Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.602
Filtrar
1.
J Transl Med ; 22(1): 433, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720361

RESUMEN

Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Doxorrubicina/efectos adversos , Cardiotoxicidad/etiología , Animales , Disbiosis , Trasplante de Microbiota Fecal
2.
BMC Microbiol ; 24(1): 156, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724913

RESUMEN

BACKGROUND: To establish a method to induce Campylobacter jejuni colonization in the intestines of C57BL/6 mice through antibiotic-induced microbiome depletion. RESULTS: Fifty-four female C57BL/6 mice were divided into the normal, control, and experimental groups. The experimental group was administered intragastric cefoperazone sodium and sulbactam sodium (50 mg/mL) for 2 days; then, the experimental and control mice were intragastrically administered 200 µL C. jejuni, which was repeated once more after 2 days. Animal feces were collected, and the HipO gene of C. jejuni was detected using TaqMan qPCR from day 1 to day 14 after modeling completion. Immunofluorescence was used to detect intestinal C. jejuni colonization on day 14, and pathological changes were observed using hematoxylin and eosin staining. Additionally, 16S rDNA analyses of the intestinal contents were conducted on day 14. In the experimental group, C. jejuni was detected in the feces from days 1 to 14 on TaqMan qPCR, and immunofluorescence-labeled C. jejuni were visibly discernable in the intestinal lumen. The intestinal mucosa was generally intact and showed no significant inflammatory-cell infiltration. Diversity analysis of the colonic microbiota showed significant inter-group differences. In the experimental group, the composition of the colonic microbiota differed from that in the other 2 groups at the phylum level, and was characterized by a higher proportion of Bacteroidetes and a lower proportion of Firmicutes. CONCLUSIONS: Microbiome depletion induced by cefoperazone sodium and sulbactam sodium could promote long-term colonization of C. jejuni in the intestines of mice.


Asunto(s)
Antibacterianos , Infecciones por Campylobacter , Campylobacter jejuni , Cefoperazona , Heces , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , ARN Ribosómico 16S , Sulbactam , Animales , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/crecimiento & desarrollo , Femenino , Antibacterianos/farmacología , Cefoperazona/farmacología , Heces/microbiología , Infecciones por Campylobacter/microbiología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Sulbactam/farmacología , ARN Ribosómico 16S/genética , Intestinos/microbiología , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de los fármacos , ADN Bacteriano/genética , ADN Ribosómico/genética
3.
Artif Cells Nanomed Biotechnol ; 52(1): 278-290, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38733373

RESUMEN

Type 2 diabetes mellitus (T2DM), nonalcoholic fatty liver disease (NAFLD), obesity (OB) and hypertension (HT) are categorized as metabolic disorders (MDs), which develop independently without distinct borders. Herein, we examined the gut microbiota (GM) and Saururus chinensis (SC) to confirm their therapeutic effects via integrated pharmacology. The overlapping targets from the four diseases were determined to be key protein coding genes. The protein-protein interaction (PPI) networks, and the SC, GM, signalling pathway, target and metabolite (SGSTM) networks were analysed via RPackage. Additionally, molecular docking tests (MDTs) and density functional theory (DFT) analysis were conducted to determine the affinity and stability of the conformer(s). TNF was the main target in the PPI analysis, and equol derived from Lactobacillus paracasei JS1 was the most effective agent for the formation of the TNF complex. The SC agonism (PPAR signalling pathway), and antagonism (neurotrophin signalling pathway) by SC were identified as agonistic bioactives (aromadendrane, stigmasta-5,22-dien-3-ol, 3,6,6-trimethyl-3,4,5,7,8,9-hexahydro-1H-2-benzoxepine, 4α-5α-epoxycholestane and kinic acid), and antagonistic bioactives (STK734327 and piclamilast), respectively, via MDT. Finally, STK734327-MAPK1 was the most favourable conformer according to DFT. Overall, the seven bioactives from SC and equol that can be produced by Lactobacillus paracasei JS1 can exert synergistic effects on these four diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hipertensión , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Saururaceae , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/microbiología , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipertensión/microbiología , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Animales , Saururaceae/química , Saururaceae/metabolismo , Simulación del Acoplamiento Molecular , Humanos , Mapas de Interacción de Proteínas
4.
Microbiome ; 12(1): 87, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730321

RESUMEN

BACKGROUND: In environmental bacteria, the selective advantage of antibiotic resistance genes (ARGs) can be increased through co-localization with genes such as other ARGs, biocide resistance genes, metal resistance genes, and virulence genes (VGs). The gut microbiome of infants has been shown to contain numerous ARGs, however, co-localization related to ARGs is unknown during early life despite frequent exposures to biocides and metals from an early age. RESULTS: We conducted a comprehensive analysis of genetic co-localization of resistance genes in a cohort of 662 Danish children and examined the association between such co-localization and environmental factors as well as gut microbial maturation. Our study showed that co-localization of ARGs with other resistance and virulence genes is common in the early gut microbiome and is associated with gut bacteria that are indicative of low maturity. Statistical models showed that co-localization occurred mainly in the phylum Proteobacteria independent of high ARG content and contig length. We evaluated the stochasticity of co-localization occurrence using enrichment scores. The most common forms of co-localization involved tetracycline and fluoroquinolone resistance genes, and, on plasmids, co-localization predominantly occurred in the form of class 1 integrons. Antibiotic use caused a short-term increase in mobile ARGs, while non-mobile ARGs showed no significant change. Finally, we found that a high abundance of VGs was associated with low gut microbial maturity and that VGs showed even higher potential for mobility than ARGs. CONCLUSIONS: We found that the phenomenon of co-localization between ARGs and other resistance and VGs was prevalent in the gut at the beginning of life. It reveals the diversity that sustains antibiotic resistance and therefore indirectly emphasizes the need to apply caution in the use of antimicrobial agents in clinical practice, animal husbandry, and daily life to mitigate the escalation of resistance. Video Abstract.


Asunto(s)
Antibacterianos , Bacterias , Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Antibacterianos/farmacología , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Dinamarca , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Femenino , Heces/microbiología , Farmacorresistencia Microbiana/genética , Masculino , Estudios de Cohortes , Recién Nacido
5.
J Neuroinflammation ; 21(1): 124, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730498

RESUMEN

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.


Asunto(s)
Antiinflamatorios , Lesiones Traumáticas del Encéfalo , Eje Cerebro-Intestino , Humanos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Eje Cerebro-Intestino/fisiología , Eje Cerebro-Intestino/efectos de los fármacos , Animales , Antiinflamatorios/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología
6.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731838

RESUMEN

The effect of dietary supplementation with sodium butyrate, ß-glucan and vitamins (A, D3, E, K, C) on breeding indicators and immune parameters of juvenile African catfish was examined. The fish were fed with unenriched (group C) and enriched feed with a variable proportion of sodium butyrate/ß-glucan, and constant content of vitamins (W1-W3). After the experiment, blood and the middle gut were collected. The microbiome of the gut was determined using Next Generation Sequencing (NGS). Liver tissue was collected for determination of expression of immune-related genes (HSP70, IL-1ß, TNFα). W2 and W3 were characterized by the most favorable values of breeding indicators (p < 0.05). The highest blood cortisol concentration was in group C (71.25 ± 10.45 ng/mL), and significantly the lowest in W1 (46.03 ± 7.01 ng/ mL) (p < 0.05). The dominance of Cetobacterium was observed in all study groups, with the largest share in W3 (65.25%) and W1 (61.44%). Gene expression showed an increased number of HSP70 genes in W1. IL-1ß and TNFα genes peaked at W3. The W3 variant turns out to be the most beneficial supplementation, due to the improvement of breeding and immunological parameters. The data obtained can be used to create a preparation for commercial use in the breeding of this species.


Asunto(s)
Ácido Butírico , Bagres , Suplementos Dietéticos , Microbioma Gastrointestinal , Hidrocortisona , Vitaminas , beta-Glucanos , Animales , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Butírico/farmacología , Bagres/inmunología , Bagres/genética , Bagres/microbiología , Hidrocortisona/sangre , Vitaminas/farmacología , Vitaminas/administración & dosificación , Alimentación Animal , Proteínas HSP70 de Choque Térmico/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731995

RESUMEN

The gut-brain axis is a bidirectional relationship between the microbiota and the brain; genes related to the brain and gut synaptic formation are similar. Research on the causal effects of gut microbiota on human behavior, brain development, and function, as well as the underlying molecular processes, has emerged in recent decades. Probiotics have been shown in several trials to help reduce anxiety and depressive symptoms. Because of this, probiotic combinations have been tested in in vitro models to see whether they might modulate the gut and alleviate depression and anxiety. Therefore, we sought to determine whether a novel formulation might affect the pathways controlling anxiety and depression states and alter gut barrier activities in a 3D model without having harmful side effects. Our findings indicate that B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL, and L. paracasei TJB8 10 mg/mL may influence the intestinal barrier and enhance the synthesis of short-chain fatty acids. Additionally, the probiotics studied did not cause neuronal damage and, in combination, exert a protective effect against the condition of anxiety and depression triggered by L-Glutamate. All these findings show that probiotics can affect gut function to alter the pathways underlying anxiety and depression.


Asunto(s)
Ansiedad , Depresión , Microbioma Gastrointestinal , Probióticos , Ansiedad/terapia , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Eje Cerebro-Intestino , Suplementos Dietéticos
8.
Food Res Int ; 186: 114404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729686

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.


Asunto(s)
Trastorno del Espectro Autista , Eje Cerebro-Intestino , Flavonoides , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/dietoterapia , Flavonoides/farmacología , Dieta , Disbiosis , Encéfalo/metabolismo , Animales , Antioxidantes/farmacología
9.
Food Res Int ; 186: 114322, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729712

RESUMEN

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Asunto(s)
Colitis , Productos Lácteos Cultivados , Sulfato de Dextran , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Lactobacillus delbrueckii/metabolismo , Productos Lácteos Cultivados/microbiología , Ratones , Probióticos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inflamación , Colon/microbiología , Colon/metabolismo , Lactobacillus
10.
Gut Microbes ; 16(1): 2347722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706205

RESUMEN

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Ratones Endogámicos C57BL , Probióticos , Receptores de Hidrocarburo de Aril , Vía de Señalización Wnt , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Humanos , Probióticos/administración & dosificación , Probióticos/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Indoles/metabolismo , Indoles/farmacología , Protectores contra Radiación/farmacología , Organoides/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/prevención & control , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de la radiación , Intestinos/microbiología , Intestinos/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
11.
Front Cell Infect Microbiol ; 14: 1390104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741891

RESUMEN

Introduction: Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods: Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results: The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion: Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.


Asunto(s)
Apoptosis , Microbioma Gastrointestinal , Hesperidina , Riñón , Zinc , Animales , Hesperidina/farmacología , Porcinos , Zinc/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Apoptosis/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Autofagia/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control
12.
Microbiome ; 12(1): 89, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745230

RESUMEN

BACKGROUND: Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT: Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION: These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.


Asunto(s)
Fibras de la Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Inulina , Ratones Endogámicos C57BL , Psyllium , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Inulina/administración & dosificación , Neoplasias de la Vejiga Urinaria/radioterapia , Neoplasias de la Vejiga Urinaria/patología , Humanos , Femenino , Traumatismos por Radiación/prevención & control , Intestinos/microbiología , Intestinos/efectos de la radiación , Linfocitos T CD8-positivos
13.
BMJ Open Diabetes Res Care ; 12(3)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719505

RESUMEN

INTRODUCTION: There has been increasing evidence that the gut microbiota is closely related to type 2 diabetes (T2D). Metformin (Met) is often used in combination with saxagliptin (Sax) and repaglinide (Rep) for the treatment of T2D. However, little is known about the effects of these combination agents on gut microbiota in T2D. RESEARCH DESIGN AND METHODS: A T2D mouse model induced by a high-fat diet (HFD) and streptozotocin (STZ) was employed. The T2D mice were randomly divided into six groups, including sham, Met, Sax, Rep, Met+Sax and Met+Rep, for 4 weeks. Fasting blood glucose level, serum biochemical index, H&E staining of liver, Oil red O staining of liver and microbiota analysis by 16s sequencing were used to access the microbiota in the fecal samples. RESULTS: These antidiabetics effectively prevented the development of HFD/STZ-induced high blood glucose, and the combination treatment had a better effect in inhibiting lipid accumulation. All these dosing regimens restored the decreasing ratio of the phylum Bacteroidetes: Firmicutes, and increasing abundance of phylum Desulfobacterota, expect for Met. At the genus level, the antidiabetics restored the decreasing abundance of Muribaculaceae in T2D mice, but when Met was combined with Rep or Sax, the abundance of Muribaculaceae was decreased. The combined treatment could restore the reduced abundance of Prevotellaceae_UCG-001, while Met monotherapy had no such effect. In addition, the reduced Lachnospiraceae_NK4A136_group was well restored in the combination treatment groups, and the effect was much greater than that in the corresponding monotherapy group. Therefore, these dosing regimens exerted different effects on the composition of gut microbiota, which might be associated with the effect on T2D. CONCLUSIONS: Supplementation with specific probiotics may further improve the hypoglycemic effects of antidiabetics and be helpful for the development of new therapeutic drugs for T2D.


Asunto(s)
Adamantano , Glucemia , Carbamatos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Dipéptidos , Microbioma Gastrointestinal , Hipoglucemiantes , Metformina , Piperidinas , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Carbamatos/farmacología , Dipéptidos/farmacología , Masculino , Adamantano/análogos & derivados , Adamantano/farmacología , Adamantano/uso terapéutico , Piperidinas/farmacología , Piperidinas/uso terapéutico , Glucemia/análisis , Glucemia/efectos de los fármacos , Ratones Endogámicos C57BL , Quimioterapia Combinada , Estreptozocina
14.
Pharm Biol ; 62(1): 356-366, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38720666

RESUMEN

CONTEXT: Yi-Shen-Hua-Shi (YSHS) is a traditional Chinese medicine that treats chronic kidney disease (CKD). However, its efficacy in reducing proteinuria and underlying mechanisms is unknown. OBJECTIVE: This single-center randomized controlled trial explored whether YSHS could improve proteinuria and modulate the gut microbiota. MATERIALS AND METHODS: 120 CKD patients were enrolled and randomized to receive the renin-angiotensin-aldosterone system (RAAS) inhibitor plus YSHS (n = 56) or RAAS inhibitor (n = 47) alone for 4 months, and 103 patients completed the study. We collected baseline and follow-up fecal samples and clinical outcomes from participants. Total bacterial DNA was extracted, and the fecal microbiome was analyzed using bioinformatics. RESULTS: Patients in the intervention group had a significantly higher decrease in 24-h proteinuria. After 4 months of the YSHS intervention, the relative abundance of bacteria that have beneficial effects on the body, such as Faecalibacterium, Lachnospiraceae, Lachnoclostridium, and Sutterella increased significantly, while pathogenic bacteria such as the Eggerthella and Clostridium innocuum group decreased. However, we could not find these changes in the control group. Redundancy analysis showed that the decline in 24-h proteinuria during follow-up was significantly correlated with various taxa of gut bacteria, such as Lachnospiraceae and the Lachnoclostridium genus in the YSHS group. KEGG analysis also showed the potential role of YSHS in regulating glycan, lipid, and vitamin metabolism. DISCUSSION AND CONCLUSION: The YSHS granule reduced proteinuria associated with mitigating intestinal microbiota dysbiosis in CKD patients. The definite mechanisms of YSHS to improve proteinuria need to be further explored. TRIAL REGISTRATION: ChiCTR2300076136, retrospectively registered.


Asunto(s)
Medicamentos Herbarios Chinos , Disbiosis , Microbioma Gastrointestinal , Proteinuria , Insuficiencia Renal Crónica , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Femenino , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/tratamiento farmacológico , Proteinuria/tratamiento farmacológico , Proteinuria/microbiología , Persona de Mediana Edad , Medicamentos Herbarios Chinos/farmacología , Heces/microbiología , Anciano , Adulto , Medicina Tradicional China/métodos
15.
Gut Microbes ; 16(1): 2342583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722061

RESUMEN

Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.


Asunto(s)
Antibacterianos , Heces , Fidaxomicina , Microbioma Gastrointestinal , Pruebas de Sensibilidad Microbiana , Nisina , Vancomicina , Nisina/farmacología , Antibacterianos/farmacología , Humanos , Fidaxomicina/farmacología , Vancomicina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Heces/microbiología , Bacterias/efectos de los fármacos , Bacterias/clasificación , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/microbiología , Bacteriocinas/farmacología
16.
J Cancer Res Clin Oncol ; 150(5): 234, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710918

RESUMEN

BACKGROUND: The pathogenesis and treatment of colorectal cancer (CRC) continue to be areas of ongoing research, especially the benefits of traditional Chinese medicine (TCM) in slowing the progression of CRC. This study was conducted to investigate the effectiveness and mechanism of action of modified Lichong decoction (MLCD) in inhibiting CRC progression. METHODS: We established CRC animal models using azoxymethane/dextran sodium sulfate (AOM/DSS) and administered high, medium, or low doses of MLCD or mesalazine (MS) for 9 weeks to observe MLCD alleviation of CRC. The optimal MLCD dose group was then subjected to metagenomic and RNA sequencing (RNA-seq) to explore the differentially abundant flora and genes in the control, model and MLCD groups. Finally, the mechanism of action was verified using WB, qRT‒PCR, immunohistochemistry and TUNEL staining. RESULTS: MLCD inhibited the progression of CRC, and the optimal effect was observed at high doses. MLCD regulated the structure and function of the intestinal flora by decreasing the abundance of harmful bacteria and increasing that of beneficial bacteria. The differentially expressed genes were mainly associated with the Wnt/ß-catenin pathway and the cell cycle. Molecular biology analysis indicated that MLCD suppressed the Wnt/ß-catenin pathway and the epithelial-mesenchymal transition (EMT), inhibited abnormal cell proliferation and promoted intestinal epithelial cell apoptosis. CONCLUSION: MLCD mitigated the abnormal growth of intestinal epithelial cells and promoted apoptosis, thereby inhibiting the progression of CRC. This inhibition was accomplished by modifying the intestinal microbiota and disrupting the Wnt/ß-catenin pathway and the EMT. Therefore, MLCD could serve as a potential component of TCM prescriptions for CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Vía de Señalización Wnt , Vía de Señalización Wnt/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ratones , Humanos , Masculino , Apoptosis/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sulfato de Dextran , beta Catenina/metabolismo , Modelos Animales de Enfermedad
17.
Front Immunol ; 15: 1374425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745644

RESUMEN

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Ratones Noqueados , Citocinas/metabolismo , Modelos Animales de Enfermedad , Sulfato de Dextran , Ácidos Oléicos/farmacología , Lactobacillus plantarum , Colitis/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/efectos de los fármacos , Masculino
18.
Front Immunol ; 15: 1362642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745649

RESUMEN

Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hiperuricemia , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Ácido Úrico/sangre , Xantina Oxidasa/metabolismo , Ratas Sprague-Dawley
19.
Cell Biochem Funct ; 42(4): e4033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38742849

RESUMEN

Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.


Asunto(s)
Berberina , Neoplasias Colorrectales , Berberina/farmacología , Berberina/uso terapéutico , Humanos , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
20.
PLoS One ; 19(5): e0297788, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743661

RESUMEN

This study was conducted to evaluate the effects of phytosterols (PS) and phytosterol esters (PSE) on C57BL/6 mice. Three groups of 34 six-week-old C57BL/6 mice of specific pathogen free (SPF) grade, with an average initial body weight (IBW) of 17.7g, were fed for 24 days either natural-ingredient diets without supplements or diets supplemented with 89 mg/kg PS or diets supplemented with 400 mg/kg PSE. Growth performance, blood biochemistry, liver and colon morphology as well as intestinal flora status were evaluated. Both PS and PSE exhibited growth promotion and feed digestibility in mice. In blood biochemistry, the addition of both PS and PSE to the diet resulted in a significant decrease in Total Cholesterol (TC) and Triglyceride (TG) levels and an increase in Superoxide Dismutase (SOD) activity. No significant changes in liver and intestinal morphology were observed. Both increased the level of Akkermansia in the intestinal tract of mice. There was no significant difference between the effects of PS and PSE. It was concluded that dietary PS and PSE supplementation could improve growth performance, immune performance and gut microbiome structure in mice, providing insights into its application as a potential feed additive in animals production.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal , Hígado , Ratones Endogámicos C57BL , Fitosteroles , Animales , Fitosteroles/farmacología , Fitosteroles/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Ésteres/farmacología , Masculino , Colesterol/sangre , Triglicéridos/sangre , Alimentación Animal/análisis , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...