Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
J Hazard Mater ; 459: 132233, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37567143

RESUMEN

Recently, harmful algal blooms (HABs) have become occurred with increasingly frequency worldwide. High nitrate content is one of the primary causes of eutrophication. Research has shown that photocatalytic materials enhance the effectiveness of microbial denitrification while removing other contaminants, despite some shortcomings. Based on this, we loaded TiO2/C3N4 heterojunctions onto weaveable, flexible carbon fibers and established a novel photocatalytically enhanced microbial denitrification system for the simultaneous removal of harmful algae and Microcystin-LR. We found that 99.35% of Microcystis aeruginosa and 95.34% of MC-LR were simultaneously and effectively removed. Compared to existing denitrification systems, the nitrate removal capacity improved by 72.33%. The denitrifying enzyme activity and electron transport system activity of microorganisms were enhanced by 3.54-3.86 times. Furthermore, the microbial community structure was optimized by the regulation of photogenerated electrons, and the relative abundance of main denitrifying bacteria increased from 50.72% to 66.45%, including Proteobacteria and Bacteroidetes. More importantly, we found that the increased secretion of extracellular polymeric substances by microorganisms may be responsible for the persistence of the reinforcing effect caused by photogenerated electrons in darkness. The higher removal of Microcystis aeruginosa and Microcystin-LR (MC-LR) achieved by the proposed system would reduce the frequency of HAB outbreaks and prevent the associated secondary pollution.


Asunto(s)
Desnitrificación , Microcystis , Nitratos , Floraciones de Algas Nocivas , Microcystis/química , Microcistinas/química , Transporte de Electrón
2.
Mar Drugs ; 21(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37504933

RESUMEN

Anabaenopeptins are common metabolites of cyanobacteria. In the course of reisolation of the known aeruginosins KT608A and KT608B for bioassay studies, we noticed the presence of some unknown anabaenopeptins in the extract of a Microcystis cell mass collected during the 2016 spring bloom event in Lake Kinneret, Israel. The 1H NMR spectra of some of these compounds presented a significant difference in the appearance of the ureido bridge protons, and their molecular masses did not match any one of the 152 known anabaenopeptins. Analyses of the 1D and 2D NMR, HRMS, and MS/MS spectra of the new compounds revealed their structures as the hydantoin derivatives of anabaenopeptins A, B, F, and 1[Dht]-anabaenopeptin A and oscillamide Y (1, 2, 3, 6, and 4, respectively) and a new anabaenopeptin, 1[Dht]-anabaenopeptin A (5). The known anabaenopeptins A, B, and F and oscillamide Y (7, 8, 9, and 10, respectively) were present in the extract as well. We propose that 1-4 and 6 are the possible missing intermediates in the previously proposed partial biosynthesis route to the anabaenopeptins. Compounds 1-6 were tested for inhibition of the serine proteases trypsin and chymotrypsin and found inactive at a final concentration of ca. 54 µM.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/química , Lagos , Espectrometría de Masas en Tándem , Péptidos Cíclicos/farmacología , Cianobacterias/metabolismo , Espectroscopía de Resonancia Magnética
3.
Chemosphere ; 323: 138279, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36863625

RESUMEN

Algal blooms have a negative impact on the safety of drinking water. Ultrasonic radiation technology is an "environment-friendly" technology that is widely used in algae removal. However, this technology leads to the release of intracellular organic matter (IOM), which is an important precursor of disinfection by-products (DBPs). This study investigated the relationship between the release of IOM in Microcystis aeruginosa and the generation of DBPs after ultrasonic radiation as well as analyzed the generation mechanism of DBPs. Results showed that the content of extracellular organic matter (EOM) in M. aeruginosa increased in the order of 740 kHz >1120 kHz >20 kHz after 2 min of ultrasonic radiation. Organic matter with a molecular weight (MW) greater than 30 kDa increased the most, including protein-like, phycocyanin (PC) and chlorophyll a, followed by small-molecule organic matter less than 3 kDa, mainly humic-like substances and protein-like. DBPs with an organic MW range of less than 30 kDa were dominated by trichloroacetic acid (TCAA), while those with an MW greater than 30 kDa had the highest trichloromethane (TCM) content. Ultrasonic irradiation changed the organic structure of EOM, affected the amount and type of DBPs, and tended to generate TCM.


Asunto(s)
Desinfectantes , Microcystis , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Peso Molecular , Fluorescencia , Clorofila A , Halogenación , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Microcystis/química
4.
J Environ Manage ; 336: 117559, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36868155

RESUMEN

While algal blooms occur frequently in lakes and reservoirs worldwide, the effects of dissolved organic matter (DOM) from lakeside and riparian zones on bloom formation are not well understood. In this study, we characterized the molecular composition of DOM from Cynodon dactylon (L.) Pers. (CD-DOM) and Xanthium sibiricum Patrin ex Widder (XS-DOM) and assessed their effects on the growth, physiology, volatile organic compounds (VOCs), and stable carbon isotope in four bloom-forming algae species (Microcystis aeruginosa, Anabaena sp., Chlamydomonas sp., and Peridiniopsis sp.). Stable carbon isotope analysis showed that the four species were affected by DOM. Both DOM types increased the cell biomass, polysaccharide and protein contents, chlorophyll fluorescence parameter values, and VOCs release of Anabaena sp., Chlamydomonas sp. and Microcystis aeruginosa, suggesting that DOM stimulated algal growth by increasing nutrient sources, photosynthetic efficiency, and stress tolerance. And in general, these three strains exhibited better growth at higher DOM concentrations. However, DOM treatment inhibited the growth of Peridiniopsis sp., as indicated by the increases in reactive oxygen species, damage in photosystem II reaction centers, and blockage in electron transport. Fluorescence analysis showed that tryptophan-like compounds were the main DOM components that affected algal growth. Molecular-level analysis suggested that unsaturated aliphatic compounds may be the most important DOM components. The findings indicate that CD-DOM and XS-DOM promote the blue-green algal blooms formation and thus should be considered in the management of natural water quality.


Asunto(s)
Cianobacterias , Microcystis , Compuestos Orgánicos Volátiles , Materia Orgánica Disuelta , Microcystis/química , Microcystis/metabolismo , Eutrofización , Isótopos de Carbono/metabolismo
5.
Sci Total Environ ; 865: 161124, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581272

RESUMEN

Algal extracellular organic matter (EOM) metabolites exert considerable impact on the carbon (C), nitrogen (N), and phosphorus (P) cycles mediated by attached bacteria. Field investigations were conducted in two ponds to explore the relationship among EOM metabolites from Microcystis and Dolichospermum, co-occurring microbes, and nutrient recycling from April 2021 to December 2021. Microcystis blooms primarily produced more complex bound EOM (bEOM) metabolites with many amino acid components, which facilitated bacterial colonization and provided sufficient substrates for ammonification. Meanwhile, high abundances of dissimilatory nitrate reduction to ammonium genes from co-occurring microbes such as Rhodobacter have demonstrated their strong N retention ability. Metabolic products of bEOM from Microcystis comprise a large number of organic acids that can solubilize non-bioavailable P. All these factors have collectively resulted in the increase of all fractions of N and P, except for nitrate (NO3--N) in the water column. In contrast, the EOM metabolite from Dolichospermum was simple, coupled with high abundance of functional genes of α-glucosidase, and produced small molecular substances fueling denitrification. The metabolic products of EOM from Dolichospermum include abundant N-containing substances dominated by heterocyclic substances, suggesting that the metabolic products of Dolichospermum are not conducive to N regeneration and retention. Therefore, the metabolic products of EOM from Microcystis triggered a shift in the attached microbial community and function toward C, N, and P recycling with close mutual coupling. Acquisition of N and P in Dolichospermum is dependent on itself based on N fixation and organic P hydrolysis capacity. This study provides a new understanding of the contribution of algal EOM to the nutrient cycle.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/química , Nitrógeno/química , Nitratos , Carbono/química , Fósforo , Compuestos Orgánicos/química
6.
Environ Res ; 215(Pt 1): 114216, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36057334

RESUMEN

In this work, a floating photocatalyst was constructed by loading g-C3N4@Bi2MoO6@AgI (GBA) nanocomposite on a modified polyurethane sponge via a simple dip-coating method and applied for the inactivation of Microcystis aeruginosa under visible light. GBA ternary photocatalyst was fabricated successfully and the morphology, structure, chemical state, and optical properties were characterized systematically. The floating catalyst achieved near 100% removal efficiency of algae cells under 6 h visible light irradiation and also could be retrieved and used at least three times repeatedly. The influences of various conditions on photocatalytic performance such as loading content of nanoparticles, algae density, and concentration of natural organic matters were also studied, which revealed that the GBA floating catalyst exhibited excellent photocatalytic performance of algae removal under different conditions. Furthermore, the physiological characteristics of algae cells during the photocatalytic process, including cell morphology, membrane permeability, Zeta potential, photosynthetic system, antioxidant system, and the metabolic activity were investigated. Results confirmed that the algae cells were severely damaged during the photocatalytic inactivation and the normal physiological functions were significantly affected, which resulted in the death of algae cells at last. Finally, a possible photocatalytic inactivation mechanism of algae cells was proposed. In summary, GBA floating catalyst can effectively inactivate Microcystis aeruginosa under visible light, which confirmed the high efficiency of the novel photocatalytic algae removal technology. Meanwhile, the recyclable floating material also makes the practical application in eutrophic waters of the algae removal technology possible.


Asunto(s)
Microcystis , Antioxidantes , Bismuto , Catálisis , Luz , Microcystis/química , Molibdeno , Poliuretanos
7.
ACS Synth Biol ; 11(10): 3493-3503, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36166626

RESUMEN

Microginins are a large family of cyanobacterial lipopeptide protease inhibitors. A hybrid polyketide synthase/non-ribosomal peptide synthetase biosynthetic gene cluster (BGC) found in several microginin-producing strains─mic─was proposed to encode the production of microginins, based on bioinformatic analysis. Here, we explored a cyanobacterium, Microcystis aeruginosa LEGE 91341, which contains a mic BGC, to discover 12 new microginin variants. The new compounds contain uncommon amino acids, namely, homophenylalanine (Hphe), homotyrosine (Htyr), or methylproline, as well as a 3-aminodecanoic acid (Ada) residue, which in some variants was chlorinated at its terminal methyl group. We have used direct pathway cloning (DiPaC) to heterologously express the mic BGC from M. aeruginosa LEGE 91341 in Escherichia coli, which led to the production of several microginins. This proved that the mic BGC is, in fact, responsible for the biosynthesis of microginins and paves the way to accessing new variants from (meta)genome data or through pathway engineering.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/genética , Microcystis/química , Microcystis/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Cianobacterias/metabolismo , Inhibidores de Proteasas/metabolismo , Lipopéptidos/metabolismo , Aminoácidos/metabolismo
8.
J Hazard Mater ; 439: 129606, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35863225

RESUMEN

Algal blooms caused by eutrophication are global phenomena that seriously threaten the sustainable use of freshwater resources. Traditional water treatment chemicals often typically lead to high levels of residue and cause damage to the morphology of algal cells. This study investigated an eco-friendly fungal bio-flocculant, Aspergillus oryzae, to remove the representative microalgae (Microcystis aeruginosa). Furthermore, it explored crucial flocculation parameters, adsorption kinetics, and thermodynamics of microalgae using A. oryzae. Accordingly, a flocculation efficiency of >95% was achieved when the fungus was cultured for six days, flocculant dosage was 11 g/L, rotation speed was 100 rpm, temperature was 25 °C, flocculation time was 5 h, and pH ranged between 4.0 and 9.0. KEGG analysis based on the genomic data, and chemical composition analysis revealed that proteins and polysaccharides were the major components of metabolites. Zeta potential analysis, scanning electron microscopy, three-dimensional fluorescence, X-ray spectroscopy, and infrared spectroscopy, electrostatic attraction revealed that electrostatic attraction promoted the destabilization and aggregation of microalgae. Additionally, hyphal surface adsorption and chemisorption from extracellular proteins and exopolysaccharides aided in the removal of microalgae. Therefore, fungi-based bio-flocculants have the potential to remove microalgae in a simple, effective, and eco-friendly manner without the complex extraction of extracellular metabolites.


Asunto(s)
Aspergillus oryzae , Microalgas , Microcystis , Eutrofización , Floculación , Microcystis/química
9.
J Colloid Interface Sci ; 623: 445-455, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35597014

RESUMEN

The design of a photocatalyst for efficient algal inactivation under visible light is essential for the application of photocatalysis to the control of harmful algal blooms. In this study, a novel Z-scheme heterojunction tubular photocatalyst, Ag2O@PG, was synthesized by chemically depositing silver oxide compounded with P-doped hollow tubular graphitic carbon nitride for the photocatalytic inactivation of Microcystis aeruginosa (M. aeruginosa). The photocatalytic algal inactivation experiments showed that the photocatalytic activity of Ag2O@PG was influenced by the ratio of the composition of the obtained materials. The optimal algal inactivation efficiency was observed when using Ag2O@PG-0.4 at a dosage of 0.2 g/L. It was able to achieve a 99.1 % M. aeruginosa inactivation at an initial concentration of 4.5 × 106 cells/mL following 5 h' visible light irradiation. During the process, the cell membrane permeability and cell morphology changed. Furthermore, under the constant attack of superoxide radicals and holes caused by Ag2O@PG, the superoxide dismutase, glutathione and malondialdehyde of algae cells increased during the experiments to alleviate oxidative damage. Eventually, the antioxidant system of algae cells was destroyed. To further validate the potential application of Ag2O@PG-0.4 in real algal bloom environment, an experiment in real water samples was carried out. Overall, the Ag2O@PG-0.4 as an efficient photocatalyst has a promising potential for emergency treatment measures to alleviate algal blooms.


Asunto(s)
Microcystis , Luz , Microcystis/química
10.
PeerJ ; 10: e12867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223202

RESUMEN

Inorganic and synthetic flocculants are widely investigated for removing harmful microalgae, such as Microcystis aeruginosa. However, their toxicity and non-biodegradability are shortcomings. Bioflocculants based on extracellular polysaccharides have attracted much attention as alternative flocculants. However, its high production cost is a limiting factor for applying bioflocculants. Here, we investigate the potential of the dead cells of a marine filamentous bacterium, Aureispira sp. CCB-QB1, as a novel flocculant on M. aeruginosa cells. The removal efficiency of M. aeruginosa cells by the dead cells was measured by mixing and shaking both components in a buffer with 5 mM CaCl2 in different incubation times and concentrations of the dead cells. After that, the minimum effective concentration of CaCl2 was determined. The combination effect of FeCl3 and the dead cells on the removal efficiency was tested. The structure of cell aggregates consisted of the dead cells and M. aeruginosa cells were also observed using a scanning electron microscope. The maximum removal efficiency (75.39%) was reached within 3 min in the presence of CaCl2 when 5 mg/ml of the dead cells (wet cells) were added. The optimal concentration of CaCl2 was 5 mM. The combination of the dead cells and a low concentration of FeCl3 (10 mg/L) with 5 mM of CaCl2 significantly improved the removal efficiency by about 1.2 times (P < 0.05). This result indicates that the combination usage of the dead cells can reduce the use of FeCl3. These results indicated that the dead cells could potentially be a novel biolfocculant to remove M. aeruginosa cells.


Asunto(s)
Microcystis , Microcystis/química , Cloruro de Calcio/farmacología , Bacteroidetes , Polisacáridos/farmacología
11.
Protein Expr Purif ; 189: 105988, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634480

RESUMEN

DNA 5-methylcytosine modification plays an important role in the regulation of a variety of biological functions in both prokaryotic and eukaryotic organisms. Previous studies show that DNA Cytosine-5-methylation is predominantly associated with restriction-modification system in bacteria. IPF4390 is deduced to be a putative type II DNA Cytosine-5 methyltransferase from a fresh water cyanobacterium, Microcystis aeruginosa. Both its substrate sequence specificity and catalytic mechanism need to be revealed. In this study, the cloning, expression, purification, DNA binding assays and crystallization of IPF4390 are reported. Results of DNA binding assays demonstrate that IPF4390 can specifically recognize and bind two double-stranded DNAs containing GGNCC (N = A, T, C or G) sequences (HgiBI: 5'-ATAAGGACCAATA-3'; TdeIII: 5'-ATAAGGGCCAATA-3'). Therefore, IPF4390 is probably capable of blocking endonuclease cleavage once restriction sites containing these sequences. Moreover, the crystal of IPF4390 in the presence of TdeIII was obtained, and its X-ray diffraction data were collected and scaled to a maximum resolution of 2.46 Å.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Bacteriano/metabolismo , Microcystis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Cristalización , Cristalografía por Rayos X , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Microcystis/química , Plásmidos/química , Plásmidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
12.
J Chem Ecol ; 47(10-11): 847-858, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34569003

RESUMEN

Cyanobacteria are photosynthetic microorganisms that compose phytoplankton and therefore have a trophic relationship with zooplankton, which represent an important link for energy flux in aquatic food webs. Several species can form blooms and produce bioactive metabolites known as cyanotoxins. However, the ecological and adaptative role of these toxins are still under debate. Many studies have addressed the cyanotoxins' function in defense against herbivory when grazing pressure by zooplankton plays a role in phytoplankton top-down control. Thus, the present study evaluated the ecophysiological responses of the cyanobacterial strain Microcystis aeruginosa NPLJ-4 underlying the chemical induced defense against the cladoceran Daphnia gessneri. Exposure to predator infochemicals consisted of cultures established in ASM-1 medium prepared in a filtrate from a culture of adults of D. gessneri at an environmentally relevant density. Daphnia infochemicals promoted a significant increase in toxin production by M. aeruginosa. However, no differences in growth were observed, despite a significant increase in both maximum photosynthetic efficiency and electron transport rate in response to zooplankton. Additionally, there was no significant variation in the production of exopolysaccharides. Overall, although a grazer-induced defense response was demonstrated, there were no effects on M. aeruginosa fitness, which maintained its growth in the presence of Daphnia alarm cues.


Asunto(s)
Daphnia/fisiología , Cadena Alimentaria , Microcistinas/metabolismo , Microcystis/fisiología , Feromonas/metabolismo , Animales , Daphnia/química , Conducta Alimentaria , Microcystis/química
13.
Toxins (Basel) ; 13(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34564601

RESUMEN

Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (<50%), although it provided effective release and recovery of >80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Microcistinas/química , Microcistinas/toxicidad , Microcystis/química , Pruebas de Toxicidad/métodos
14.
Toxins (Basel) ; 13(9)2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34564605

RESUMEN

Fish are exposed to numerous stressors in the environment including pollution, bacterial and viral agents, and toxic substances. Our study with common carps leveraged an integrated approach (i.e., histology, biochemical and hematological measurements, and analytical chemistry) to understand how cyanobacteria interfere with the impact of a model viral agent, Carp sprivivirus (SVCV), on fish. In addition to the specific effects of a single stressor (SVCV or cyanobacteria), the combination of both stressors worsens markers related to the immune system and liver health. Solely combined exposure resulted in the rise in the production of immunoglobulins, changes in glucose and cholesterol levels, and an elevated marker of impaired liver, alanine aminotransferase (ALT). Analytical determination of the cyanobacterial toxin microcystin-LR (MC-LR) and its structurally similar congener MC-RR and their conjugates showed that SVCV affects neither the levels of MC in the liver nor the detoxification capacity of the liver. MC-LR and MC-RR were depurated from liver mostly in the form of cysteine conjugates (MC-LR-Cys, MC-RR-Cys) in comparison to glutathione conjugates (LR-GSH, RR-GSH). Our study brought new evidence that cyanobacteria worsen the effect of viral agents. Such inclusion of multiple stressor concept helps us to understand how and to what extent the relevant environmental stressors co-influence the health of the fish population.


Asunto(s)
Carpas/microbiología , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/fisiopatología , Microcistinas/toxicidad , Índice de Severidad de la Enfermedad , Contaminantes Químicos del Agua/toxicidad , Animales , Microcystis/química , Estaciones del Año , Pruebas de Toxicidad
15.
Toxins (Basel) ; 13(9)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34564635

RESUMEN

The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content were 0.2-0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was 0.37-0.49 µg/mL. The concentration of soluble EPS (sEPS) was 2 times higher than that of bound EPS (bEPS). The protein proportion in both sEPS and bEPS was higher than the carbohydrate proportion. The average of intracellular microcystins (IMCs) was 0.47 pg/cell on day 15 of culturing, while extracellular microcystins (EMCs) were undetectable. The IMCs were dramatically produced at the exponential phase, followed by EMCs release at the late exponential phase. On day 30, the total microcystins (MCs) production reached 2.67 pg/cell. Based on liquid chromatograph-quadrupole time-of-flight mass spectrometry, three new MCs variants were proposed. This study is the first report of both decarbamoylsaxitoxin (dcSTX) and new MCs congeners synthesized by Microcystis.


Asunto(s)
Lagos/microbiología , Microcistinas/biosíntesis , Microcystis/química , Saxitoxina/biosíntesis , Tailandia
16.
PLoS One ; 16(8): e0254864, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34370754

RESUMEN

A rapid and cost-effective system is vital for the detection of harmful algae that causes environmental problems in terms of water quality. The approach for algae detection was to capture images based on hyperspectral fluorescence imaging microscope by detecting specific fluorescence signatures. With the high degree of overlapping spectra of algae, the distribution of pigment in the region of interest was unknown according to a previous report. We propose an optimization method of multivariate curve resolution (MCR) to improve the performance of pigment analysis. The reconstruction image described location and concentration of the microalgae pigments. This result indicated the cyanobacterial pigment distribution and mapped the relative pigment content. In conclusion, with the advantage of acquiring two-dimensional images across a range of spectra, HSI conjoining spectral features with spatial information efficiently estimated specific features of harmful microalgae in MCR models.


Asunto(s)
Imágenes Hiperespectrales , Microscopía , Pigmentos Biológicos/análisis , Fluorescencia , Procesamiento de Imagen Asistido por Computador , Microalgas/química , Microcystis/química , Análisis Multivariante
17.
ACS Appl Mater Interfaces ; 13(13): 15053-15063, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33760592

RESUMEN

Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.


Asunto(s)
Estructuras Metalorgánicas/química , Microcistinas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Microcystis/química , Modelos Moleculares , Purificación del Agua/métodos
18.
Toxins (Basel) ; 14(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35050981

RESUMEN

Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.


Asunto(s)
Toxinas Bacterianas/aislamiento & purificación , Cianobacterias/química , Agua Dulce/microbiología , Péptidos Cíclicos/aislamiento & purificación , Grecia , Microcystis/química
19.
PLoS One ; 15(12): e0244000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33320886

RESUMEN

The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB-. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3ß-hydroxysteroid dehydrogenase (3ß-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3ß-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB- had an opposite effect on 3ß-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11ß1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB- extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Deshidroepiandrosterona/biosíntesis , Inhibidores Enzimáticos/farmacología , Microcistinas/farmacología , Microcystis/química , Línea Celular Tumoral , Familia 11 del Citocromo P450/antagonistas & inhibidores , Familia 21 del Citocromo P450/antagonistas & inhibidores , Humanos
20.
Toxins (Basel) ; 12(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182627

RESUMEN

Chitosan has been tested as a coagulant to remove cyanobacterial nuisance. While its coagulation efficiency is well studied, little is known about its effect on the viability of the cyanobacterial cells. This study aimed to test eight strains of the most frequent bloom-forming cyanobacterium, Microcystis aeruginosa, exposed to a realistic concentration range of chitosan used in lake restoration management (0 to 8 mg chitosan L-1). We found that after 1 h of contact with chitosan, in seven of the eight strains tested, photosystem II efficiency was decreased, and after 24 h, all the strains tested were affected. EC50 values varied from 0.47 to > 8 mg chitosan L-1 between the strains, which might be related to the amount of extracellular polymeric substances. Nucleic acid staining (Sytox-Green®) illustrated the loss of membrane integrity in all the strains tested, and subsequent leakage of pigments was observed, as well as the release of intracellular microcystin. Our results indicate that strain variability hampers generalization about species response to chitosan exposure. Hence, when used as a coagulant to manage cyanobacterial nuisance, chitosan should be first tested on the natural site-specific biota on cyanobacteria removal efficiency, as well as on cell integrity aspects.


Asunto(s)
Quitosano/toxicidad , Microcystis/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Quitosano/química , Clorofila A/metabolismo , Floculación , Microcistinas/metabolismo , Microcystis/química , Microcystis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...