Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.200
Filtrar
1.
Clin Transl Sci ; 17(5): e13791, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700236

RESUMEN

This parallel-arm, phase I study investigated the potential cytochrome P450 (CYP)3A induction effect of NBI-1065845 (TAK-653), an investigational α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiator in phase II development for major depressive disorder. The midazolam treatment arm received the sensitive CYP3A substrate midazolam on Day 1, followed by NBI-1065845 alone on Days 5-13; on Day 14, NBI-1065845 was administered with midazolam, then NBI-1065845 alone on Day 15. The oral contraceptive treatment arm received ethinyl estradiol-levonorgestrel on Day 1, then NBI-1065845 alone on Days 5-13; on Day 14, NBI-1065845 was administered with ethinyl estradiol-levonorgestrel, then NBI-1065845 alone on Days 15-17. Blood samples were collected for pharmacokinetic analyses. The midazolam treatment arm comprised 14 men and 4 women, of whom 16 completed the study. Sixteen of the 17 healthy women completed the oral contraceptive treatment arm. After multiple daily doses of NBI-1065845, the geometric mean ratios (GMRs) (90% confidence interval) for maximum observed concentration were: midazolam, 0.94 (0.79-1.13); ethinyl estradiol, 1.00 (0.87-1.15); and levonorgestrel, 0.99 (0.87-1.13). For area under the plasma concentration-time curve (AUC) from time 0 to infinity, the GMRs were as follows: midazolam, 0.88 (0.78-0.98); and ethinyl estradiol, 1.01 (0.88-1.15). For levonorgestrel, the GMR for AUC from time 0 to the last quantifiable concentration was 0.87 (0.78-0.96). These findings indicate that NBI-1065845 is not a CYP3A inducer and support its administration with CYP3A substrates. NBI-1065845 was generally well tolerated, with no new safety signals observed after coadministration of midazolam, ethinyl estradiol, or levonorgestrel.


Asunto(s)
Anticonceptivos Orales Combinados , Etinilestradiol , Levonorgestrel , Midazolam , Humanos , Midazolam/farmacocinética , Midazolam/administración & dosificación , Etinilestradiol/farmacocinética , Etinilestradiol/administración & dosificación , Etinilestradiol/efectos adversos , Femenino , Adulto , Masculino , Adulto Joven , Anticonceptivos Orales Combinados/administración & dosificación , Anticonceptivos Orales Combinados/farmacocinética , Levonorgestrel/farmacocinética , Levonorgestrel/administración & dosificación , Levonorgestrel/efectos adversos , Interacciones Farmacológicas , Combinación de Medicamentos , Voluntarios Sanos , Adolescente , Citocromo P-450 CYP3A/metabolismo , Persona de Mediana Edad , Área Bajo la Curva , Inductores del Citocromo P-450 CYP3A/administración & dosificación , Inductores del Citocromo P-450 CYP3A/farmacología
2.
Clin Transl Sci ; 17(4): e13799, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634429

RESUMEN

Momelotinib-approved for treatment of myelofibrosis in adults with anemia-and its major active metabolite, M21, were assessed as drug-drug interaction (DDI) victims with a strong cytochrome P450 (CYP) 3A4 inhibitor (multiple-dose ritonavir), an organic anion transporting polypeptide (OATP) 1B1/1B3 inhibitor (single-dose rifampin), and a strong CYP3A4 inducer (multiple-dose rifampin). Momelotinib DDI perpetrator potential (multiple-dose) was evaluated with CYP3A4 and breast cancer resistance protein (BCRP) substrates (midazolam and rosuvastatin, respectively). DDI was assessed from changes in maximum plasma concentration (Cmax), area under the concentration-time curve (AUC), time to reach Cmax, and half-life. The increase in momelotinib (23% Cmax, 14% AUC) or M21 (30% Cmax, 24% AUC) exposure with ritonavir coadministration was not clinically relevant. A moderate increase in momelotinib (40% Cmax, 57% AUC) and minimal change in M21 was observed with single-dose rifampin. A moderate decrease in momelotinib (29% Cmax, 46% AUC) and increase in M21 (31% Cmax, 15% AUC) were observed with multiple-dose rifampin compared with single-dose rifampin. Due to potentially counteracting effects of OATP1B1/1B3 inhibition and CYP3A4 induction, multiple-dose rifampin did not significantly change momelotinib pharmacokinetics compared with momelotinib alone (Cmax no change, 15% AUC decrease). Momelotinib did not alter the pharmacokinetics of midazolam (8% Cmax, 16% AUC decreases) or 1'-hydroxymidazolam (14% Cmax, 16% AUC decreases) but increased rosuvastatin Cmax by 220% and AUC by 170%. Safety findings were mild in this short-term study in healthy volunteers. This analysis suggests that momelotinib interactions with OATP1B1/1B3 inhibitors and BCRP substrates may warrant monitoring for adverse reactions or dose adjustments.


Asunto(s)
Benzamidas , Citocromo P-450 CYP3A , Pirimidinas , Ritonavir , Adulto , Humanos , Citocromo P-450 CYP3A/metabolismo , Rifampin/farmacología , Midazolam/farmacocinética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Rosuvastatina Cálcica/farmacocinética , Proteínas de Neoplasias/metabolismo , Interacciones Farmacológicas , Proteínas de Transporte de Membrana/metabolismo
3.
Clin Drug Investig ; 44(5): 303-317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598106

RESUMEN

BACKGROUND AND OBJECTIVE: Viloxazine extended-release (ER) [Qelbree®] is a nonstimulant attention-deficit/hyperactivity disorder (ADHD) treatment. In vitro studies suggested potential for viloxazine to inhibit cytochrome 450 (CYP) enzymes 1A2, 2B6, 2D6 and 3A4. This clinical study therefore evaluated viloxazine ER effects on index substrates for CYP1A2, 2D6, and 3A4, and secondarily evaluated the impact of CYP2D6 polymorphisms on viloxazine pharmacokinetics. METHODS: Thirty-seven healthy subjects received a modified Cooperstown cocktail (MCC; caffeine 200 mg, dextromethorphan 30 mg, midazolam 0.025 mg/kg) on Day 1, viloxazine ER 900 mg/day on Days 3-5, and a combination of viloxazine ER 900 mg and MCC on Day 6. Viloxazine ER effects on MCC substrates were evaluated using analysis of variance. The impact of CYP2D6 genetic polymorphisms on steady-state viloxazine plasma concentrations was evaluated using Student's t test assessing pharmacokinetic parameter differences between poor versus extensive metabolizers. RESULTS: The least squares geometric mean ratio [GMR%] (90% CI) of MCC substrate + viloxazine ER/MCC substrate alone for caffeine maximum concentration (Cmax), area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUCt), and area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC∞) was 99.11 (95.84-102.49), 436.15 (398.87-476.92), and 583.35 (262.41-1296.80), respectively; 150.76 (126.03-180.35), 185.76 (155.01-222.61), and 189.71 (160.37-224.42) for dextromethorphan Cmax, AUCt, and AUC∞, respectively; and 112.81 (104.71-121.54), 167.56 (153.05-183.45), and 168.91 (154.38-184.80) for midazolam Cmax, AUCt, and AUC∞, respectively. At steady state, viloxazine least squares GMR (90% CI) for poor/extensive CYP2D6 metabolizers were Cmax 120.70 (102.33-142.37) and area under the plasme concentration-time curve from time 0 to 24 hours (AUC0-24 125.66 (105.36-149.87)). CONCLUSION: Viloxazine ER is a strong CYP1A2 inhibitor and a weak CYP2D6 and CYP3A4 inhibitor. CYP2D6 polymorphisms did not meaningfully alter the viloxazine ER pharmacokinetic profile.


Asunto(s)
Citocromo P-450 CYP2D6 , Preparaciones de Acción Retardada , Polimorfismo Genético , Viloxazina , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Masculino , Adulto , Viloxazina/farmacocinética , Viloxazina/administración & dosificación , Femenino , Adulto Joven , Cafeína/farmacocinética , Cafeína/administración & dosificación , Dextrometorfano/farmacocinética , Dextrometorfano/administración & dosificación , Cápsulas , Midazolam/farmacocinética , Midazolam/administración & dosificación , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Voluntarios Sanos
4.
Drug Metab Pharmacokinet ; 55: 101000, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458122

RESUMEN

In this study, a physiologically based pharmacokinetic (PBPK) model of the cytochrome P450 3A (CYP3A) substrate azelnidipine was developed using in vitro and clinical data to predict the effects of azole antifungals on azelnidipine pharmacokinetics. Modeling and simulations were conducted using the Simcyp™ PBPK simulator. The azelnidipine model consisted of a full PBPK model and a first-order absorption model. CYP3A was assumed as the only azelnidipine elimination route, and CYP3A clearance was optimized using the pharmacokinetic profile of single-dose 5-mg azelnidipine in healthy participants. The model reproduced the results of a clinical drug-drug interaction study and met validation criteria. PBPK model simulations using azole antifungals (itraconazole, voriconazole, posaconazole, fluconazole, fosfluconazole) and azelnidipine or midazolam (CYP3A index substrate) were performed. Increases in the simulated area under the plasma concentration-time curve from time zero extrapolated to infinity with inhibitors were comparable between azelnidipine (range, 2.11-6.47) and midazolam (range, 2.26-9.22), demonstrating that azelnidipine is a sensitive CYP3A substrate. Increased azelnidipine plasma concentrations are expected when co-administered with azole antifungals, potentially affecting azelnidipine safety. These findings support the avoidance of azole antifungals in patients taking azelnidipine and demonstrate the utility of PBPK modeling to inform appropriate drug use.


Asunto(s)
Antifúngicos , Ácido Azetidinocarboxílico/análogos & derivados , Dihidropiridinas , Midazolam , Humanos , Midazolam/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Itraconazol , Modelos Biológicos
5.
Mol Pharm ; 21(5): 2187-2197, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551309

RESUMEN

This study aims to explore and characterize the role of pediatric sedation via rectal route. A pediatric physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) model of midazolam gel was built and validated to support dose selection for pediatric clinical trials. Before developing the rectal PBPK model, an intravenous PBPK model was developed to determine drug disposition, specifically by describing the ontogeny model of the metabolic enzyme. Pediatric rectal absorption was developed based on the rectal PBPK model of adults. The improved Weibull function with permeability, surface area, and fluid volume parameters was used to extrapolate pediatric rectal absorption. A logistic regression model was used to characterize the relationship between the free concentrations of midazolam and the probability of sedation. All models successfully described the PK profiles with absolute average fold error (AAFE) < 2, especially our intravenous PBPK model that extended the predicted age to preterm. The simulation results of the PD model showed that when the free concentrations of midazolam ranged from 3.9 to 18.4 ng/mL, the probability of "Sedation" was greater than that of "Not-sedation" states. Combined with the rectal PBPK model, the recommended sedation doses were in the ranges of 0.44-2.08 mg/kg for children aged 2-3 years, 0.35-1.65 mg/kg for children aged 4-7 years, 0.24-1.27 mg/kg for children aged 8-12 years, and 0.20-1.10 mg/kg for adolescents aged 13-18 years. Overall, this model mechanistically quantified drug disposition and effect of midazolam gel in the pediatric population, accurately predicted the observed clinical data, and simulated the drug exposure for sedation that will inform dose selection for following pediatric clinical trials.


Asunto(s)
Administración Rectal , Hipnóticos y Sedantes , Midazolam , Modelos Biológicos , Humanos , Midazolam/farmacocinética , Midazolam/administración & dosificación , Niño , Preescolar , Hipnóticos y Sedantes/farmacocinética , Hipnóticos y Sedantes/administración & dosificación , Recto/efectos de los fármacos , Lactante , Geles , Adolescente , Masculino , Femenino , Recién Nacido
6.
Drugs R D ; 24(1): 97-108, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472696

RESUMEN

BACKGROUND AND OBJECTIVES: Daridorexant, a dual orexin receptor antagonist was recently approved for the treatment of insomnia at doses up to 50 mg once per night. This study investigated the effect of single-dose and multiple-dose daridorexant 50 mg at steady state on the pharmacokinetics (PK) of the cytochrome P450 (CYP) 3A4-sensitive substrate midazolam, and the effect of single-dose daridorexant 50 mg on the PK and pharmacodynamics (PD) of the CYP2C9-sensitive substrate warfarin. METHODS: In this prospective, single-center, open-label, fixed-sequence, phase I, drug-drug interaction study, 18 healthy male subjects sequentially received Treatment A, B, and C in three periods. Treatment A consisted of a single oral concomitant administration of midazolam 2 mg and warfarin 25 mg on day 1 of the first period. Treatment B consisted of one oral administration of daridorexant 50 mg followed 1 h later by a single oral dose of midazolam 2 mg concomitantly with a single oral dose of warfarin 25 mg on day 1 and a once-daily oral administration of daridorexant 50 mg for 6 days of the second period. Treatment C consisted of a single oral administration of daridorexant 50 mg at steady state followed 1 h later by a single oral administration of midazolam 2 mg on day 1 of the third period. Blood samples were assessed for midazolam and S-warfarin PK, and PD (international normalized ratio and factor VII). Noncompartmental  PK parameters and PD variables were evaluated with geometric mean ratios and 90% confidence intervals of Treatment B/A versus C/A for midazolam, and treatment B/A for warfarin. Safety and tolerability of each treatment were also assessed. RESULTS: Midazolam maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) were 1.13- and 1.42-fold higher, respectively, after single-dose administration of daridorexant 50 mg compared to administration of midazolam alone, while Cmax and AUC0-24 were 1.12- and 1.35-fold higher, respectively, after administration of daridorexant 50 mg once daily at steady state. Terminal half-life and time to maximum plasma concentration were comparable between treatments. Daridorexant had no influence on the PK and PD of warfarin. All treatments were safe and well tolerated. CONCLUSIONS: Daridorexant at 50 mg is classified as a weak CYP3A4 inhibitor after single- and multiple-dose administration once daily at steady state. Daridorexant 50 mg did not induce CYP3A4 activity or inhibit CYP2C9 activity. CLINICAL TRIAL REGISTRATION: This trial (NCT05480488) was registered on 29 July, 2022.


Asunto(s)
Interacciones Farmacológicas , Imidazoles , Midazolam , Pirrolidinas , Warfarina , Humanos , Masculino , Midazolam/farmacocinética , Midazolam/administración & dosificación , Adulto , Warfarina/farmacocinética , Warfarina/administración & dosificación , Warfarina/farmacología , Adulto Joven , Voluntarios Sanos , Triazoles/farmacocinética , Triazoles/administración & dosificación , Triazoles/farmacología , Estudios Prospectivos , Antagonistas de los Receptores de Orexina/farmacocinética , Antagonistas de los Receptores de Orexina/farmacología , Antagonistas de los Receptores de Orexina/administración & dosificación , Área Bajo la Curva
7.
Clin Pharmacokinet ; 63(4): 469-481, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38393578

RESUMEN

BACKGROUND: We investigated the effect of a 5-day low-dose ritonavir therapy, as it is used in the treatment of COVID-19 with nirmatrelvir/ritonavir, on the pharmacokinetics of three factor Xa inhibitors (FXaI). Concurrently, the time course of the activities of the cytochromes P450 (CYP) 3A4, 2C19, and 2D6 was assessed. METHODS: In an open-label, fixed sequence clinical trial, the effect and duration of a 5-day oral ritonavir (100 mg twice daily) treatment on the pharmacokinetics of three oral microdosed FXaI (rivaroxaban 25 µg, apixaban 25 µg, and edoxaban 50 µg) and microdosed probe drugs (midazolam 25 µg, yohimbine 50 µg, and omeprazole 100 µg) was evaluated in eight healthy volunteers. The plasma concentrations of all drugs were quantified using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods and pharmacokinetics were analysed using non-compartmental analyses. RESULTS: Ritonavir increased the exposure of apixaban, edoxaban, and rivaroxaban, but to a different extent the observed area under the plasma concentration-time curve (geometric mean ratio 1.29, 1.46, and 1.87, respectively). A strong CYP3A4 inhibition (geometric mean ratio > 10), a moderate CYP2C19 induction 2 days after ritonavir (0.64), and no alteration of CYP2D6 were observed. A CYP3A4 recovery half-life of 2.3 days was determined. CONCLUSION: This trial with three microdosed FXaI suggests that at most the rivaroxaban dose should be reduced during short-term ritonavir, and only in patients receiving high maintenance doses. Thorough time series analyses demonstrated differential effects on three different drug-metabolising enzymes over time with immediate profound inhibition of CYP3A4 and only slow recovery after discontinuation. CLINICAL TRIAL REGISTRATION: EudraCT number: 2021-006643-39.


Asunto(s)
Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Inhibidores del Factor Xa , Voluntarios Sanos , Piridonas , Ritonavir , Humanos , Ritonavir/administración & dosificación , Ritonavir/farmacocinética , Ritonavir/farmacología , Masculino , Adulto , Inhibidores del Factor Xa/farmacocinética , Inhibidores del Factor Xa/administración & dosificación , Citocromo P-450 CYP3A/metabolismo , Piridonas/farmacocinética , Piridonas/administración & dosificación , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C19/genética , Administración Oral , Femenino , Rivaroxabán/farmacocinética , Rivaroxabán/administración & dosificación , Adulto Joven , Piridinas/farmacocinética , Piridinas/administración & dosificación , Piridinas/farmacología , Pirazoles/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/farmacología , Tiazoles/farmacocinética , Tiazoles/administración & dosificación , Tiazoles/farmacología , Midazolam/farmacocinética , Midazolam/administración & dosificación , Omeprazol/farmacocinética , Omeprazol/administración & dosificación , Omeprazol/farmacología
8.
Pharm Res ; 41(3): 441-462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351228

RESUMEN

PURPOSE: This study was designed to verify a virtual population representing patients with nonalcoholic fatty liver disease (NAFLD) to support the implementation of a physiologically based pharmacokinetic (PBPK) modeling approach for prediction of disease-related changes in drug pharmacokinetics. METHODS: A virtual NAFLD patient population was developed in GastroPlus (v.9.8.2) by accounting for pathophysiological changes associated with the disease and proteomics-informed alterations in the abundance of metabolizing enzymes and transporters pertinent to drug disposition. The NAFLD population model was verified using exemplar drugs where elimination is influenced predominantly by cytochrome P450 (CYP) enzymes (chlorzoxazone, caffeine, midazolam, pioglitazone) or by transporters (rosuvastatin, 11C-metformin, morphine and the glucuronide metabolite of morphine). RESULTS: PBPK model predictions of plasma concentrations of all the selected drugs and hepatic radioactivity levels of 11C-metformin were consistent with the clinically-observed data. Importantly, the PBPK simulations using the virtual NAFLD population model provided reliable estimates of the extent of changes in key pharmacokinetic parameters for the exemplar drugs, with mean predicted ratios (NAFLD patients divided by healthy individuals) within 0.80- to 1.25-fold of the clinically-reported values, except for midazolam (prediction-fold difference of 0.72). CONCLUSION: A virtual NAFLD population model within the PBPK framework was successfully developed with good predictive capability of estimating disease-related changes in drug pharmacokinetics. This supports the use of a PBPK modeling approach for prediction of the pharmacokinetics of new investigational or repurposed drugs in patients with NAFLD and may help inform dose adjustments for drugs commonly used to treat comorbidities in this patient population.


Asunto(s)
Metformina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Midazolam/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Biológicos , Derivados de la Morfina
9.
Clin Pharmacokinet ; 63(3): 343-355, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38361163

RESUMEN

BACKGROUND AND OBJECTIVE: With the rise in the use of physiologically based pharmacokinetic (PBPK) modeling over the past decade, the use of PBPK modeling to underpin drug dosing for off-label use in clinical care has become an attractive option. In order to use PBPK models for high-impact decisions, thorough qualification and validation of the model is essential to gain enough confidence in model performance. Currently, there is no agreed method for model acceptance, while clinicians demand a clear measure of model performance before considering implementing PBPK model-informed dosing. We aim to bridge this gap and propose the use of a confidence interval for the predicted-to-observed geometric mean ratio with predefined boundaries. This approach is similar to currently accepted bioequivalence testing procedures and can aid in improved model credibility and acceptance. METHODS: Two different methods to construct a confidence interval are outlined, depending on whether individual observations or aggregate data are available from the clinical comparator data sets. The two testing procedures are demonstrated for an example evaluation of a midazolam PBPK model. In addition, a simulation study is performed to demonstrate the difference between the twofold criterion and our proposed method. RESULTS: Using midazolam adult pharmacokinetic data, we demonstrated that creating a confidence interval yields more robust evaluation of the model than a point estimate, such as the commonly used twofold acceptance criterion. Additionally, we showed that the use of individual predictions can reduce the number of required test subjects. Furthermore, an easy-to-implement software tool was developed and is provided to make our proposed method more accessible. CONCLUSIONS: With this method, we aim to provide a tool to further increase confidence in PBPK model performance and facilitate its use for directly informing drug dosing in clinical care.


Asunto(s)
Midazolam , Modelos Biológicos , Adulto , Humanos , Midazolam/farmacocinética , Intervalos de Confianza , Simulación por Computador , Programas Informáticos
10.
Clin Ther ; 46(3): 194-200, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38307724

RESUMEN

PURPOSE: Trofinetide is the first drug to be approved by the US Food and Drug Administration for use in the treatment of patients with Rett syndrome, a multisystem disorder requiring multimodal therapies. Cytochrome P450 (CYP) 3A4 metabolizes >50% of therapeutic drugs and is the CYP isozyme most commonly expressed in the liver and intestines. In vitro studies suggest the concentration of trofinetide producing 50% inhibition (IC50) of CYP3A4 is >15 mmol/L; that concentration was much greater than the target clinical concentration associated with the maximal intended therapeutic dose (12 g). Thus, trofinetide has a low potential for drug-drug interactions in the liver. However, there is potential for drug-drug interactions in the intestines given the oral route of administration and expected relatively high concentration in the gastrointestinal tract after dose administration. METHODS: Using a validated physiologically based pharmacokinetic (PBPK) model, deterministic and stochastic simulations were used for assessing the PK properties related to exposure and bioavailability of midazolam (sensitive index substrate for CYP3A4) following an oral (15 mg) or intravenous (2 mg) dose, with and without single-dose and steady-state (12 g) coadministration of oral trofinetide. FINDINGS: Following coadministration of intravenous midazolam and oral trofinetide, the PK properties of midazolam were unchanged. The trofinetide concentration in the gut wall was >15 mmol/L during the first 1.5 hours after dosing. With the coadministration of oral midazolam and trofinetide, the model predicted increases in fraction of dose reaching the portal vein, bioavailability, Cmax, and AUCinf of 30%, 30%, 18%, and 30%, respectively. IMPLICATIONS: In this study that used a PBPK modeling approach, it was shown that CYP3A4 enzyme activity in the liver was not affected by trofinetide coadministration, but trofinetide was predicted to be a weak inhibitor of intestinal CYP3A4 metabolism after oral administration at therapeutic doses.


Asunto(s)
Citocromo P-450 CYP3A , Glutamatos , Midazolam , Humanos , Preparaciones Farmacéuticas , Citocromo P-450 CYP3A/metabolismo , Midazolam/farmacocinética , Interacciones Farmacológicas , Modelos Biológicos , Inhibidores del Citocromo P-450 CYP3A
11.
Clin Pharmacol Drug Dev ; 13(5): 517-533, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423992

RESUMEN

Avacopan, a complement 5a receptor (C5aR) antagonist approved for treating severe active antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis, was evaluated in 2 clinical drug-drug interaction studies. The studies assessed the impact of avacopan on the pharmacokinetics (PK) of CYP3A4 substrates midazolam and simvastatin and CYP2C9 substrate celecoxib, and the influence of CYP3A4 inhibitor itraconazole and inducer rifampin on the PKs of avacopan. The results indicated that twice-daily oral administration of 30 mg of avacopan increased the area under the curve (AUC) of midazolam by 1.81-fold and celecoxib by 1.15-fold when administered without food, and twice-daily oral administration of 30 or 60 mg of avacopan increased the AUC of simvastatin by approximately 2.6-3.5-fold and the AUC of the active metabolite ß-hydroxy-simvastatin acid by approximately 1.4-1.7-fold when co-administered with food. Furthermore, the AUC of avacopan increased by approximately 2.19-fold when co-administered with itraconazole and decreased by approximately 13.5-fold when co-administered with rifampin. These findings provide critical insights into the potential drug-drug interactions involving avacopan, which could have significant implications for patient care and treatment planning. (NCT06207682).


Asunto(s)
Citocromo P-450 CYP2C9 , Inhibidores del Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Voluntarios Sanos , Itraconazol , Midazolam , Rifampin , Simvastatina , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Administración Oral , Área Bajo la Curva , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Inhibidores del Citocromo P-450 CYP3A/administración & dosificación , Inhibidores del Citocromo P-450 CYP3A/farmacocinética , Interacciones Alimento-Droga , Itraconazol/farmacología , Itraconazol/administración & dosificación , Itraconazol/farmacocinética , Midazolam/farmacocinética , Midazolam/administración & dosificación , Rifampin/farmacología , Rifampin/administración & dosificación , Rifampin/farmacocinética , Simvastatina/farmacocinética , Simvastatina/administración & dosificación , Simvastatina/efectos adversos
12.
Cancer Chemother Pharmacol ; 93(5): 439-453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270613

RESUMEN

PURPOSE: Midostaurin, approved for treating FLT-3-mutated acute myeloid leukemia and advanced systemic mastocytosis, is metabolized by cytochrome P450 (CYP) 3A4 to two major metabolites, and may inhibit and/or induce CYP3A, CYP2B6, and CYP2C8. Two studies investigated the impact of midostaurin on CYP substrate drugs and oral contraceptives in healthy participants. METHODS: Using sentinel dosing for participants' safety, the effects of midostaurin at steady state following 25-day (Study 1) or 24-day (Study 2) dosing with 50 mg twice daily were evaluated on CYP substrates, midazolam (CYP3A4), bupropion (CYP2B6), and pioglitazone (CYP2C8) in Study 1; and monophasic oral contraceptives (containing ethinylestradiol [EES] and levonorgestrel [LVG]) in Study 2. RESULTS: In Study 1, midostaurin resulted in a 10% increase in midazolam peak plasma concentrations (Cmax), and 3-4% decrease in total exposures (AUC). Bupropion showed a 55% decrease in Cmax and 48-49% decrease in AUCs. Pioglitazone showed a 10% decrease in Cmax and 6% decrease in AUC. In Study 2, midostaurin resulted in a 26% increase in Cmax and 7-10% increase in AUC of EES; and a 19% increase in Cmax and 29-42% increase in AUC of LVG. Midostaurin 50 mg twice daily for 28 days ensured that steady-state concentrations of midostaurin and the active metabolites were achieved by the time of CYP substrate drugs or oral contraceptive dosing. No safety concerns were reported. CONCLUSION: Midostaurin neither inhibits nor induces CYP3A4 and CYP2C8, and weakly induces CYP2B6. Midostaurin at steady state has no clinically relevant PK interaction on hormonal contraceptives. All treatments were well tolerated.


Asunto(s)
Bupropión , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Midazolam , Estaurosporina , Humanos , Área Bajo la Curva , Bupropión/farmacocinética , Bupropión/administración & dosificación , Anticonceptivos Orales/administración & dosificación , Anticonceptivos Orales/farmacología , Anticonceptivos Orales/farmacocinética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Combinación de Medicamentos , Etinilestradiol/farmacocinética , Etinilestradiol/administración & dosificación , Etinilestradiol/farmacología , Voluntarios Sanos , Levonorgestrel/farmacocinética , Levonorgestrel/administración & dosificación , Levonorgestrel/farmacología , Midazolam/farmacocinética , Midazolam/administración & dosificación , Pioglitazona/farmacología , Pioglitazona/administración & dosificación , Pioglitazona/farmacocinética , Estaurosporina/análogos & derivados , Estaurosporina/farmacología , Estaurosporina/farmacocinética , Estaurosporina/administración & dosificación , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
13.
Eur J Pharm Sci ; 194: 106697, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199444

RESUMEN

The concomitant administration of ritonavir and oxycodone may significantly increase the plasma concentrations of oxycodone. This study was aimed to simulate DDI between ritonavir and oxycodone, a widely used opioid, and to formulate dosing protocols for oxycodone by using physiologically based pharmacokinetic (PBPK) modeling. We developed a ritonavir PBPK model incorporating induction and competitive and time-dependent inhibition of CYP3A4 and competitive inhibition of CYP2D6. The ritonavir model was evaluated with observed clinical pharmacokinetic data and validated for its CYP3A4 inhibition potency. We then used the model to simulate drug interactions between oxycodone and ritonavir under various dosing scenarios. The developed model captured the pharmacokinetic characteristics of ritonavir from clinical studies. The model also accurately predicts exposure changes of midazolam, triazolam, and oxycodone in the presence of ritonavir. According to model simulations, the steady-state maximum, minimum and average concentrations of oxycodone increased by up to 166% after co-administration with ritonavir, and the total exposure increased by approximately 120%. To achieve similar steady-state concentrations, halving the dose with an unchanged dosing interval or doubling the dosing interval with an unaltered single dose should be practical for oxycodone, whether formulated in uncoated or controlled-release tablets during long-term co-medication with ritonavir. The results revealed exposure-related risks of oxycodone-ritonavir interactions that have not been studied clinically and emphasized PBPK as a workable method to direct judicious dosage.


Asunto(s)
Oxicodona , Ritonavir , Ritonavir/farmacocinética , Oxicodona/farmacocinética , Citocromo P-450 CYP3A , Midazolam/farmacocinética , Interacciones Farmacológicas , Modelos Biológicos
14.
Seizure ; 115: 62-67, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184900

RESUMEN

Despite the availability of many antiseizure medications (ASMs), 30 % of patients experience pharmacoresistant seizures. High-throughput screening methods undoubtedly remain one of the most important approaches for discovering new molecules to treat seizures. However, the costly and time-consuming nature of drug development prompts us to explore alternative strategies to counteract drug-resistant seizures. One such approach is to consider intranasal administration of known molecules for seizure treatment. In the case of treating epileptic seizures, administering ASMs intranasally may enhance treatment effectiveness and minimize adverse effects. A good example of changes in drug administration is the intranasal administration of fentanyl, which has become a clinical standard in the emergency setting to treat moderate to severe pain in adults and children. This review discusses the utilization of intranasally administered ASMs for both acute and chronic seizures. It addresses various targeted pharmacokinetic approaches, challenges and prospects associated with these regimens. Brief neuroanatomical and molecular rationale for nose-to-brain drug transport is also presented. Furthermore, recent preclinical studies validating the efficacy and brain distribution following intranasal administration of the most commonly used drugs in chronic treatment are also discussed.


Asunto(s)
Epilepsia , Midazolam , Niño , Adulto , Humanos , Administración Intranasal , Midazolam/farmacocinética , Convulsiones/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Resultado del Tratamiento , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacocinética , Diazepam/uso terapéutico
15.
Clin Pharmacol Ther ; 115(2): 278-287, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37964462

RESUMEN

Tusamitamab ravtansine is an antibody-drug conjugate (ADC) composed of a humanized monoclonal antibody (IgG1) and DM4 payload. Even if DM4 and its main metabolite methyl-DM4 (Me-DM4) circulate at low concentrations after ADC administration, their potential as perpetrators of cytochrome P450 mediated drug-drug interaction was assessed. In vitro studies in human hepatocytes indicated that Me-DM4 elicited a clear concentration-dependent down regulation of cytochrome P450 enzymes (CYP3A4, 1A2, and 2B6). Because DM4 was unstable under the incubation conditions studied, the in vitro constants could not be determined for this entity. Thus, to predict the clinical relevance of this observed downregulation, an in vitro-in vivo extrapolation (IVIVE) pharmacokinetic (PK) based approach was developed. To mitigate model prediction errors and because of their similar inhibitory effect on tubulin polymerization, the same downregulation constants were used for DM4 and Me-DM4. This approach describes the time course of decreasing CYP3A4, 1A2, and 2B6 enzyme amounts as a function of circulating concentrations of DM4 and Me-DM4 predicted from a population PK model. The developed IVIVE-PK model showed that the highest CYP abundance decrease was observed for CYP3A4, with a transient reduction of < 10% from baseline. The impact on midazolam exposure, as probe substrate of CYP3A, was then simulated based on a physiologically-based PK static method. The maximal CYP3A4 abundance reduction was associated with a predicted midazolam area under the curve (AUC) ratio of 1.14. To conclude, the observed in vitro downregulation of CYPs by Me-DM4 is not expected to have relevant clinical impact.


Asunto(s)
Anticuerpos , Citocromo P-450 CYP3A , Midazolam , Humanos , Citocromo P-450 CYP3A/metabolismo , Regulación hacia Abajo , Midazolam/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas
16.
Pediatr Res ; 95(1): 75-83, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37752246

RESUMEN

BACKGROUND: Many drugs are used off-label or unlicensed in neonates. This does not mean they are used without evidence or knowledge. We aimed to apply and evaluate the Grading and Assessment of Pharmacokinetic-Pharmacodynamic Studies (GAPPS) scoring system for the level of evidence of two commonly used anti-epileptic drugs. METHODS: Midazolam and phenobarbital as anti-epileptics were evaluated with a systematic literature search on neonatal pharmacokinetic (PK) and/or pharmacodynamic [PD, (amplitude-integrated) electroencephalography effect] studies. With the GAPPS system, two evaluators graded the current level of evidence. Inter-rater agreement was assessed for dosing evidence score (DES), quality of evidence (QoE), and strength of recommendation (REC). RESULTS: Seventy-two studies were included. DES scores 4 and 9 were most frequently used for PK, and scores 0 and 1 for PD. Inter-rater agreements on DES, QoE, and REC ranged from moderate to very good. A final REC was provided for all PK studies, but only for 25% (midazolam) and 33% (phenobarbital) of PD studies. CONCLUSIONS: There is a reasonable level of evidence concerning midazolam and phenobarbital PK in neonates, although using a predefined target without integrated PK/PD evaluation. Further research is needed on midazolam use in term neonates with therapeutic hypothermia, and phenobarbital treatment in preterms. IMPACT: There is a reasonable level of evidence concerning pharmacotherapy of midazolam and phenobarbital in neonates. Most evidence is however based on PK studies, using a predefined target level or concentration range without integrated, combined PK/PD evaluation. Using the GAPPS system, final strength of recommendation could be provided for all PK studies, but only for 25% (midazolam) to 33% (phenobarbital) of PD studies. Due to the limited PK observations of midazolam in term neonates with therapeutic hypothermia, and of phenobarbital in preterm neonates these subgroups can be identified for further research.


Asunto(s)
Hipotermia Inducida , Midazolam , Recién Nacido , Humanos , Midazolam/farmacocinética , Midazolam/uso terapéutico , Fenobarbital/uso terapéutico , Anticonvulsivantes/uso terapéutico , Electroencefalografía
17.
J Clin Pharmacol ; 64(2): 155-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37789682

RESUMEN

Patients with prostate cancer (PCa) have a lower docetaxel exposure for both intravenous (1.8-fold) and oral administration (2.4-fold) than patients with other solid cancers, which could influence efficacy and toxicity. An altered metabolism by cytochrome P450 3A (CYP3A) due to castration status might explain the observed difference in docetaxel pharmacokinetics. In this in vivo phenotyping, pharmacokinetic study, CYP3A activity defined by midazolam clearance (CL) was compared between patients with PCa and male patients with other solid tumors. All patients with solid tumors who did not use CYP3A-modulating drugs were eligible for participation. Patients received 2 mg midazolam orally and 1 mg midazolam intravenously on 2 consecutive days. Plasma concentrations were measured with a validated liquid chromatography-tandem mass spectrometry method. Genotyping was performed for CYP3A4 and CYP3A5. Nine patients were included in each group. Oral midazolam CL was 1.26-fold higher in patients with PCa compared to patients with other solid tumors (geometric mean [coefficient of variation], 94.1 [33.5%] L/h vs 74.4 [39.1%] L/h, respectively; P = .08). Intravenous midazolam CL did not significantly differ between the 2 groups (P = .93). Moreover, the metabolic ratio of midazolam to 1'-hydroxy midazolam did not differ between the 2 groups for both oral administration (P = .67) and intravenous administration (P = .26). CYP3A4 and CYP3A5 genotypes did not influence midazolam pharmacokinetics. The observed difference in docetaxel pharmacokinetics between both patient groups therefore appears to be explained neither by a difference in midazolam CL nor by a difference in metabolic conversion rate of midazolam.


Asunto(s)
Citocromo P-450 CYP3A , Neoplasias de la Próstata , Humanos , Masculino , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Midazolam/farmacocinética , Docetaxel , Fenotipo , Neoplasias de la Próstata/tratamiento farmacológico , Administración Oral
18.
Br J Clin Pharmacol ; 90(3): 871-881, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38030591

RESUMEN

AIMS: This study evaluated drug-drug interactions between the CYP3A4 inhibitor carotegrast methyl and the other CYP3A4 substrates, midazolam, atorvastatin and prednisolone. METHODS: A total of 88 healthy volunteers orally received carotegrast methyl 960 mg 3 times daily for 14 days. A single oral (5 mg) or intravenous (0.017 mg kg-1 ) midazolam, oral (5 mg) prednisolone or oral (10 mg) atorvastatin was administered before, with and after carotegrast methyl treatment. When the 90% confidence interval (CI) for the geometric mean ratios of the pharmacokinetic (PK) parameters with coadministration with carotegrast methyl (Day 14) to those before carotegrast methyl administration was between 0.80 and 1.25, no PK interaction were deemed. RESULTS: The Cmax and AUC0-t of oral midazolam before administration of carotegrast methyl were 30.9 ± 9.8 ng mL-1 and 74.5 ± 21.9 ng h mL-1 , respectively. The geometric mean ratio of the Cmax and AUC0-t of midazolam on Day 14 to those on Day -1 was 1.86 (90% CI, 1.64-2.11) and 3.07 (90% CI, 2.81-3.35), which did not fall within the range of 0.80-1.25, suggesting that carotegrast methyl had a PK interaction with midazolam. Similar PK interactions were found for intravenous midazolam and atorvastatin, but not for prednisolone. The inhibitory effect of carotegrast methyl on CYP3A4-mediated metabolism of midazolam and atorvastatin had almost disappeared by 14 days after the end of administration. CONCLUSION: Carotegrast methyl was classified as a moderate CYP3A4 inhibitor in humans. Carotegrast methyl might enhance the action of drugs that are metabolized by CYP3A4.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Fenilalanina/análogos & derivados , Quinazolinonas , Adulto , Humanos , Midazolam/farmacocinética , Atorvastatina/farmacología , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Prednisolona , Interacciones Farmacológicas , Área Bajo la Curva
19.
Clin Pharmacol Ther ; 115(5): 1025-1032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105467

RESUMEN

In the past, rifampicin was well-established as strong index CYP3A inducer in clinical drug-drug interaction (DDI) studies. However, due to identified potentially genotoxic nitrosamine impurities, it should not any longer be used in healthy volunteer studies. Available clinical data suggest carbamazepine as an alternative to rifampicin as strong index CYP3A4 inducer in clinical DDI studies. Further, physiologically-based pharmacokinetic (PBPK) modeling is a tool with increasing importance to support the DDI risk assessment of drugs during drug development. CYP3A4 induction properties and the safety profile of carbamazepine were investigated in two open-label, fixed sequence, crossover clinical pharmacology studies in healthy volunteers using midazolam as a sensitive index CYP3A4 substrate. Carbamazepine was up-titrated from 100 mg twice daily (b.i.d.) to 200 mg b.i.d., and to a final dose of 300 mg b.i.d. for 10 consecutive days. Mean area under plasma concentration-time curve from zero to infinity (AUC(0-∞)) of midazolam consistently decreased by 71.8% (ratio: 0.282, 90% confidence interval (CI): 0.235-0.340) and 67.7% (ratio: 0.323, 90% CI: 0.256-0.407) in study 1 and study 2, respectively. The effect was adequately described by an internally developed PBPK model for carbamazepine which has been made freely available to the scientific community. Further, carbamazepine was safe and well-tolerated in the investigated dosing regimen in healthy participants. The results demonstrated that the presented design is appropriate for the use of carbamazepine as alternative inducer to rifampicin in DDI studies acknowledging its CYP3A4 inductive potency and safety profile.


Asunto(s)
Midazolam , Rifampin , Humanos , Rifampin/efectos adversos , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Modelos Biológicos , Carbamazepina/efectos adversos , Inhibidores del Citocromo P-450 CYP3A/farmacología
20.
Clin Transl Sci ; 17(1): e13644, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38108609

RESUMEN

PF-06835919, a ketohexokinase inhibitor, presented as an inducer of cytochrome P450 3A4 (CYP3A4) in vitro (human primary hepatocytes), and static mechanistic modeling exercises predicted significant induction in vivo (oral midazolam area under the plasma concentration-time curve [AUC] ratio [AUCR] = 0.23-0.79). Therefore, a drug-drug interaction study was conducted to evaluate the effect of multiple doses of PF-06835919 (300 mg once daily × 10 days; N = 10 healthy participants) on the pharmacokinetics of a single oral midazolam 7.5 mg dose. The adjusted geometric means for midazolam AUC and its maximal plasma concentration were similar following co-administration with PF-06835919 (vs. midazolam administration alone), with ratios of the adjusted geometric means (90% confidence interval [CI]) of 97.6% (90% CI: 79.9%-119%) and 98.9% (90% CI: 76.4%-128%), respectively, suggesting there was minimal effect of PF-06835919 on midazolam pharmacokinetics. Lack of CYP3A4 induction was confirmed after the preparation of subject plasma-derived small extracellular vesicles (sEVs) and conducting proteomic and activity (midazolam 1'-hydroxylase) analysis. Consistent with the midazolam AUCR observed, the CYP3A4 protein expression fold-induction (geometric mean, 90% CI) was low in liver (0.9, 90% CI: 0.7-1.2) and non-liver (0.9, 90% CI: 0.7-1.2) sEVs (predicted AUCR = 1.0, 90% CI: 0.9-1.2). Likewise, minimal induction of CYP3A4 activity (geometric mean, 90% CI) in both liver (1.1, 90% CI: 0.9-1.3) and non-liver (0.9, 90% CI: 0.5-1.5) sEVs was evident (predicted AUCR = 0.9, 90% CI: 0.6-1.4). The results showcase the integrated use of an oral CYP3A probe (midazolam) and plasma-derived sEVs to assess a drug candidate as inducer.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Humanos , Midazolam/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Proteómica , Preparaciones Farmacéuticas , Biopsia Líquida , Interacciones Farmacológicas , Administración Oral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...