Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 11: 1666, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849575

RESUMEN

Listeria monocytogenes is a Gram-positive foodborne bacterial pathogen capable of interacting and crossing the intestinal barrier, blood-brain barrier, and placental barrier to cause deadly infection with high mortality. L. monocytogenes is an intracellular pathogen characterized by its ability to enter non-phagocytic cells. Expression of the cytolysin listeriolysin O has been shown to be the main virulence determinant in vitro and in vivo in mouse models. L. monocytogenes can also perform cell-to-cell spreading using actin-rich membrane protrusions to infect neighboring cells, which also constitutes an important strategy for infection. These events including entry into host cells, interaction between listeriolysin O and host plasma membrane, and bacterial cell-to-cell spreading have been demonstrated to implicate the cholesterol-rich lipid rafts or molecules in these microdomains in the host plasma membrane in vitro with tissue culture models. Here we review the contribution of lipid rafts on plasma membrane to L. monocytogenes infection.


Asunto(s)
Listeria monocytogenes/patogenicidad , Listeriosis/microbiología , Microdominios de Membrana/microbiología , Animales , Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Microdominios de Membrana/metabolismo , Virulencia
2.
J Lipid Res ; 61(5): 601-610, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31615838

RESUMEN

Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.


Asunto(s)
Interacciones Huésped-Patógeno , Microdominios de Membrana/metabolismo , Animales , Humanos , Microdominios de Membrana/microbiología
3.
Genes (Basel) ; 10(12)2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817452

RESUMEN

Phytohormones regulate the mutualistic symbiotic interaction between legumes and rhizobia, nitrogen-fixing soil bacteria, notably by controlling the formation of the infection thread in the root hair (RH). At the cellular level, the formation of the infection thread is promoted by the translocation of plasma membrane microdomains at the tip of the RH. We hypothesize that phytohormones regulate the translocation of plasma membrane microdomains to regulate infection thread formation. Accordingly, we treated with hormone and hormone inhibitors transgenic soybean roots expressing fusions between the Green Fluorescent Protein (GFP) and GmFWL1 or GmFLOT2/4, two microdomain-associated proteins translocated at the tip of the soybean RH in response to rhizobia. Auxin and cytokinin treatments are sufficient to trigger or inhibit the translocation of GmFWL1 and GmFLOT2/4 to the RH tip independently of the presence of rhizobia, respectively. Unexpectedly, the application of salicylic acid, a phytohormone regulating the plant defense system, also promotes the translocation of GmFWL1 and GmFLOT2/4 to the RH tip regardless of the presence of rhizobia. These results suggest that phytohormones are playing a central role in controlling the early stages of rhizobia infection by regulating the translocation of plasma membrane microdomains. They also support the concept of crosstalk of phytohormones to control nodulation.


Asunto(s)
Glycine max , Microdominios de Membrana , Reguladores del Crecimiento de las Plantas , Nodulación de la Raíz de la Planta/fisiología , Nódulos de las Raíces de las Plantas , Citocininas/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Simbiosis
4.
Artículo en Inglés | MEDLINE | ID: mdl-31380298

RESUMEN

Klebsiella pneumoniae successfully colonizes host tissues by recognizing and interacting with cholesterol present on membrane-associated lipid rafts. In this study, we evaluated the role of cholesterol in the expression of capsule polysaccharide genes of K. pneumoniae and its implication in resistance to phagocytosis. Our data revealed that exogenous cholesterol added to K. pneumoniae increases macrophage-mediated phagocytosis. To explain this event, the expression of capsular galF, wzi, and manC genes was determined in the presence of cholesterol. Down-regulation of these capsular genes occurred leading to increased susceptibility to phagocytosis by macrophages. In contrast, depletion of cholesterol from macrophage membranes led to enhanced expression of galF, wzi, and manC genes and to capsule production resulting in resistance to macrophage-mediated phagocytosis. Cholesterol-mediated repression of capsular genes was dependent on the RcsA and H-NS global regulators. Finally, cholesterol also down-regulated the expression of genes responsible for LPS core oligosaccharides production and OMPs. Our results suggest that cholesterol plays an important role for the host by reducing the anti-phagocytic properties of the K. pneumoniae capsule facilitating bacterial engulfment by macrophages during the bacteria-eukaryotic cell interaction mediated by lipid rafts.


Asunto(s)
Colesterol/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Polisacáridos Bacterianos/antagonistas & inhibidores , Células A549 , Cápsulas Bacterianas/efectos de los fármacos , Cápsulas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Colesterol/metabolismo , Genes Bacterianos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Polisacáridos Bacterianos/biosíntesis , Células THP-1
5.
Sci Rep ; 9(1): 10777, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346200

RESUMEN

Chronic suppurative otitis media (CSOM) is one of the most common infectious diseases of the middle ear especially affecting children, leading to delay in language development and communication. Although Staphylococcus aureus is the most common pathogen associated with CSOM, its interaction with middle ear epithelial cells is not well known. In the present study, we observed that otopathogenic S. aureus has the ability to invade human middle ear epithelial cells (HMEECs) in a dose and time dependent manner. Scanning electron microscopy demonstrated time dependent increase in the number of S. aureus on the surface of HMEECs. We observed that otopathogenic S. aureus primarily employs a cholesterol dependent pathway to colonize HMEECs. In agreement with these findings, confocal microscopy showed that S. aureus colocalized with lipid rafts in HMEECs. The results of the present study provide new insights into the pathogenesis of S. aureus induced CSOM. The availability of in vitro cell culture model will pave the way to develop novel effective treatment modalities for CSOM beyond antibiotic therapy.


Asunto(s)
Colesterol/metabolismo , Otitis/metabolismo , Infecciones Estafilocócicas/metabolismo , Células Cultivadas , Oído Medio/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Humanos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Otitis/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
6.
Commun Biol ; 2: 59, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30775460

RESUMEN

Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. ßγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of ßγ-CAT remain elusive. Here, the actions of ßγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of ßγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of ßγ-CAT. Finally, the ability of ßγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.


Asunto(s)
Glicoesfingolípidos Acídicos/química , Proteínas Anfibias/inmunología , Toxinas Bacterianas/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Lisosomas/inmunología , Complejos Multiproteicos/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Factor Trefoil-3/inmunología , Glicoesfingolípidos Acídicos/antagonistas & inhibidores , Glicoesfingolípidos Acídicos/biosíntesis , Aeromonas hydrophila/crecimiento & desarrollo , Aeromonas hydrophila/patogenicidad , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Anuros , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ceramidas/antagonistas & inhibidores , Ceramidas/biosíntesis , Ceramidas/química , Cerebrósidos/antagonistas & inhibidores , Cerebrósidos/biosíntesis , Cerebrósidos/química , Gangliósidos/antagonistas & inhibidores , Gangliósidos/biosíntesis , Gangliósidos/química , Expresión Génica , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Interleucina-1beta/biosíntesis , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/inmunología , Microdominios de Membrana/microbiología , Meperidina/análogos & derivados , Meperidina/farmacología , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingosina/antagonistas & inhibidores , Esfingosina/biosíntesis , Esfingosina/química , Células THP-1 , Factor Trefoil-3/genética , Factor Trefoil-3/metabolismo
7.
FEBS Lett ; 592(23): 3921-3942, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30320884

RESUMEN

Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived ß-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.


Asunto(s)
Hongos/inmunología , Glicoesfingolípidos/inmunología , Sistema Inmunológico/inmunología , Microdominios de Membrana/inmunología , Mycobacterium/inmunología , Animales , Hongos/metabolismo , Hongos/fisiología , Glicoesfingolípidos/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/microbiología , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Mycobacterium/metabolismo , Mycobacterium/fisiología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , beta-Glucanos/inmunología , beta-Glucanos/metabolismo
8.
Adv Exp Med Biol ; 997: 211-223, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815533

RESUMEN

Intracellular bacterial pathogens have evolved sophisticated mechanisms to hijack host cellular processes to promote their survival and replication inside host cells. Over the past two decades, much attention has been given to the strategies employed by these pathogens to manipulate various vesicular trafficking pathways. But in the past 5 years, studies have brought to light that intracellular bacteria also target non-vesicular trafficking pathways. Here we review how three vacuolar pathogens, namely, Legionella, Chlamydia, and Coxiella hijack components of cellular MCS with or without the formation of stable MCS. A common theme in the manipulation of MCS by intracellular bacteria is the dependence on the secretion of bacterial effector proteins. During the early stages of the Legionella life cycle, the bacteria connects otherwise unrelated cellular pathways (i.e., components of ER-PM MCS, PI4KIIIα, and Sac1 and the early secretory pathway) to remodel its nascent vacuole into an ER-like compartment. Chlamydia and Coxiella vacuoles establish direct MCS with the ER and target lipid transfer proteins that contain a FFAT motif, CERT, and ORP1L, respectively, suggesting a common mechanism of VAP-dependent lipid acquisition. Chlamydia also recruits STIM1, an ER calcium sensor involved in store-operated calcium entry (SOCE) at ER-PM MCS, and elucidating the role of STIM1 at ER-Chlamydia inclusion MCS may uncover additional role for these contacts. Altogether, the manipulation of MCS by intracellular bacterial pathogens has open a new and exciting area of research to investigate the molecular mechanisms supporting pathogenesis.


Asunto(s)
Infecciones Bacterianas/microbiología , Chlamydia/patogenicidad , Coxiella/patogenicidad , Membranas Intracelulares/microbiología , Legionella/patogenicidad , Microdominios de Membrana/microbiología , Orgánulos/microbiología , Animales , Infecciones Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Chlamydia/metabolismo , Coxiella/metabolismo , Interacciones Huésped-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Legionella/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Orgánulos/metabolismo , Transducción de Señal , Virulencia
9.
Cell Biol Toxicol ; 33(5): 429-455, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28275881

RESUMEN

Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.


Asunto(s)
Enfermedades Transmisibles/fisiopatología , Microdominios de Membrana/fisiología , Animales , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/fisiopatología , Enfermedades Transmisibles/microbiología , Humanos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Transducción de Señal , Virosis/microbiología , Virosis/fisiopatología
10.
Bioessays ; 39(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28026026

RESUMEN

Pathogenic bacteria frequently target the endoplasmic reticulum (ER) and mitochondria in order to exploit host functions. ER-mitochondria inter-organelle communication is topologically sub-compartmentalized at mitochondria-associated ER membranes (MAMs). MAMs are specific membranous microdomains with unique regulatory functions such as lipid synthesis and trafficking, calcium homeostasis, mitochondrial morphology, inflammasome activation, autophagosome formation, and apoptosis. These important cellular processes are all modulated by pathogens to subvert host functions and promote infection, thus it is tempting to assume that pathogenic bacteria target MAMs to subvert these different pathways in their hosts. First lines of evidence that support this hypothesis come from Legionella pneumophila. This intracellular bacterium secretes an effector that exhibits sphingosine-1 phosphate lyase activity (LpSpl) that seems to target MAMs to modulate the autophagy response to infection. Here we thus propose the concept that MAMs could be targeted by pathogenic bacteria to undermine key host cellular processes.


Asunto(s)
Aldehído-Liasas/metabolismo , Retículo Endoplásmico/microbiología , Legionella pneumophila/enzimología , Microdominios de Membrana/microbiología , Mitocondrias/microbiología , Animales , Autofagia , Humanos , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Microdominios de Membrana/metabolismo
11.
Cell Physiol Biochem ; 39(5): 1777-1786, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27744428

RESUMEN

BACKGROUND: An investigation of the mechanisms underlying the production of inflammatory cytokines through the stimulation of microorganisms on gingival epithelial cells may provide insights into the pathogenesis of the initiation of periodontitis. Lipid rafts, microdomains in the cell membrane, include a large number of receptors, and are centrally involved in signal transduction. We herein examined the involvement of lipid rafts in the expression of interleukin (IL-6) and IL-8 in gingival epithelial cells stimulated by periodontal pathogens. METHODS: OBA9, a human gingival cell line, was stimulated by Aggregatibacter actinomycetemcomitans or tumor necrosis factor (TNF)-α in the presence of methyl-ß-cyclodextrin (MßCD). RESULTS: A. actinomycetemcomitans or TNF-α increased IL-8 and IL-6 mRNA levels, and promoted the phosphorylation of ERK and p38 MAP kinase in OBA9. The pretreatment with MßCD abolished increases in IL-6 and IL-8 mRNA levels and the phosphorylation induced by A. actinomycetemcomitans, but did not suppress the response induced by TNF-α. The transfection of TLR4 inhibited A. actinomycetemcomitans-induced increases in IL-8 and IL-6 mRNA levels. Confocal microscopy revealed that MßCD inhibited the mobilization of TLR4 into lipid rafts. CONCLUSION: The mobilization of TLR4 into lipid rafts is involved in the expression of inflammatory cytokines and phosphorylation of MAP kinase in human gingival epithelial cells stimulated by A. actinomycetemcomitans.


Asunto(s)
Aggregatibacter actinomycetemcomitans/crecimiento & desarrollo , Células Epiteliales/inmunología , Interacciones Huésped-Patógeno , Microdominios de Membrana/inmunología , Receptor Toll-Like 4/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Aggregatibacter actinomycetemcomitans/metabolismo , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Encía/inmunología , Encía/microbiología , Encía/patología , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-8/genética , Interleucina-8/inmunología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/microbiología , Microdominios de Membrana/patología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Fosforilación , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/farmacología , beta-Ciclodextrinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
12.
Sci Rep ; 6: 27080, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27250250

RESUMEN

VvhA, a virulent factor of Vibrio (V.) vulnificus, induces acute cell death in a destructive manner. Autophagy plays an important role in cell death, but the functional role of VvhA in autophagy-related cell death has not been elucidated yet. We found that rVvhA significantly increased LC3 puncta formation and autophagic flux in promoting the cell death of human intestinal epithelial Caco-2 cells. The cell death induced by rVvhA was independent of lysosomal permeabilizaton and caspase activation. rVvhA induced rapid phosphorylation of c-Src in the membrane lipid raft, which resulted in an increased interaction between lipid raft molecule caveolin-1 and NADPH oxidase (NOX) complex Rac1 for ROS production. NOX-mediated ROS signaling induced by rVvhA increased the phosphorylation of extracellular signal-regulated kinase (ERK) and eukaryotic translation initiation factor 2α (eIF2α) which are required for mRNA expression of Atg5 and Atg16L1 involved in autophagosome formation. In an in vivo model, VvhA increased autophagy activation and paracellular permeabilization in intestinal epithelium. Collectively, the results here show that VvhA plays a pivotal role in the pathogenesis and dissemination of V. vulnificus by autophagy upregulation, through the lipid raft-mediated c-Src/NOX signaling pathway and ERK/eIF2α activation.


Asunto(s)
Autofagia , Microdominios de Membrana/metabolismo , Transducción de Señal , Vibriosis/patología , Vibrio vulnificus/fisiología , Animales , Proteínas Bacterianas/fisiología , Proteína Tirosina Quinasa CSK , Células CACO-2 , Caspasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Intestinos/patología , Lisosomas/metabolismo , Microdominios de Membrana/microbiología , Ratones Endogámicos ICR , NADPH Oxidasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Vibriosis/microbiología , Familia-src Quinasas/metabolismo
13.
Cell Microbiol ; 18(8): 1094-105, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26780295

RESUMEN

Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down-stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473-coupled fluorescent latex beads adhere to human epithelial HEp-2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp-2 cells with rCPn0473 does not attenuate adhesion but promotes dose-dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473-dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.


Asunto(s)
Adhesinas Bacterianas/fisiología , Infecciones por Chlamydia/microbiología , Chlamydophila pneumoniae/fisiología , Microdominios de Membrana/microbiología , Línea Celular Tumoral , Células Epiteliales/microbiología , Humanos , Unión Proteica , Transporte de Proteínas
14.
PLoS One ; 10(11): e0142531, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26562838

RESUMEN

Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-ß-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated ß-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform. Interestingly disruption of lipid raft integrity and interference with fungus uptake do not alter cytokine production by monocytes in response to Candida albicans but drastically dampen fungus specific T cell response. In conclusion, these data suggest that monocyte lipid rafts play a crucial role in the innate and adaptive immune responses to Candida albicans in humans and highlight a new and unexpected immunomodulatory function of the antifungal drug Amphotericin B.


Asunto(s)
Antígenos Fúngicos/inmunología , Candida albicans/inmunología , Microdominios de Membrana/inmunología , Monocitos/inmunología , Linfocitos T/inmunología , Anfotericina B/farmacología , Antígenos Fúngicos/metabolismo , Candida albicans/fisiología , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Citometría de Flujo , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/microbiología , Microscopía Confocal , Monocitos/metabolismo , Monocitos/microbiología , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Linfocitos T/metabolismo , Linfocitos T/microbiología , beta-Ciclodextrinas/farmacología
15.
Proc Natl Acad Sci U S A ; 111(35): 12895-900, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136128

RESUMEN

Glycosphingolipids are important structural constituents of cellular membranes. They are involved in the formation of nanodomains ("lipid rafts"), which serve as important signaling platforms. Invasive bacterial pathogens exploit these signaling domains to trigger actin polymerization for the bending of the plasma membrane and the engulfment of the bacterium--a key process in bacterial uptake. However, it is unknown whether glycosphingolipids directly take part in the membrane invagination process. Here, we demonstrate that a "lipid zipper," which is formed by the interaction between the bacterial surface lectin LecA and its cellular receptor, the glycosphingolipid Gb3, triggers plasma membrane bending during host cell invasion of the bacterium Pseudomonas aeruginosa. In vitro experiments with Gb3-containing giant unilamellar vesicles revealed that LecA/Gb3-mediated lipid zippering was sufficient to achieve complete membrane engulfment of the bacterium. In addition, theoretical modeling elucidated that the adhesion energy of the LecA-Gb3 interaction is adequate to drive the engulfment process. In cellulo experiments demonstrated that inhibition of the LecA/Gb3 lipid zipper by either lecA knockout, Gb3 depletion, or application of soluble sugars that interfere with LecA binding to Gb3 significantly lowered P. aeruginosa uptake by host cells. Of note, membrane engulfment of P. aeruginosa occurred independently of actin polymerization, thus corroborating that lipid zippering alone is sufficient for this crucial first step of bacterial host-cell entry. Our study sheds new light on the impact of glycosphingolipids in the cellular invasion of bacterial pathogens and provides a mechanistic explication of the initial uptake processes.


Asunto(s)
Actinas/metabolismo , Glicoesfingolípidos/metabolismo , Microdominios de Membrana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/fisiología , Membrana Celular/metabolismo , Membrana Celular/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Glucolípidos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Modelos Biológicos , Transducción de Señal/fisiología , Esfingolípidos/metabolismo
16.
Am J Respir Cell Mol Biol ; 49(5): 798-807, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23742126

RESUMEN

Klebsiella pneumoniae causes serious infections in the urinary tract, respiratory tract, and blood. Lipid rafts, also known as membrane microdomains, have been linked to the pathogenesis of bacterial infection. However, whether lipid rafts affect K. pneumoniae internalization into host cells remains unknown. Here, we show for the first time that K. pneumoniae was internalized into lung cells by activating lipid rafts. Disrupting lipid rafts by methyl-ß-cyclodextrin inhibited pathogen internalization, impairing host defense. A deficient mutant of capsule polysaccharide (CPS) showed a higher internalization rate than a wild-type strain, indicating that CPS may inhibit bacterial entry to host cells. Furthermore, lipid rafts may affect the function of extracellular regulated kinase (ERK)-1/2, and knocking down ERK1/2 via short, interfering RNA increased apoptosis in both alveolar macrophages and epithelial cells after infection. To gain insights into bacterial pathogenesis, we evaluated the impact of lipid rafts on DNA integrity, and showed that raft aggregates also affect DNA damage and DNA repair responses (i.e., 8-oxoguanine DNA glycosylase [Ogg1]) through the regulation of reactive oxygen species. Importantly, cells overexpressing Ogg1 demonstrated reduced cytotoxicity during bacterial infection. Taken together, these results suggest that lipid rafts may modulate bacterial internalization, thereby affecting DNA damage and repair, which is critical to host defense against K. pneumoniae.


Asunto(s)
Daño del ADN , Reparación del ADN , Endocitosis , Células Epiteliales/microbiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/patogenicidad , Microdominios de Membrana/microbiología , Alveolos Pulmonares/microbiología , Mucosa Respiratoria/microbiología , Transducción de Señal , Animales , Línea Celular Tumoral , ADN Glicosilasas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Interacciones Huésped-Patógeno , Humanos , Infecciones por Klebsiella/genética , Infecciones por Klebsiella/metabolismo , Infecciones por Klebsiella/patología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Estrés Oxidativo , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Transfección , Virulencia
17.
PLoS Pathog ; 9(5): e1003373, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717204

RESUMEN

Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorB(IA), in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorB(IA)-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.


Asunto(s)
Adhesión Bacteriana , Caveolina 1/metabolismo , Fimbrias Bacterianas/metabolismo , Gonorrea/metabolismo , Neisseria gonorrhoeae/metabolismo , Transducción de Señal , Caveolina 1/genética , Línea Celular , Fimbrias Bacterianas/genética , Gonorrea/genética , Humanos , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidad , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo
18.
Cell Immunol ; 271(2): 480-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21943646

RESUMEN

Our recent study demonstrated that a phosphatidylinositol-3 kinase (PI3K)/Akt-dependent anti-inflammatory pathway was activated by Salmonella in intestinal epithelial cells. Salmonella virulence is dependent on the ability of the bacterium to invade nonphagocytic host cells and then survive and replicate within modified Salmonella-containing vacuoles where cholesterol accumulates. In addition, cholesterol in membrane lipid rafts is frequently a platform for the activation of downstream signaling pathways, including the PI3K/Akt pathway. However, the role of plasma membrane cholesterol in the Salmonella-induced anti-inflammatory response in intestinal epithelial cells has not been elucidated. Here, we show that the effect of plasma membrane cholesterol depletion on the inhibition of Akt activation allows sustained ERK activation and the subsequent upregulation of IL-8 expression. These results demonstrate that plasma membrane cholesterol plays a critical role in the PI3K-dependent anti-inflammatory pathway activated by Salmonella in intestinal epithelial cells.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/microbiología , Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Salmonella typhimurium/patogenicidad , Células CACO-2 , Línea Celular , Humanos , Interleucina-8/biosíntesis , Interleucina-8/genética , Mucosa Intestinal/inmunología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Virulencia , beta-Ciclodextrinas/farmacología
19.
J Biol Chem ; 286(40): 34761-9, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21693704

RESUMEN

Cryptococcus neoformans is a neurotropic fungal pathogen, which provokes the onset of devastating meningoencephalitis. We used human brain microvascular endothelial cells (HBMEC) as the in vitro model to investigate how C. neoformans traverses across the blood-brain barrier. In this study, we present several lines of evidence indicating that C. neoformans invasion is mediated through the endocytic pathway via lipid rafts. Human CD44 molecules from lipid rafts can directly interact with hyaluronic acid, the C. neoformans ligand. Bikunin, which perturbs CD44 function in the lipid raft, can block C. neoformans adhesion and invasion of HBMEC. The lipid raft marker, ganglioside GM1, co-localizes with CD44 on the plasma membrane, and C. neoformans cells can adhere to the host cell in areas where GM1 is enriched. These findings suggest that C. neoformans entry takes place on the lipid rafts. Upon C. neoformans engagement, GM1 is internalized through vesicular structures to the nuclear membrane. This endocytic redistribution process is abolished by cytochalasin D, nocodazole, or anti-DYRK3 (dual specificity tyrosine-phosphorylation-regulated kinase 3) siRNA. Concomitantly, the knockdown of DYRK3 significantly reduces C. neoformans invasion across the HBMEC monolayer in vitro. Our data demonstrate that the lipid raft-dependent endocytosis process mediates C. neoformans internalization into HBMEC and that the CD44 protein of the hosts, cytoskeleton, and intracellular kinase-DYRK3 are involved in this process.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/microbiología , Criptococosis/microbiología , Cryptococcus neoformans/metabolismo , Microdominios de Membrana/microbiología , Microcirculación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Membrana Celular/metabolismo , Citocalasina D/farmacología , Gangliósido G(M1)/análogos & derivados , Gangliósido G(M1)/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Microdominios de Membrana/metabolismo , Microscopía Fluorescente/métodos , Nocodazol/farmacología , ARN Interferente Pequeño/metabolismo , Transducción de Señal
20.
Artículo en Inglés | MEDLINE | ID: mdl-22919570

RESUMEN

Non-typeable Haemophilus influenzae (NTHI) is an opportunistic bacterial pathogen of the human respiratory tract and is a leading cause of respiratory infections in children and adults. NTHI is considered to be an extracellular pathogen, but has consistently been observed within and between human respiratory epithelial cells and macrophages, in vitro and ex vivo. Until recently, few studies have examined the internalization, trafficking, and fate of NTHI in host cells. It is important to clarify this interaction because of a possible correlation between intracellular NTHI and symptomatic infection, and because NTHI infections frequently persist and recur despite antibiotic therapy and the development of bactericidal antibodies, suggesting a possible intracellular state or reservoir for NTHI. How does NTHI enter host cells? Can NTHI survive intracellularly and, if so, for how long? Strides have been made in the identification of host receptors, signaling, endocytosis, and trafficking pathways involved in the entry and persistence of NTHI in the respiratory tract.


Asunto(s)
Infecciones por Haemophilus/microbiología , Haemophilus influenzae/patogenicidad , Infecciones del Sistema Respiratorio/microbiología , Autofagia , Clatrina/fisiología , Endocitosis , Infecciones por Haemophilus/fisiopatología , Haemophilus influenzae/clasificación , Haemophilus influenzae/fisiología , Humanos , Lisosomas/microbiología , Lisosomas/fisiología , Microdominios de Membrana/microbiología , Microdominios de Membrana/fisiología , Modelos Biológicos , Infecciones Oportunistas/microbiología , Infecciones Oportunistas/fisiopatología , Fagocitosis , Pinocitosis , Mucosa Respiratoria/microbiología , Mucosa Respiratoria/fisiopatología , Infecciones del Sistema Respiratorio/fisiopatología , Transducción de Señal , Transcitosis , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...