Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
PLoS One ; 19(7): e0307261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39018313

RESUMEN

BACKGROUND: The increase in reports of resistance to macrocyclic lactones in the canine heartworm, Dirofilaria immitis is alarming. While DNA based tests have been well-validated, they can be expensive. In a previous study, we showed that two biochemical tests adapted to a 96- well plate format and read in a spectrophotometer could detect differences among lab validated D. immitis isolates. The two tests- Resazurin reduction and Hoechst 33342 efflux-detect metabolism and P-glycoprotein activity respectively in microfilariae isolated from infected dog blood. METHODS: Our objective was to optimize the two assays further by testing various assay parameters in D. immitis isolates not tested previously. We tested microfilarial seeding density, incubation time and the effect of in vitro treatment with ivermectin and doxycycline in five other D. immitis isolates-JYD-34, Big Head, Berkeley, Georgia III and LOL. All assays were performed in 3 technical replicates and 2-4 biological replicates. To understand the molecular basis of the assays, we also performed qPCR for selected drug metabolism and elimination associated genes of the ABC transporter and cytochrome P450 gene families. RESULTS: Metabolism and ABC transporter activity as detected by these assays varied between strains. Anthelmintic status (resistant or susceptible) did not correlate with metabolism or P-gp efflux. Basal transcriptional variations were found between strains in ABC transporter and cytochrome P450 genes. CONCLUSIONS: These assays provide a greater understanding of the biochemical variation among isolates of D. immitis, which can be exploited in the future to develop in vitro diagnostic tests capable of differentiating susceptible and resistant isolates.


Asunto(s)
Dirofilaria immitis , Dirofilariasis , Microfilarias , Animales , Dirofilaria immitis/genética , Dirofilaria immitis/metabolismo , Perros , Microfilarias/genética , Dirofilariasis/parasitología , Dirofilariasis/sangre , Dirofilariasis/diagnóstico , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/sangre , Ivermectina/farmacología , Doxiciclina/farmacología , Resistencia a Medicamentos/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética
2.
Parasit Vectors ; 17(1): 258, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872227

RESUMEN

BACKGROUND: Dirofilaria immitis, commonly known as heartworm (HW), is a parasitic nematode transmitted by various mosquito species, leading to heartworm disease (HWD) in dogs. Diagnosis of HW typically involves antigen or microfilariae detection, or visualization of adult worms through imaging or post mortem examination. Polymerase chain reaction (PCR) and micro RNA (miRNA) detection have been explored for HW diagnosis. METHODS: Three dogs, previously experimentally infected with HW, underwent blood sampling every 4 weeks for 7 months. Samples were assessed for antigen presence after heat treatment, PCR amplification, and microfilaria examination using Giemsa-stained thick smears. Additionally, whole blood aliquots underwent miRNA deep sequencing and bioinformatic analysis. RESULTS: Heartworm antigen was detectable after heat treatment at 20 weeks post-inoculation and via PCR at 24 weeks, with microfilariae observed in peripheral blood smears at 28 weeks. However, deep miRNA sequencing revealed that the miRNA candidate sequences are not consistently expressed before 28 weeks of infection. CONCLUSIONS: While ancillary molecular methods such as PCR and miRNA sequencing may be less effective than antigen detection for detecting immature larval stages in an early stage of infection, our experimental findings demonstrate that circulating miRNAs can still be detected in 28 weeks post-infection.


Asunto(s)
Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , MicroARNs , Animales , Dirofilaria immitis/genética , Dirofilaria immitis/aislamiento & purificación , Perros , Dirofilariasis/diagnóstico , Dirofilariasis/parasitología , MicroARNs/sangre , MicroARNs/genética , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/diagnóstico , Antígenos Helmínticos/sangre , Antígenos Helmínticos/genética , Diagnóstico Precoz , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Microfilarias/aislamiento & purificación , Microfilarias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
EBioMedicine ; 105: 105188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848649

RESUMEN

BACKGROUND: The Global Program to Eliminate Lymphatic Filariasis (GPELF) is the largest public health program based on mass drug administration (MDA). Despite decades of MDA, ongoing transmission in some countries remains a challenge. To optimise interventions, it is critical to differentiate between recrudescence and new infections. Since adult filariae are inaccessible in humans, deriving a method that relies on the offspring microfilariae (mf) is necessary. METHODS: We developed a genome amplification and kinship analysis-based approach using Brugia malayi samples from gerbils, and applied it to analyse Wuchereria bancrofti mf from humans in Côte d'Ivoire. We examined the pre-treatment genetic diversity in 269 mf collected from 18 participants, and further analysed 1-year post-treatment samples of 74 mf from 4 participants. Hemizygosity of the male X-chromosome allowed for direct inference of haplotypes, facilitating robust maternal parentage inference. To enrich parasite DNA from samples contaminated with host DNA, a whole-exome capture panel was created for W. bancrofti. FINDINGS: By reconstructing and temporally tracking sibling relationships across pre- and post-treatment samples, we differentiated between new and established maternal families, suggesting reinfection in one participant and recrudescence in three participants. The estimated number of reproductively active adult females ranged between 3 and 11 in the studied participants. Population structure analysis revealed genetically distinct parasites in Côte d'Ivoire compared to samples from other countries. Exome capture identified protein-coding variants with ∼95% genotype concordance rate. INTERPRETATION: We have generated resources to facilitate the development of molecular genetic tools that can estimate adult worm burdens and monitor parasite populations, thus providing essential information for the successful implementation of GPELF. FUNDING: This work was financially supported by the Bill and Melinda Gates Foundation (https://www.gatesfoundation.org) under grant OPP1201530 (Co-PIs PUF & Gary J. Weil). B. malayi parasite material was generated with support of the Foundation for Barnes Jewish Hospital (PUF). In addition, the development of computational methods was supported by the National Institutes of Health under grants AI144161 (MM) and AI146353 (MM). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Asunto(s)
Filariasis Linfática , Recurrencia , Reinfección , Wuchereria bancrofti , Filariasis Linfática/parasitología , Filariasis Linfática/epidemiología , Filariasis Linfática/diagnóstico , Filariasis Linfática/genética , Humanos , Animales , Wuchereria bancrofti/genética , Femenino , Masculino , Reinfección/parasitología , Brugia Malayi/genética , Gerbillinae/parasitología , Variación Genética , Microfilarias/genética , Adulto , Haplotipos , Côte d'Ivoire/epidemiología
4.
Vet Parasitol ; 325: 110097, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104431

RESUMEN

Current recommendations to diagnose cardiopulmonary dirofilariosis in dogs caused by Dirofilaria immitis involves tandem antigen and circulating microfilariae tests. The modified Knott's test is an important tool in heartworm diagnosis, allowing identification of circulating microfilariae. However, the subjective nature of the modified Knott's test affects its accuracy and diagnostic laboratories usually do not provide a quantitative outcome. Quantitative enumeration of microfilariae enables clinicians to track treatment progress and acts as a proxy for detecting emerging macrocyclic lactone resistance. There is a need for better diagnostic tools suitable for routine use to efficiently and accurately quantify the presence of D. immitis microfilaremia. The aim of this study was to determine whether the quantitative modified Knott's test can be substituted by multiplex quantitative polymerase chain reaction (qPCR) targeting D. immitis and associated Wolbachia endosymbiont DNA in canine blood samples. To do this, genomic DNA samples (n = 161) from Australian dogs, collected as part of a previous 2021 study, were assessed in a TaqMan qPCR targeting DNA of D. immitis, Wolbachia sp. and Canis lupus familiaris. Of the 161 genomic DNA samples, eight were considered positive for D. immitis microfilariae. The qPCR assay demonstrated good efficiency (E = 90 to 110%, R2 > 0.94). Considering the performance and efficient use of bench time, this TaqMan qPCR assay is a suitable alternative to the modified Knott's test for quantitative enumeration of microfilariae (Cohen's kappa coefficient [κ]: κ = 1 using D. immitis qPCR marker, κ = 0.93 using Wolbachia qPCR marker). The qPCR data demonstrated a comparable result to that of the quantitative modified Knott's test in a 2022 survey of D. immitis in Australian dogs (n = 23) before and after macrocyclic lactone (ML) administration. Improving the detection and diagnosis of canine heartworm infections will assist veterinarians in better managing and controlling disease outcomes and will be valuable for tracking the spread of ML resistance in Australia.


Asunto(s)
Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Animales , Perros , Dirofilaria immitis/genética , Microfilarias/genética , Australia , Enfermedades de los Perros/diagnóstico , Dirofilariasis/diagnóstico , ADN , Lactonas
5.
Sci Rep ; 13(1): 8778, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258694

RESUMEN

Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.


Asunto(s)
Aedes , Brugia Malayi , Vesículas Extracelulares , Animales , Humanos , Femenino , Brugia Malayi/genética , Microfilarias/genética , Mosquitos Vectores , Mamíferos
6.
Sci Rep ; 13(1): 7951, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193733

RESUMEN

N-linked glycosylation is a critical post translational modification of eukaryotic proteins. N-linked glycans are present on surface and secreted filarial proteins that play a role in host parasite interactions. Examples of glycosylated Brugia malayi proteins have been previously identified but there has not been a systematic study of the N-linked glycoproteome of this or any other filarial parasite. In this study, we applied an enhanced N-glyco FASP protocol using an engineered carbohydrate-binding protein, Fbs1, to enrich N-glycosylated peptides for analysis by LC-MS/MS. We then mapped the N-glycosites on proteins from three host stages of the parasite: adult female, adult male and microfilariae. Fbs1 enrichment of N-glycosylated peptides enhanced the identification of N-glycosites. Our data identified 582 N-linked glycoproteins with 1273 N-glycosites. Gene ontology and cell localization prediction of the identified N-glycoproteins indicated that they were mostly membrane and extracellular proteins. Comparing results from adult female worms, adult male worms, and microfilariae, we find variability in N-glycosylation at the protein level as well as at the individual N-glycosite level. These variations are highlighted in cuticle N-glycoproteins and adult worm restricted N-glycoproteins as examples of proteins at the host parasite interface that are well positioned as potential therapeutic targets or biomarkers.


Asunto(s)
Brugia Malayi , Animales , Humanos , Masculino , Femenino , Brugia Malayi/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos/metabolismo , Microfilarias/genética , Microfilarias/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo
7.
Front Immunol ; 13: 866373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353644

RESUMEN

Filarial parasites are tissue dwelling worms transmitted by hematophagous vectors. Understanding the mechanisms regulating microfilariae (the parasite offspring) development is a prerequisite for controlling transmission in filarial infections. Th2 immune responses are key for building efficient anti-parasite responses but have been shown to also lead to detrimental tissue damage in the presence of microfilariae. Litomosoides sigmodontis, a rodent filaria residing in the pleural cavity was therefore used to characterize pleuropulmonary pathology and associated immune responses in wild-type and Th2 deficient mice. Wild-type and Th2-deficient mice (Il-4rα-/-/Il-5-/- ) were infected with L. sigmodontis and parasite outcome was analyzed during the patent phase (when microfilariae are in the general circulation). Pleuropulmonary manifestations were investigated and pleural and bronchoalveolar cells were characterized by RNA analysis, imaging and/or flow cytometry focusing on macrophages. Il-4rα-/-/Il-5-/- mice were hypermicrofilaremic and showed an enhanced filarial survival but also displayed a drastic reduction of microfilaria-driven pleural cavity pathologies. In parallel, pleural macrophages from Il-4rα-/-/Il-5-/- mice lacked expression of prototypical alternative activation markers RELMα and Chil3 and showed an altered balance of some markers of the arginine metabolic pathway. In addition, monocytes-derived F4/80intermediate macrophages from infected Il-4rα-/-/Il-5-/- mice failed to mature into resident F4/80high large macrophages. Altogether these data emphasize that the presence of both microfilariae and IL-4R/IL-5 signaling are critical in the development of the pathology and in the phenotype of macrophages. In Il-4rα-/-/Il-5-/- mice, the balance is in favor of parasite development while limiting the pathology associated with the host immune response.


Asunto(s)
Filariasis , Filarioidea , Animales , Ratones , Arginina , Interleucina-5 , Macrófagos/patología , Ratones Endogámicos BALB C , Microfilarias/genética , Células Th2
8.
Int J Parasitol Drugs Drug Resist ; 20: 145-158, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36417831

RESUMEN

Canine heartworm disease is a potentially deadly cardiopulmonary disease caused by the mosquito-borne filarial nematode Dirofilaria immitis. In Australia, the administration of macrocyclic lactone (ML) drugs has successfully reduced the prevalence of D. immitis infection. However, the recent re-emergence of D. immitis in dogs in Queensland, Australia and the identification of ML-resistant isolates in the USA poses an important question of whether ML-resistance has emerged in this parasite in Australia. The aim of this study was to utilise phenotypic and genotypic approaches to examine the sensitivity to ML drugs in D. immitis in Australia. To do this, we surveyed 45 dogs from Queensland and New South Wales across 3 years (2019-2022) for the presence of D. immitis infection using an antigen test, quantitative Modified Knott's test, and qPCR targeting both D. immitis and the D. immitis symbiont Wolbachia. A phenotype observed by utilising sequential quantification of microfilariae for 23/45 dogs was coupled with genetic testing of filtered microfilariae for SNPs previously associated with ML-resistance in isolates from the USA. Sixteen (16/45) dogs tested positive for D. immitis infection despite reportedly receiving 'rigorous' heartworm prevention for 12 months prior to the study, according to the owners' assessment. The phenotype and genotypic assays in this study did not unequivocally demonstrate the presence of ML-resistant D. immitis in Australia. Although the failure of 16 dogs to reduce microfilaremia by >90% after ML treatment was considered a suspect phenotype of ML-resistance, no genotypic evidence was discovered using the genetic SNP analysis. The traditional quantitative Modified Knott's test can be substituted by qPCR targeting D. immitis or associated Wolbachia endosymbiont DNA for a more rapid measurement of microfilariae levels. More definitive phenotypic evidence of resistance is critically needed before the usefulness of SNPs for the detection of ML-resistance in Australia can be properly assessed.


Asunto(s)
Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Perros , Animales , Dirofilaria immitis/genética , Dirofilariasis/tratamiento farmacológico , Dirofilariasis/epidemiología , Lactonas/farmacología , Enfermedades de los Perros/tratamiento farmacológico , Enfermedades de los Perros/epidemiología , Microfilarias/genética
9.
Parasit Vectors ; 15(1): 306, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038928

RESUMEN

BACKGROUND: Current recommendations for diagnosis of Dirofilaria immitis infection in dogs rely on the detection of antigen produced largely by adult females coupled with the visualization of microfilariae (mf) in the circulation via a microfilaria detection test (MFDT). It is hypothesized that qPCR assays used in parallel with antigen detection tests will perform better in detecting mf than modified Knott's test (MK), when combined with antigen detection. This study compares probe-based qPCR and MK techniques for mf detection used in parallel with the DiroCHEK® antigen test to screen for heartworm infection in shelter dogs. METHODS: Matching blood and serum samples were collected from 300 shelter dogs in Brazos and Harris counties, Texas, USA. Blood was assessed for the presence of mf via MK and the presence of D. immitis DNA by a species-specific probe-based qPCR assay. Serum samples were tested for the presence of heartworm antigen using DiroCHEK® before and after immune complex dissociation (ICD) via heat treatment. In addition, the performance of each diagnostic test was evaluated via Chi-square test, Cochran's Q test, and post hoc analysis. RESULTS: Qualitatively, MK detected mf in 22.0% (66/300) of samples, 55 of which were morphologically identified as D. immitis and 11 as Acanthocheilonema reconditum. The range of heartworm mf was 28 to 88,803 mf/ml (median: 6627.5). Real-time PCR detected D. immitis DNA in 20.7% (62/300) of samples. Heartworm antigen was detected in 24.7% (74/300) of samples pre-ICD, and in 29.3% (88/300) post-ICD. When comparing tests, the Chi-square and McNemar's tests showed that the difference between positive and negative proportions was statistically significant. The Cochran test showed the difference in the distributions of cases and non-cases was significant when individual tests were combined (χ2 = 62.3, df = 3, P < 0.0001) and when parallel methods were combined (χ2 = 43.1, df = 4, P < 0.0001). CONCLUSION: Considering individual and combined test performances, practicality, and efficient use of bench time, this heartworm-specific probe-based qPCR method is a viable option as a mf detection test to be used in parallel with antigen tests for canine heartworm infection in diagnostic and research settings.


Asunto(s)
Acanthocheilonema , Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Acanthocheilonema/genética , Animales , Antígenos Helmínticos , Dirofilaria immitis/genética , Dirofilariasis/diagnóstico , Enfermedades de los Perros/diagnóstico , Perros , Femenino , Microfilarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
10.
Parasitol Res ; 121(7): 2187-2191, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35614145

RESUMEN

Subperiodic brugian filariasis and dirofilariasis show a rising trend in Sri Lanka posing a threat to public health. As information was limited on canine filaria species in Sri Lanka, we studied the filaria parasites among dog populations in lymphatic filariasis (LF) endemic and non-endemic regions by microscopy and molecular methods. Thick blood smears (TBSs) were performed among 295 dogs presenting to veterinary clinics for surgical or sterilization procedures in Galle (LF endemic) and Mullaitivu (LF non-endemic) districts, of which 55.6% were positive for any microfilariae. We identified Dirofilaria repens (50.8%) and Brugia spp. (20.6%) by microscopy, which, included mono-infections (D. repens 35.3% and Brugia spp. 5%) and co-infections (15.6%). Infections in Galle and Mullaitivu were 61% and 44.9% respectively. The brugian filariasis rate was significantly higher among canines in LF endemic Galle district (29.9%) than in Mullaitivu (LF non-endemic) (1.1%) (P < 0.001), while D. repens infections were comparable in both districts. Genomic DNA extracted from 10% of microfilariae positive TBSs was amplified using pan-filarial primers targeting the internal-transcriber-spacer region-2 (ITS-2). Sequencing of amplicons confirmed the presence of D. repens (89.28%), Brugia pahangi (7.14%) and B. malayi (3.57%) infections. The phylogeny constructed and analysed in MEGA X indicated genetic variability among D. repens and B. pahangi isolates from Sri Lanka. With this study, we were able to report B. pahangi infections for the first time in Sri Lanka.


Asunto(s)
Filariasis Linfática , Filarioidea , Animales , Brugia/genética , Perros , Filariasis Linfática/epidemiología , Filariasis Linfática/parasitología , Filarioidea/genética , Microfilarias/genética , Sri Lanka/epidemiología
11.
J Parasitol ; 108(2): 192-198, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435985

RESUMEN

Grouse and ptarmigan (Galliformes) harbor fairly diverse helminth faunas that can impact the host's health, including filarial nematodes in the genus Splendidofilaria. As host and parasite distributions are predicted to shift in response to recent climate change, novel parasites may be introduced into a region and impose additional stressors on bird populations. Limited information is available on the prevalence of filariasis in Alaska galliforms. To date, no molecular surveys have been completed. Past studies relied on examining blood smears or total body necropsies, which are time-consuming and may not detect filarial parasites with low prevalence in hosts. Therefore, we developed a TaqMan probe-based real-time PCR assay targeting the cytochrome c oxidase 1 gene (COI) of Splendidofilaria to decrease processing times and increase sensitivity as well as provide baseline data on the diversity of filariid infections in galliform species in Alaska. We screened a combined total of 708 galliform samples (678 unique individual birds) from different tissues (blood, muscle, and lung) for the presence of filarial DNA across the state of Alaska. Real-time PCR screening revealed an overall prevalence of filarial infection of 9.5% across species: Bonasa umbellus (0%, n = 23), Dendragapus fuliginosus (0%, n = 8), Falcipennis canadensis (26.8%, n = 198), Lagopus lagopus (2.6%, n = 274), Lagopus leucura (0%, n = 23), Lagopus muta (3%, n = 166), and Tympanuchus phasianellus (12.5%, n = 16). We observed microfilarial infections throughout most of Alaska except in Arctic regions and the Aleutian Islands where viable vectors may not be present.


Asunto(s)
Filariasis , Filarioidea , Galliformes , Animales , Filariasis/epidemiología , Filariasis/parasitología , Filariasis/veterinaria , Filarioidea/genética , Microfilarias/genética , Codorniz , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
12.
PLoS Negl Trop Dis ; 15(10): e0009812, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34637436

RESUMEN

BACKGROUND: Molecular xenomonitoring (MX), the detection of parasite nucleic acid in the vector population, is recommended for onchocerciasis surveillance in elimination settings. However, the sensitivity of MX for detecting onchocerciasis-positive communities has not previously been evaluated. MX may have additional applications for control programmes but its utility is restricted by a limited understanding of the relationship between MX results and human prevalence. METHODS: We conducted a systematic review of studies reporting the prevalence of Onchocerca volvulus DNA in wild-caught Simulium spp. flies (MX rate) and corresponding prevalence of microfilaria (mf) in humans. We evaluated the sensitivity of MX for detecting onchocerciasis-positive communities and describe the characteristics of studies with reduced sensitivity. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. RESULTS: We identified 15 relevant studies, with 13 studies comprising 34 study communities included in the quantitative analyses. Most communities were at advanced stages towards elimination and had no or extremely low human prevalence. MX detected positive flies in every study area with >1% mf prevalence, with the exception of one study conducted in the Venezuelan Amazonian focus. We identified a significant relationship between the two measurements, with mf prevalence accounting for half of the variation in MX rate (R2 0.50, p<0.001). CONCLUSION: MX is sensitive to communities with ongoing onchocerciasis transmission. It has potential to predict human mf prevalence, but further data is required to understand this relationship, particularly from MX surveys conducted earlier in control programmes before transmission has been interrupted.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Insectos Vectores/parasitología , Onchocerca volvulus/genética , Oncocercosis/diagnóstico , Simuliidae/parasitología , Animales , Pruebas Diagnósticas de Rutina/instrumentación , Pruebas Diagnósticas de Rutina/normas , Humanos , Insectos Vectores/fisiología , Microfilarias/genética , Microfilarias/aislamiento & purificación , Microfilarias/fisiología , Onchocerca volvulus/aislamiento & purificación , Onchocerca volvulus/fisiología , Oncocercosis/parasitología , Oncocercosis/transmisión , Simuliidae/fisiología
13.
Parasit Vectors ; 14(1): 137, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33673865

RESUMEN

BACKGROUND: Blood parasites have been the subject of much research, with numerous reports of the presence of microfilariae in the peripheral blood (circulating microfilariae) of birds belonging to many orders. Current limitations in molecular characterization methods and species identification using morphological characters of circulating microfilariae are major obstacles to improving our understanding the biology of Filarioidea species, particularly in wildlife. The aim of this study was to partially fill these gaps, with particular emphasis on morphological features of microfilariae, which are the most readily accessible stages of these pathogens. METHODS: Peripheral blood samples of 206 birds belonging to genera Acrocephalus (five species) and Sylvia (five species) were examined using the buffy coat method to process the blood samples for the presence of microfilariae. Positive birds were dissected to collect adult nematodes. Microfilariae and adult nematodes were described, and sequences of their mitochondrial cytochrome c oxidase subunit I and nuclear 28S rDNA gene fragments were obtained and used for molecular characterization and Bayesian phylogenetic inferences. RESULTS: Overall prevalence of microfilariae was 2.9%. Microfilariae were found in the blood samples from six birds (2 Acrocephalus scirpaceus and 1 each of A. arundinaceus, Sylvia atricapilla, S. borin and S. curruca), which were dissected. All parasite species observed were new. Eufilaria acrocephalusi sp. n. and Eufilaria sylviae sp. n. were present in subcutaneous, peritracheal and periesophageal connective tissues in A. scirpaceus and S. borin, respectively. Splendidofilaria bartletti sp. n. was found in finger joins of S. atricapilla. Illustrations of microfilariae and adult nematodes are shown, and morphological and phylogenetic analyses identified the DNA barcode haplotypes that are associated with these species. Phylogenetic analysis places the parasites of different genera in different closely related clades. CONCLUSIONS: Adult nematode morphological characters, which have been traditionally used in the taxonomy of Filarioidea species, have a phylogenetic value. Importantly, in our study parasites of different genera were readily distinguishable based on the morphology of their microfilariae. The link between molecular and morphology data requires more study in Filarioidea species research, particularly because this approach provides new knowledge on species identity using only readily accessible blood stages (microfilariae), thereby avoiding host dissection and thus minimizing harm to wildlife during research.


Asunto(s)
Aves/parasitología , Filariasis/veterinaria , Filarioidea/anatomía & histología , Filarioidea/genética , Microfilarias/anatomía & histología , Microfilarias/genética , Filogenia , Animales , Animales Salvajes/parasitología , Teorema de Bayes , Femenino , Filariasis/sangre , Filariasis/parasitología , Filarioidea/clasificación , Filarioidea/aislamiento & purificación , Masculino , Microfilarias/clasificación , Microfilarias/aislamiento & purificación , Análisis de Secuencia de ADN
14.
PLoS Negl Trop Dis ; 15(2): e0009027, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33566799

RESUMEN

Onchocerca lupi (Spirurida: Onchocercidae) is a filarial worm parasitizing domestic carnivores and humans. Adult nematodes usually localize beneath in the sclera or in the ocular retrobulbar of infected animals, whilst microfilariae are found in the skin. Therefore, diagnosis of O. lupi is achieved by microscopic and/or molecular detection of microfilariae from skin biopsy and/or surgical removal of adults from ocular tissues of infected hosts. An urgent non-invasive diagnostic tool for the diagnosis of O. lupi in dog is mandatory. In this study, an immunoproteomic analyses was performed using a combination of immunoblotting and mass spectrometry techniques. Onchocerca lupi major antigen (Ol-MJA) and paramyosin (Ol-PARA) proteins were identified as potential biomarkers for serodiagnosis. Linear epitopes were herein scanned for both proteins using high-density peptide microarray. Sera collected from dog infected with O. lupi and healthy animal controls led to the identification of 11 immunodominant antigenic peptides (n = 7 for Ol-MJA; n = 4 for Ol-PARA). These peptides were validated using sera of dogs uniquely infected with the most important filarioids infesting dogs either zoonotic (Dirofilaria repens, Dirofilaria immitis) or not (Acanthocheilonema reconditum and Cercopithifilaria bainae). Overall, six antigenic peptides, three for Ol-MJA and for Ol-PARA, respectively, were selected as potential antigens for the serological detection of canine O. lupi infection. The molecular and proteomic dataset herein reported should provide a useful resource for studies on O. lupi toward supporting the development of new interventions (drugs, vaccines and diagnostics) against canine onchocercosis.


Asunto(s)
Enfermedades de los Perros/diagnóstico , Onchocerca/química , Oncocercosis Ocular/diagnóstico , Oncocercosis/diagnóstico , Tropomiosina/genética , Tropomiosina/inmunología , Animales , Biomarcadores/sangre , Enfermedades de los Perros/parasitología , Perros , Femenino , Masculino , Microfilarias/genética , Microfilarias/aislamiento & purificación , Onchocerca/inmunología , Onchocerca/aislamiento & purificación , Oncocercosis/inmunología , Oncocercosis/parasitología , Oncocercosis Ocular/sangre , Oncocercosis Ocular/inmunología , Oncocercosis Ocular/parasitología , Pruebas Serológicas , Tropomiosina/sangre , Tropomiosina/aislamiento & purificación
15.
J Infect Dev Ctries ; 14(12): 1442-1447, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33378288

RESUMEN

INTRODUCTION: Dirofilaria immitis is a nematode that affects human health in several countries of the world. This study was conducted to examine whether serum samples from the owners of microfilaremic dogs present immunoreactivity to parasite proteins. METHODOLOGY: Eight serum samples from the owners of microfilaremic dogs were examined. Total proteins were extracted from adult worms and 12% SDS-PAGE was performed. The gel was electroblotted to a nitrocellulose membrane, and a Western blot (WB) was performed. Reactive bands of 22, 33, 39, 49, and 63 kDa in WB were excised from the gel and analyzed by mass spectrometry (MS). RESULTS: The MS results showed the presence of 10 different proteins of D. immitis recognized by the human serum samples. CONCLUSIONS: These results indicate that in endemic areas of D. immitis, owners of infected dogs recognize specific proteins of the parasite, suggesting a possible infection.


Asunto(s)
Anticuerpos Antihelmínticos/sangre , Dirofilaria immitis/química , Dirofilariasis/inmunología , Enfermedades de los Perros/parasitología , Proteínas del Helminto/inmunología , Propiedad , Adulto , Anciano , Animales , Western Blotting , Dirofilaria immitis/genética , Dirofilaria immitis/inmunología , Dirofilariasis/transmisión , Perros , Femenino , Humanos , Masculino , México , Microfilarias/genética , Microfilarias/inmunología , Persona de Mediana Edad , Mascotas/parasitología
16.
Parasit Vectors ; 13(1): 548, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148310

RESUMEN

BACKGROUND: Blackflies (Diptera: Simuliidae) are known as effective vectors of human and animal pathogens, worldwide. We have already indicated that some individuals in the Simulium turgaicum complex are annoying pests of humans and livestock in the Aras River Basin, Iran. However, there is no evidence of host preference and their possible vectorial role in the region. This study was conducted to capture the S. turgaicum (s.l.), to identify their host blood-meals, and to examine their potential involvement in the circulation of zoonotic microfilariae in the study areas. METHODS: Adult blackflies of the S. turgaicum complex were bimonthly trapped with insect net in four ecotopes (humans/animals outdoors, irrigation canals, lands along the river, as well as rice and alfalfa farms) of ten villages (Gholibaiglou, Gungormaz, Hamrahlou, Hasanlou, Khetay, Khomarlou, Larijan, Mohammad Salehlou, Parvizkhanlou and Qarloujeh) of the Aras River Basin. A highly sensitive and specific nested PCR assay was used for detection of filarial nematodes in S. turgaicum (s.l.), using nuclear 18S rDNA-ITS1 markers. The sources of blood meals of engorged specimens were determined using multiplex and conventional cytb PCR assays. RESULTS: A total of 2754 females of S. turgaicum (s.l.) were collected. The DNA of filarial parasites was detected in 6 (0.62%) of 960 randomly examined individuals. Sequence analysis of 420 base pairs of 18S rDNA-ITS1 genes identified Dirofilaria spp. including 5 D. immitis and 1 D. repens. Importantly, all filarial positive specimens have been captured from humans and animals outdoors. Cytb-PCR assays showed that in all ecotypes studied, members of the S. turgaicum complex had preferably fed on humans, dogs, bovids, and birds, respectively. CONCLUSIONS: To the best of our knowledge, this is the first report of D. immitis/D. repens detection in blackflies. Results showed that S. turgaicum (s.l.) was the most abundant (97%) and anthropophilic (45%) blackfly in all studied ecotypes/villages and that DNA of Dirofilaria spp. was detected in the flies taken from six villages. Dirofilariasis is a common zoonosis between humans and carnivores, with mosquitoes (Culicidae) as the principal vectors. Further investigations are needed to demonstrate that blackflies are actual vectors of Dirofilaria in the studied region.


Asunto(s)
Dirofilaria/genética , Insectos Vectores/parasitología , Simuliidae/parasitología , Animales , Dirofilaria/clasificación , Dirofilariasis/parasitología , Dirofilariasis/transmisión , Vectores de Enfermedades , Femenino , Humanos , Insectos Vectores/genética , Irán , Ganado/parasitología , Masculino , Microfilarias/genética , Reacción en Cadena de la Polimerasa , Simuliidae/genética , Zoonosis/parasitología , Zoonosis/transmisión
17.
Parasit Vectors ; 13(1): 501, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004047

RESUMEN

BACKGROUND: Dirofilaria immitis is responsible for heartworm disease in dogs in endemic areas worldwide. Screening for this infection is done by blood tests. Antigen testing is the most sensitive method to detect an infection with adult (female) worms. Microscopic examination of a blood smear or Knott's test can be used to detect circulating microfilariae, the infective larvae. To increase the sensitivity of the antigen test by decreasing the false negative test results, heating of the blood sample has been recommended in recent guidelines. Heating is believed to remove blocking immune-complexes. Circulating microfilariae are not specific findings for heartworm infection, as other nematodes (among others, Acanthocheilonema dracunculoides) can also result in microfilaremia. Although the type of microfilariae cannot be determined by microscopy alone, real-time PCR can reliably identify the infecting nematode species. Correct identification of the parasite is of major importance, as an infection with D. immitis requires antiparasitic therapy, whereas A. dracunculoides is thought to be a clinically irrelevant coincidental finding. The present case report describes a microfilaremic dog where the initial antigen test for D. immitis turned positive after heat treatment, whereas real-time PCR revealed that the microfilariae were A. dracunculoides (syn. Dipetalonema dracunculoides). RESULTS: A circa 5-year old, asymptomatic Spanish mastiff dog was referred for heartworm therapy because microfilariae were found via a screening blood test. The dog was recently imported to the Netherlands from Spain, where it had been a stray dog. Antigen tests on a plasma sample for D. immitis were performed with three different test kits, which all turned out to be negative. However, heat treatment of two of these samples were carried out and both of them led to a positive antigen test result. Real-time PCR showed that the circulating microfilariae belonged to A. dracunculoides species. Three administrations of moxidectin spot-on at monthly intervals resulted in a negative antigen and a negative Knott's tests one month after the last treatment. CONCLUSIONS: We conclude that heat treatment of initially negative blood samples for D. immitis could lead to false positive antigen test results if the dog is infected with A. dracunculoides.


Asunto(s)
Acanthocheilonema/aislamiento & purificación , Acantoqueilonemiasis/veterinaria , Antígenos Helmínticos/sangre , Dirofilaria immitis/aislamiento & purificación , Dirofilariasis/parasitología , Enfermedades de los Perros/parasitología , Microfilarias/aislamiento & purificación , Acanthocheilonema/genética , Acanthocheilonema/inmunología , Acantoqueilonemiasis/sangre , Acantoqueilonemiasis/parasitología , Animales , Sangre/parasitología , Dirofilaria immitis/genética , Dirofilaria immitis/inmunología , Dirofilariasis/sangre , Dirofilariasis/diagnóstico , Enfermedades de los Perros/sangre , Enfermedades de los Perros/diagnóstico , Perros , Reacciones Falso Positivas , Femenino , Calor , Pruebas Inmunológicas , Microfilarias/genética , Microfilarias/inmunología
18.
PLoS Negl Trop Dis ; 14(8): e0008627, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32866158

RESUMEN

The application of reverse genetics in the human filarial parasites has lagged due to the difficult biology of these organisms. Recently, we developed a co-culture system that permitted the infective larval stage of Brugia malayi to be transfected and efficiently develop to fecund adults. This was exploited to develop a piggyBac transposon-based toolkit that can be used to produce parasites with transgene sequences stably integrated into the parasite genome. However, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which allows precise editing of a genome. Here we report adapting the piggyBac mediated transfection system of B. malayi for CRISPR mediated knock-in insertion into the parasite genome. Suitable CRISPR insertion sites were identified in intergenic regions of the B. malayi genome. A dual reporter piggybac vector was modified, replacing the piggyBac inverted terminal repeat regions with sequences flanking the insertion site. B. malayi molting L3 were transfected with a synthetic guide RNA, the modified plasmid and the CAS9 nuclease. The transfected parasites were implanted into gerbils and allowed to develop into adults. Progeny microfilariae were recovered and screened for expression of a secreted luciferase reporter encoded in the plasmid. Approximately 3% of the microfilariae were found to secrete luciferase; all contained the transgenic sequences inserted at the expected location in the parasite genome. Using an adaptor mediated PCR assay, transgenic microfilariae were examined for the presence of off target insertions; no off-target insertions were found. These data demonstrate that CRISPR can be used to modify the genome of B. malayi, opening the way to precisely edit the genome of this important human filarial parasite.


Asunto(s)
Brugia Malayi/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Transfección/métodos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN de Helmintos/genética , Femenino , Edición Génica , Genoma , Larva/genética , Luciferasas , Microfilarias/genética
19.
Vet Parasitol ; 284: 109189, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32739751

RESUMEN

Setaria digitata is a nematode that resides in the peritoneal cavity of ruminants causing cerebrospinal nematodiasis disease affecting livestock and inflicting significant economic forfeitures in Asia. Further, this nematode can infect humans, causing abscesses, allergic reactions, enlarged lymph nodes, eye lesions and inflammation of the lungs. The 'ARE2 required for viability1' (ARV1) encodes for putative lipid transporter localized in the endoplasmic reticulum (ER) and Golgi complex membrane in humans and yeast. In the present study, the functional role of S. digitata ARV1 (SD-ARV1) was investigated using RNA interference (RNAi) reverse genetic tool. The targeted silencing SD-ARV1 transcripts by siRNA mediated RNAi resulted in a dramatic reduction of SD-ARV1 gene and protein expressions in S. digitata, which in turn modulated the parasitic motility, its production of eggs and microfilaria viability. Further, the same silencing caused severe phenotypic deformities such as distortion of eggs and embryonic development arrest in the intrauterine stages of adult female S. digitata. These results suggest that SD-ARV1 plays a pivotal role in worm embryogenesis, adult parasite motility and microfilariae viability. Finally, the ubiquitous presence of ARV1 in human filarial nematodes, its crucial functional roles in nematode biology and its remarkable diversity in primary protein structure compared to homologues in their hosts warrants further investigations to ascertain its candidacy in anthelmintic drug development.


Asunto(s)
Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Microfilarias/genética , Interferencia de ARN , Setaria (Nematodo)/fisiología , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Setaria (Nematodo)/embriología , Setaria (Nematodo)/genética
20.
Vet Parasitol ; 283: 109125, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32535487

RESUMEN

Prevention of infection with canine heartworm (Dirofilaria immitis) is based on the compliant administration of macrocyclic lactone (ML) drugs. Resistance to ML drugs is well documented in D. immitis; however, there remains a paucity of information on the spatial distribution and prevalence of resistant isolates. This project aims to improve understanding of ML-resistance by using a population genetic approach. We developed a large panel of microsatellite loci and identified 12 novel highly polymorphic markers. These 12, and five previously published markers were used to screen pools of microfilariae from 16 confirmed drug-susceptible, 25 confirmed drug-resistant, and from 10 suspected drug-resistant field isolates. In isolates where microfilarial suppression testing indicated resistance, Spatial Principal Component Analysis (sPCoA), Neighbor Joining Trees and Bayesian clustering all revealed high genetic similarity between pre- and post-treatment samples. Somewhat surprisingly, the Neighbor Joining tree and sPCoA generated using pairwise Nei's distances did not reveal clustering for resistant isolates, nor did it reveal state-level geographic clustering from samples collected in Georgia, Louisiana or Mississippi. In contrast, Discriminant Analysis of Principle Components was able to discriminate between susceptible, suspected-resistant and resistant samples. However, no resistance-associated markers were detected, and this clustering was driven by the combined effects of multiple alleles across multiple loci. Additionally, we measured unexpectedly large genetic distances between different passages of laboratory strains that originated from the same source infection. This finding strongly suggests that the genetic makeup of laboratory isolates can change substantially with each passage, likely due to genetic bottlenecking. Taken together, these data suggest greater than expected genetic variability in the resistant isolates, and in D. immitis overall. Our results also suggest that microsatellite genotyping lacks the sensitivity to detect a specific genetic signature for resistance. Future investigations using genomic analyses will be required to elucidate the genetic relationships of ML-resistant isolates.


Asunto(s)
Dirofilaria immitis/genética , Resistencia a Medicamentos/genética , Filaricidas/farmacología , Lactonas/farmacología , Repeticiones de Microsatélite , Animales , Dirofilaria immitis/efectos de los fármacos , Dirofilaria immitis/crecimiento & desarrollo , Marcadores Genéticos , Geografía , Compuestos Macrocíclicos/farmacología , Microfilarias/efectos de los fármacos , Microfilarias/genética , Microfilarias/crecimiento & desarrollo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA