverse Simpson diversity (mean [SD], 3.75 [95% CI, 1.66-5.82] vs -1.31 [95% CI, -3.17 to 0.53]; P = 1 × 10-4) indices were higher in the placebo group compared with the probiotic group 1 month after intervention. Beta diversity was not significantly different at any of the times. Three of 5 supplemented genera had higher relative abundance during probiotic supplementation, but this difference had disappeared after 1 month. Conclusions and Relevance: The studied probiotic mixture had minor and transient effects on the microbiota composition during and after antibiotic treatment. Further research is needed to understand their working mechanisms in manipulating the microbiome and preventing antibiotic-associated dysbiosis and adverse effects such as antibiotic-associated diarrhea. Trial Registration: ClinicalTrials.gov Identifier: NCT03334604.


Asunto(s)
Antibacterianos , Diarrea , Heces , Microbioma Gastrointestinal , Probióticos , Humanos , Probióticos/uso terapéutico , Femenino , Masculino , Antibacterianos/uso terapéutico , Antibacterianos/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Niño , Preescolar , Heces/microbiología , Diarrea/inducido químicamente , Diarrea/prevención & control , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Adolescente , Lactante
15.
Sci Rep ; 14(1): 15508, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969657

RESUMEN

The gut microbiome of wild animals is subject to various environmental influences, including those associated with human-induced alterations to the environment. We investigated how the gut microbiota of a synurbic rodent species, the striped field mouse (Apodemus agrarius), change in cities of varying sizes, seeking the urban microbiota signature for this species. Fecal samples for analysis were collected from animals living in non-urbanized areas and green spaces of different-sized cities (Poland). Metagenomic 16S rRNA gene sequencing and further bioinformatics analyses were conducted. Significant differences in the composition of gut microbiomes among the studied populations were found. However, the observed changes were dependent on local habitat conditions, without strong evidence of a correlation with the size of the urbanized area. The results suggest that ecological detachment from a more natural, non-urban environment does not automatically lead to the development of an "urban microbiome" model in the studied rodent. The exposure to the natural environment in green spaces may serve as a catalyst for microbiome transformations, providing a previously underestimated contribution to the maintenance of native gut microbial communities in urban mammals.


Asunto(s)
Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , ARN Ribosómico 16S/genética , Heces/microbiología , Ciudades , Murinae/microbiología , Ecosistema , Mamíferos/microbiología , Bacterias/clasificación , Bacterias/genética
16.
Sci Rep ; 14(1): 15476, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969828

RESUMEN

The Yunshang black goat is a renowned mutton specialist breed mainly originating from China that has excellent breeding ability with varying litter sizes. Litter size is an important factor in the economics of goat farming. However, ruminal microbiome structure might be directly or indirectly regulated by pregnancy-associated factors, including litter sizes. Therefore, the current experiment aimed to evaluate the association of different litter sizes (low versus high) with ruminal microbiome structure by 16S rRNA gene sequencing and metabolomic profiling of Yunshang black does. A total of twenty does of the Yunshang Black breed, approximately aged between 3 and 4 years, were grouped (n = 10 goats/group) into low (D-l) and high (D-h) litter groups according to their litter size (the lower group has ≤ 2 kids/litter and the high group has ≧ 3 kids/litter, respectively). All goats were sacrificed, and collected ruminal fluid samples were subjected to 16S rRNA sequencing and LC-MS/MC Analysis for ruminal microbiome and metabolomic profiling respectively. According to PCoA analysis, the ruminal microbiota was not significantly changed by the litter sizes among the groups. The Firmicutes and Bacteroidetes were the most dominant phyla, with an abundance of 55.34% and 39.62%, respectively. However, Ruminococcaceae_UCG-009, Sediminispirochaeta, and Paraprevotella were significantly increased in the D-h group, whereas Ruminococcaceae_UCG-010 and Howardella were found to be significantly decreased in the D-l group. The metabolic profiling analysis revealed that litter size impacts metabolites as 29 and 50 metabolites in positive and negative ionic modes respectively had significant differences in their regulation. From them, 16 and 24 metabolites of the D-h group were significantly down-regulated in the positive ionic mode, while 26 metabolites were up-regulated in the negative ionic mode for the same group. The most vibrant identified metabolites, including methyl linoleate, acetylursolic acid, O-desmethyl venlafaxine glucuronide, melanostatin, and arginyl-hydroxyproline, are involved in multiple biochemical processes relevant to rumen roles. The identified differential metabolites were significantly enriched in 12 different pathways including protein digestion and absorption, glycerophospholipid metabolism, regulation of lipolysis in adipocytes, and the mTOR signaling pathway. Spearman's correlation coefficient analysis indicated that metabolites and microbial communities were tightly correlated and had significant differences between the D-l and D-h groups. Based on the results, the present study provides novel insights into the regulation mechanisms of the rumen microbiota and metabolomic profiles leading to different fertility in goats, which can give breeders some enlightenments to further improve the fertility of Yunshang Black goats.


Asunto(s)
Cabras , Tamaño de la Camada , Metabolómica , ARN Ribosómico 16S , Rumen , Animales , Rumen/microbiología , Rumen/metabolismo , Femenino , ARN Ribosómico 16S/genética , Metabolómica/métodos , Metaboloma , Microbiota , Microbioma Gastrointestinal , Embarazo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo
17.
BMC Gastroenterol ; 24(1): 217, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970007

RESUMEN

OBJECTIVE: Multiple randomized controlled trials (RCTs) have investigated the efficacy of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS), but have yielded inconsistent results. We updated the short-term and long-term efficacy of FMT in treating IBS, and performed a first-of-its-kind exploration of the relationship between gut microbiota and emotions. METHODS: We conducted a comprehensive search of PubMed, Embase, Web of Science, and the Cochrane Library using various search strategies to identify all eligible studies. The inclusion criteria for data extraction were randomized controlled trials (RCTs) that investigated the efficacy of fecal microbiota transplantation (FMT) compared to placebo in adult patients (≥ 18 years old) with irritable bowel syndrome (IBS). A meta-analysis was then performed to assess the summary relative risk (RR) and corresponding 95% confidence intervals (CIs). RESULTS: Out of 3,065 potentially relevant records, a total of 10 randomized controlled trials (RCTs) involving 573 subjects met the eligibility criteria for inclusion in the meta-analysis. The meta-analyses revealed no significant differences in short-term (12 weeks) (RR 0.20, 95% CI -0.04 to 0.44), long-term (52 weeks) global improvement (RR 1.38, 95% CI 0.87 to 2.21), besides short-term (12 weeks) (SMD - 48.16, 95% CI -102.13 to 5.81, I2 = 90%) and long-term (24 weeks) (SMD 2.16, 95% CI -60.52 to 64.83, I2 = 68%) IBS-SSS. There was statistically significant difference in short-term improvement of IBS-QoL (SMD 10.11, 95% CI 0.71 to 19.51, I2 = 82%), although there was a high risk of bias. In terms of long-term improvement (24 weeks and 54 weeks), there were no significant differences between the FMT and placebo groups (SMD 7.56, 95% CI 1.60 to 13.52, I2 = 0%; SMD 6.62, 95% CI -0.85 to 14.08, I2 = 0%). Sensitivity analysis indicated that there were visible significant effects observed when the criteria were based on Rome IV criteria (RR 16.48, 95% CI 7.22 to 37.62) and Gastroscopy (RR 3.25, 95%CI 2.37 to 4.47), Colonoscopy (RR 1.42, 95% CI 0.98 to 2.05). when using mixed stool FMT based on data from two RCTs, no significant difference was observed (RR 0.94, 95% CI 0.66 to -1.34). The remission of depression exhibited no significant difference between the FMT and placebo groups at the 12-week mark (SMD - 0.26, 95% CI -3.09 to 2.58), and at 24 weeks (SMD - 2.26, 95% CI -12.96 to 8.45). Furthermore, major adverse events associated with FMT were transient and self-limiting. DISCUSSION: Based on the available randomized controlled trials (RCTs), the current evidence does not support the efficacy of FMT in improving global IBS symptoms in the long term. The differential results observed in subgroup analyses raise questions about the accurate identification of suitable populations for FMT. Further investigation is needed to better understand the reasons behind these inconsistent findings and to determine the true potential of FMT as a treatment for IBS.


Asunto(s)
Trasplante de Microbiota Fecal , Síndrome del Colon Irritable , Ensayos Clínicos Controlados Aleatorios como Asunto , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/microbiología , Trasplante de Microbiota Fecal/métodos , Humanos , Resultado del Tratamiento , Microbioma Gastrointestinal , Adulto , Emociones
18.
J Transl Med ; 22(1): 631, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970018

RESUMEN

BACKGROUND: Wnt/ß-catenin signalling impairment accounts for 85% of colorectal cancers (CRCs), including sporadic and familial adenomatous polyposis (FAP) settings. An altered PI3K/mTOR pathway and gut microbiota also contribute to CRC carcinogenesis. We studied the interplay between the two pathways and the microbiota composition within each step of CRC carcinogenesis. METHODS: Proteins and target genes of both pathways were analysed by RT-qPCR and IHC in tissues from healthy faecal immunochemical test positive (FIT+, n = 17), FAP (n = 17) and CRC (n = 15) subjects. CRC-related mutations were analysed through NGS and Sanger. Oral, faecal and mucosal microbiota was profiled by 16 S rRNA-sequencing. RESULTS: We found simultaneous hyperactivation of Wnt/ß-catenin and PI3K/mTOR pathways in FAP-lesions compared to CRCs. Wnt/ß-catenin molecular markers positively correlated with Clostridium_sensu_stricto_1 and negatively with Bacteroides in FAP faecal microbiota. Alistipes, Lachnospiraceae, and Ruminococcaceae were enriched in FAP stools and adenomas, the latter also showing an overabundance of Lachnoclostridium, which positively correlated with cMYC. In impaired-mTOR-mutated CRC tissues, p-S6R correlated with Fusobacterium and Dialister, the latter also confirmed in the faecal-ecosystem. CONCLUSIONS: Our study reveals an interplay between Wnt/ß-catenin and PI3K/mTOR, whose derangement correlates with specific microbiota signatures in FAP and CRC patients, and identifies new potential biomarkers and targets to improve CRC prevention, early adenoma detection and treatment.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , Vía de Señalización Wnt , Humanos , Neoplasias Colorrectales/microbiología , Serina-Treonina Quinasas TOR/metabolismo , Proyectos Piloto , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Femenino , Poliposis Adenomatosa del Colon/microbiología , Poliposis Adenomatosa del Colon/genética , Persona de Mediana Edad , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Heces/microbiología , Microbioma Gastrointestinal , Anciano , Adulto , Mutación/genética , Microbiota
19.
Microbiome ; 12(1): 122, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970126

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition. RESULTS: Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time. CONCLUSIONS: FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome. TRIAL REGISTRATION: The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.


Asunto(s)
Bacteriófagos , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Obesidad , Humanos , Trasplante de Microbiota Fecal/métodos , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Bacteriófagos/genética , Heces/microbiología , Heces/virología , Obesidad/terapia , Obesidad/microbiología , Método Doble Ciego , Femenino , Adolescente , Masculino , Bacterias/clasificación , Bacterias/virología , Bacterias/genética , Metagenómica/métodos , Resultado del Tratamiento
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 385-391, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970512

RESUMEN

Acute kidney injury (AKI) remains a global public health problem with high incidence, high mortality rates, expensive medical costs, and limited treatment options. AKI can further progress to chronic kidney disease (CKD) and eventually end-stage renal disease (ESRD). Previous studies have shown that trauma, adverse drug reactions, surgery, and other factors are closely associated with AKI. With further in-depth exploration, the role of gut microbiota in AKI is gradually revealed. After AKI occurs, there are changes in the composition of gut microbiota, leading to disruption of the intestinal barrier, intestinal immune response, and bacterial translocation. Meanwhile, metabolites of gut microbiota can exacerbate the progression of AKI. Therefore, elucidating the specific mechanisms by which gut microbiota is involved in the occurrence and development of AKI can provide new insights from the perspective of intestinal microbiota for the prevention and treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Lesión Renal Aguda/microbiología , Lesión Renal Aguda/etiología , Animales , Traslocación Bacteriana , Insuficiencia Renal Crónica/microbiología , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...