Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.311
Filtrar
1.
Biol Pharm Bull ; 47(4): 785-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583949

RESUMEN

Midazolam (MDZ) is clinically used for its sedative and anticonvulsant properties. However, its prolonged or potentiated effects are sometimes concerning. The main binding protein of MDZ is albumin, and reduced serum albumin levels could lead to MDZ accumulation, thereby potentiating or prolonging its effects. Previous investigations have not thoroughly examined these phenomena from a behavioral pharmacology standpoint. Consequently, this study aimed to evaluate both the prolonged and potentiated effects of MDZ, as well as the effects of serum albumin levels on the action of MDZ in low-albumin rats. Male Wistar rats were classified into control (20% protein diet), low-protein (5% protein), and non-protein groups (0% protein diet) and were fed the protein-controlled diets for 30 d to obtain low-albumin rats. The locomotor activity and muscle relaxant effects of MDZ were evaluated using the rotarod, grip strength, and open-field tests conducted 10, 60, and 120 min after MDZ administration. Serum albumin levels decreased significantly in the low-protein and non-protein diet groups compared with those in the control group. Compared with the control rats, low-albumin rats demonstrated a significantly shorter time to fall, decreased muscle strength, and a significant decrease in the distance traveled after MDZ administration in the rotarod, grip strength, and open-field tests, respectively. Decreased serum albumin levels potentiated and prolonged the effects of MDZ. Hence, serum albumin level is a critical parameter associated with MDZ administration, which should be monitored, and any side effects related to decreased albumin levels should be investigated.


Asunto(s)
Hipoalbuminemia , Midazolam , Ratas , Masculino , Animales , Midazolam/farmacología , Ratas Wistar , Hipnóticos y Sedantes/farmacología , Albúmina Sérica
2.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573154

RESUMEN

OBJECTIVE: We sought to explore relationships of acute dissociative effects of intravenous ketamine with change in depression and suicidal ideation and with plasma metabolite levels in a randomized, midazolam-controlled trial. METHODS: Data from a completed trial in suicidal, depressed participants (n = 40) randomly assigned to ketamine was used to examine relationships between ketamine treatment-emergent dissociative and psychotomimetic symptoms with pre/post-infusion changes in suicidal ideation and depression severity. Nonparametric correlational statistics were used. These methods were also used to explore associations between dissociative or psychotomimetic symptoms and blood levels of ketamine and metabolites in a subset of participants (n = 28) who provided blood samples immediately post-infusion. RESULTS: Neither acute dissociative nor psychotomimetic effects of ketamine were associated with changes in suicidal ideation or depressive symptoms from pre- to post-infusion. Norketamine had a trend-level, moderate inverse correlation with dissociative symptoms on Day 1 post-injection (P = .064; P =.013 removing 1 outlier). Dehydronorketamine correlated with Clinician-Administered Dissociative States Scale scores at 40 minutes (P = .034), 230 minutes (P = .014), and Day 1 (P = .012). CONCLUSION: We did not find evidence that ketamine's acute, transient dissociative, or psychotomimetic effects are associated with its antidepressant or anti-suicidal ideation actions. The correlation of higher plasma norketamine with lower dissociative symptoms on Day 1 post-treatment suggests dissociation may be more an effect of the parent drug.


Asunto(s)
Antidepresivos , Trastornos Disociativos , Ketamina , Ketamina/análogos & derivados , Midazolam , Ideación Suicida , Humanos , Ketamina/administración & dosificación , Ketamina/sangre , Ketamina/farmacología , Masculino , Adulto , Midazolam/administración & dosificación , Midazolam/farmacología , Midazolam/sangre , Femenino , Antidepresivos/sangre , Antidepresivos/administración & dosificación , Antidepresivos/farmacología , Trastornos Disociativos/inducido químicamente , Trastornos Disociativos/sangre , Persona de Mediana Edad , Adulto Joven , Método Doble Ciego
3.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38527652

RESUMEN

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Asunto(s)
Lesiones Encefálicas , Estado Epiléptico , Ratas , Animales , Diazepam/farmacología , Midazolam/farmacología , Midazolam/uso terapéutico , Isoflurofato/farmacología , Organofosfatos , Enfermedades Neuroinflamatorias , Neuroprotección , Ratas Sprague-Dawley , Encéfalo/metabolismo , Benzodiazepinas/farmacología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Tomografía de Emisión de Positrones , Proteínas Portadoras/metabolismo , Imagen por Resonancia Magnética , Lesiones Encefálicas/metabolismo , Atrofia/patología
4.
Comp Med ; 74(2): 81-91, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38514175

RESUMEN

Plethysmography is employed in nonhuman primates (NHPs) to calculate respiratory minute volume and determine the exposure time required to deliver an aerosol at the target dose. Anesthetic drugs can impact breathing parameters like steady-state minute volume (SSMV) central to aerosol dosing. Alfaxalone-midazolam mixtures (AM) provide superior parameters for plethysmography in cynomolgus macaques. An obstacle to the use of AM is the volume required to anesthetize via intramuscular injection. A more concentrated formulation of alfaxalone will reduce injection volumes and refine AM protocols. The purpose of this study was to compare AM using the Indexed 10-mg/mL (AM10) formulation compared with an investigational 40-mg/mL (AM40) formulation for IM administration in cynomolgus macaques undergoing plethysmography. We hypothesized that AM10 and AM40 would show no difference in quality of anesthesia (QA), duration of anesthesia, SSMV, accumulated minute volume (AMV), and side effects. We also hypothesized that female macaques would have a longer duration of anesthesia compared with males using both formulations. The study used 15 cynomolgus macaques comprised of 8 females and 7 males. NHPs were compared between 2 separate and randomized anesthetic events no less than one week apart. Each animal served as its own control and animals were randomized by random number generation. Anesthetized NHPs were placed in a sealed plethysmography chamber, and minute volume measurements were calculated every 10 s to determine SSMV. Once SSMV was achieved for 20 min, the trial ended. There were no statistically significant differences between AM10 and AM40 for duration of anesthesia, SSMV, AMV, side effects, or QA. AM40 had a significantly smaller injection volume. Females did not show a significantly longer median duration of anesthesia using either of the alfaxalone formulations. Overall, AM40 offers a more humane anesthetic than AM10 for plethysmography in cynomolgus macaques.


Asunto(s)
Macaca fascicularis , Midazolam , Pletismografía , Pregnanodionas , Animales , Pregnanodionas/administración & dosificación , Pregnanodionas/farmacología , Midazolam/administración & dosificación , Midazolam/farmacología , Femenino , Masculino , Inyecciones Intramusculares , Anestésicos/administración & dosificación , Anestésicos/farmacología , Anestesia/veterinaria , Anestésicos Combinados/administración & dosificación , Anestésicos Combinados/farmacología
5.
J Zoo Wildl Med ; 55(1): 111-124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453494

RESUMEN

This randomized, crossover study evaluated three sedation protocols administered subcutaneously in nine budgerigars (Melopsittacus undulatus) and nine black-cheeked lovebirds (Agapornis nigrigenis). All protocols included midazolam (5 mg/kg), combined with butorphanol (5 mg/kg) (BM), medetomidine (20 lg/kg) (MM), or alfaxalone (13 mg/kg) (AM). Mortalities from suspected cardiorespiratory arrest were observed when AM was used in lovebirds, even after reduction of alfaxalone dosage to 3 mg/kg, and therefore this protocol was excluded from further use in this species. Induction and recovery times were recorded and their quality assessed. Sedation depth and heart and respiratory rates were measured every 5 min and radiographic positioning was attempted at 10 and 20 min. At 30 min, midazolam and medetomidine were reversed with flumazenil (0.05 mg/kg, SC), and atipamezole (0.2 mg/kg, SC), respectively. MM consistently provided deep sedation in both species, with successful radiographic positioning at every attempt. As expected, heart rate was often lower with MM than with other protocols, but no associated complications were noted. In budgerigars, BM had the lowest radiographic positioning success rate (10 min: 5/9, 20 min: 3/9), whereas in lovebirds it provided significantly deeper sedation (P < 0.001), allowing radiographic positioning in all subjects. In both species, BM provided the shortest recovery times. AM resulted in reliable radiographic positioning of all budgerigars at 10 min, but not at 20 min (5/ 9), and provided consistently poor recoveries. This study highlights how differently two psittacine species of similar size may react to the same sedation protocols. AM sedation cannot be fully reversed and produced significant undesirable effects, several of which have been previously reported with alfaxalone administration to avian species. The authors therefore caution against using alfaxalone-midazolam combinations in budgerigars and black-cheeked lovebirds. Both BM and MM provided reliable sedation in these species, and appear to be suitable alternatives to AM.


Asunto(s)
Agapornis , Melopsittacus , Midazolam , Animales , Estudios Cruzados , Hipnóticos y Sedantes/farmacología , Medetomidina/farmacología , Midazolam/farmacología , Protocolos Clínicos
6.
J Zoo Wildl Med ; 55(1): 207-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453504

RESUMEN

Sedation, recovery response, and physiologic outcomes were evaluated in five captive reindeer (Rangifer tarandus) in Minnesota using a completely reversible immobilization protocol. Reindeer were immobilized with butorphanol (0.23-0.32 mg/kg), midazolam (0.23-0.32 mg/kg), and medetomidine (0.15 mg/kg) (BMM) via IM dart. Induction time (IT), recumbency time (DT), and recovery time (RT) were recorded. Temperature (T), respiratory rate (RR), pulse rate (PR), pulse oximetry (SpO2), arterial blood gas values including oxygen (PaO2), and carbon dioxide (PaCO2) tensions and lactate (Lac) were recorded preoxygen supplementation and 15 min postoxygen supplementation. Reversal was done using naltrexone (2.3-3.0 mg/kg), flumazenil (0.008-0.01 mg/kg) and atipamezole (0.62-0.78 mg/kg) (NFA) IM, limiting recumbency to 1 h. Median IT, DT, and RT were 5 min, 46 min, and 7 min, respectively. SpO2 (92 to 99%, P = 0.125), PaO2 (45.5 to 97 mmHg, P = 0.25), and PaCO2 (46.5 to 54.6 mmHg, P = 0.25) all increased, whereas Lac (3.02 to 1.93 mmol/L, P = 0.25) decreased between baseline and 15 min postoxygen supplementation, without statistical significance. BMM immobilization, and reversal with NFA provided rapid and effective immobilization and recovery, respectively. Oxygen supplementation mitigated hypoxemia in all reindeer.


Asunto(s)
Ketamina , Reno , Animales , Medetomidina/farmacología , Midazolam/farmacología , Butorfanol/farmacología , Hipnóticos y Sedantes/farmacología , Ketamina/farmacología , Oxígeno , Inmovilización/veterinaria , Inmovilización/métodos , Frecuencia Cardíaca
7.
Neuropharmacology ; 249: 109895, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38437913

RESUMEN

Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies. In this study we used a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP), to test the hypothesis that T2 measures obtained from brain magnetic resonance imaging (MRI) scans provide quantitative metrics of brain injury and therapeutic efficacy. Adult male Sprague Dawley rats were imaged on a 7T MRI scanner at 3, 7 and 28 days post-exposure to DFP or vehicle (VEH) with or without treatment with the standard of care antiseizure drug, midazolam (MDZ); a novel antiseizure medication, allopregnanolone (ALLO); or combination therapy with MDZ and ALLO (DUO). Our results show that mean T2 values in DFP-exposed animals were: (1) higher than VEH in all volumes of interest (VOIs) at day 3; (2) decreased with time; and (3) decreased in the thalamus at day 28. Treatment with ALLO or DUO, but not MDZ alone, significantly decreased mean T2 values relative to untreated DFP animals in the piriform cortex at day 3. On day 28, the DUO group showed the most favorable T2 characteristics. This study supports the utility of T2 mapping for longitudinally monitoring brain injury and highlights the therapeutic potential of ALLO as an adjunct therapy to mitigate chronic morbidity associated with acute OP intoxication.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Organofosfatos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Isoflurofato/toxicidad , Organofosfatos , Inhibidores de la Colinesterasa/farmacología , Intoxicación por Organofosfatos/tratamiento farmacológico , Intoxicación por Organofosfatos/patología , Lesiones Encefálicas/inducido químicamente , Encéfalo , Midazolam/farmacología
8.
Epilepsia ; 65(4): e55-e60, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366848

RESUMEN

High-frequency oscillations (HFOs) are associated with normal brain function, but are also increasingly recognized as potential biomarkers of epileptogenic tissue. Considering the important role of interneuron activity in physiological HFO generation, we studied their modulation by midazolam (MDZ), an agonist of γ-aminobutyric acid type A (GABAA)-benzodiazepine receptors. Here, we analyzed 80 intracranial electrode contacts in amygdala and hippocampus of 13 patients with drug-refractory focal epilepsy who had received MDZ for seizure termination during presurgical monitoring. Ripples (80-250 Hz) and fast ripples (FRs; 250-400 Hz) were compared before and after seizures with MDZ application, and according to their origin either within or outside the individual seizure onset zone (SOZ). We found that MDZ distinctly suppressed all HFOs (ripples and FRs), whereas the reduction of ripples was significantly less pronounced inside the SOZ compared to non-SOZ contacts. The rate of FRs inside the SOZ was less affected, especially in hippocampal contacts. In a few cases, even a marked increase of FRs following MDZ administration was seen. Our results demonstrate, for the first time, a significant HFO modulation in amygdala and hippocampus by MDZ, thus giving insights into the malfunction of GABA-mediated inhibition within epileptogenic areas and its role in HFO generation.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Midazolam/farmacología , Electroencefalografía/métodos , Convulsiones , Hipocampo , Amígdala del Cerebelo , Epilepsia Refractaria/tratamiento farmacológico , Ácido gamma-Aminobutírico
9.
J Am Assoc Lab Anim Sci ; 63(2): 172-181, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307499

RESUMEN

The effects of commonly used injectable combinations of anesthetics such as ketamine and xylazine, with or without acepromazine, vary widely across individuals, have a shallow-dose response curve, and do not provide long-term analgesia. These drawbacks indicate the importance of continuing efforts to develop safe and effective injectable anesthetic combinations for mice. In this study, a series of experiments was designed to validate the use of dexmedetomidine and midazolam to provide chemical restraint for nonpainful procedures and the addition of buprenorphine or extended-release buprenorphine to reliably provide a surgical plane of anesthesia in C57BL/6J mice. Loss of consciousness was defined as the loss of the righting reflex (LORR); a surgical plane of anesthesia was defined as the LORR and loss of pedal withdrawal after application of a 300 g noxious stimulus to a hind paw. The combination of intraperitoneal 0.25 mg/kg dexmedetomidine and 6 mg/kg midazolam produced LORR, sufficient for nonpainful or noninvasive procedures, without achieving a surgical plane in 19 of 20 mice tested. With the addition of subcutaneous 0.1 mg/kg buprenorphine or 1 mg/kg buprenorphine-ER, 29 of 30 mice achieved a surgical plane of anesthesia. The safety and efficacy of the regimen was then tested by successfully performing a laparotomy in 6 mice. No deaths occurred in any trial, and, when administered 1 mg/kg atipamezole IP, all mice recovered their righting reflex within 11 min. The anesthetic regimen developed in this study is safe, is reversible, and includes analgesics that previous studies have shown provide analgesia beyond the immediate postsurgical period. Buprenorphine-ER can be safely substituted for buprenorphine for longer-lasting analgesia.


Asunto(s)
Buprenorfina , Dexmedetomidina , Ratones Endogámicos C57BL , Midazolam , Reflejo de Enderezamiento , Animales , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacología , Buprenorfina/farmacología , Buprenorfina/administración & dosificación , Midazolam/administración & dosificación , Midazolam/farmacología , Ratones , Masculino , Reflejo de Enderezamiento/efectos de los fármacos , Preparaciones de Acción Retardada , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Anestesia/veterinaria , Anestésicos Combinados/administración & dosificación
10.
Toxicol Appl Pharmacol ; 484: 116870, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395364

RESUMEN

The development of refractory status epilepticus (SE) following sarin intoxication presents a therapeutic challenge. Here, we evaluated the efficacy of delayed combined double or triple treatment in reducing abnormal epileptiform seizure activity (ESA) and the ensuing long-term neuronal insult. SE was induced in rats by exposure to 1.2 LD50 sarin followed by treatment with atropine and TMB4 (TA) 1 min later. Double treatment with ketamine and midazolam or triple treatment with ketamine, midazolam and levetiracetam was administered 30 min post-exposure, and the results were compared to those of single treatment with midazolam alone or triple treatment with ketamine, midazolam, and valproate, which was previously shown to ameliorate this neurological insult. Toxicity and electrocorticogram activity were monitored during the first week, and behavioral evaluations were performed 2 weeks post-exposure, followed by biochemical and immunohistopathological analyses. Both double and triple treatment reduced mortality and enhanced weight recovery compared to TA-only treatment. Triple treatment and, to a lesser extent, double treatment significantly ameliorated the ESA duration. Compared to the TA-only or the TA+ midazolam treatment, both double and triple treatment reduced the sarin-induced increase in the neuroinflammatory marker PGE2 and the brain damage marker TSPO and decreased gliosis, astrocytosis and neuronal damage. Finally, both double and triple treatment prevented a change in behavior, as measured in the open field test. No significant difference was observed between the efficacies of the two triple treatments, and both triple combinations completely prevented brain injury (no differences from the naïve rats). Delayed double and, to a greater extent, triple treatment may serve as an efficacious delayed therapy, preventing brain insult propagation following sarin-induced refractory SE.


Asunto(s)
Lesiones Encefálicas , Ketamina , Agentes Nerviosos , Estado Epiléptico , Ratas , Animales , Sarín/toxicidad , Agentes Nerviosos/toxicidad , Midazolam/farmacología , Midazolam/uso terapéutico , Ratas Sprague-Dawley , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Colinérgicos/efectos adversos , Lesiones Encefálicas/inducido químicamente
11.
Arch Toxicol ; 98(4): 1177-1189, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38305864

RESUMEN

Recent experimental evidence suggests combined treatment with midazolam and allopregnanolone is more effective than midazolam alone in terminating seizures triggered by acute organophosphate (OP) intoxication. However, there are concerns that combined midazolam and allopregnanolone increases risk of adverse cardiovascular events. To address this, we used telemetry devices to record cardiovascular responses in adult male Sprague-Dawley rats acutely intoxicated with diisopropylfluorophosphate (DFP). Animals were administered DFP (4 mg/kg, sc), followed immediately by atropine (2 mg/kg, i.m.) and 2-PAM (25 mg/kg, i.m.). At 40 min post-exposure, a subset of animals received midazolam (0.65 mg/kg, im); at 50 min, these rats received a second dose of midazolam or allopregnanolone (12 mg/kg, im). DFP significantly increased blood pressure by ~ 80 mmHg and pulse pressure by ~ 34 mmHg that peaked within 12 min. DFP also increased core temperature by ~ 3.5 °C and heart rate by ~ 250 bpm that peaked at ~ 2 h. Heart rate variability (HRV), an index of autonomic function, was reduced by ~ 80%. All acute (within 15 min of exposure) and two-thirds of delayed (hours after exposure) mortalities were associated with non-ventricular cardiac events within 10 min of cardiovascular collapse, suggesting that non-ventricular events should be closely monitored in OP-poisoned patients. Compared to rats that survived DFP intoxication without treatment, midazolam significantly improved recovery of cardiovascular parameters and HRV, an effect enhanced by allopregnanolone. These data demonstrate that midazolam improved recovery of cardiovascular and autonomic function and that the combination of midazolam and allopregnanolone may be a better therapeutic strategy than midazolam alone.


Asunto(s)
Midazolam , Intoxicación por Organofosfatos , Humanos , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Midazolam/farmacología , Midazolam/uso terapéutico , Pregnanolona/farmacología , Isoflurofato/farmacología , Organofosfatos , Encéfalo , Intoxicación por Organofosfatos/tratamiento farmacológico
12.
J Am Assoc Lab Anim Sci ; 63(2): 182-189, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38182132

RESUMEN

Guinea pigs are often used in translational research, but providing them with safe and effective anesthesia is a challenge. Common methods like inhalant anesthesia and injectable ketamine/xylazine induce surgical anesthesia but can negatively affect cardiovascular, respiratory, and thermoregulatory systems and complicate the interpretation of research outcomes. Several alternative anesthetic regimens have been investigated, but none have consistently achieved a surgical plane of anesthesia. Therefore, identifying an anesthetic regimen that achieves a stable state of the surgical plane of anesthesia while preserving cardiorespiratory function would be a valuable contribution. To address this issue, we compared the efficacy of 3 anesthetic combinations in female Dunkin-Hartley guinea pigs: 1) alfaxalone, dexmedetomidine, and fentanyl (ADF); 2) alfaxalone, midazolam, and fentanyl (AMF); and 3) alfaxalone, midazolam, fentanyl, and isoflurane (AMFIso). We monitored anesthetic depth, heart rate, oxygenation, respiratory rate, respiratory effort, blood pressure, and body temperature every 15 min from injection to recovery. We also recorded the time to loss of righting reflex, duration of anesthesia, and time to achieve a surgical plane. The results showed no statistically significant differences in induction and recovery times among the groups. In the AMFIso group, 100% of the animals achieved a surgical plane of anesthesia, whereas only 10% of the animals in the AMF group reached that level. None of the animals in ADF group reached a surgical plane of anesthesia. Respiratory rate was significantly lower in the AMFIso as compared with the ADF group (P < 0.001) but was not different between the AMF and ADF groups. Temperature was significantly lower in the AMFIso group as compared with both the ADF and AMF groups (P < 0.001). In conclusion, both combinations of solely injectable anesthetics assessed in this study can be used for short, nonpainful procedures without significant cardiorespiratory depression. However, for mildly to moderately painful surgical procedures, the addition of an inhalant anesthetic like isoflurane is necessary for female guinea pigs.


Asunto(s)
Anestésicos Combinados , Dexmedetomidina , Fentanilo , Isoflurano , Midazolam , Pregnanodionas , Animales , Cobayas , Femenino , Fentanilo/farmacología , Fentanilo/administración & dosificación , Dexmedetomidina/farmacología , Dexmedetomidina/administración & dosificación , Isoflurano/administración & dosificación , Pregnanodionas/administración & dosificación , Pregnanodionas/farmacología , Anestésicos Combinados/administración & dosificación , Midazolam/administración & dosificación , Midazolam/farmacología , Anestesia/veterinaria , Anestesia/métodos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Respiratoria/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos
13.
Exp Anim ; 73(2): 223-232, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246607

RESUMEN

Proper administration of anesthesia is indispensable for the ethical treatment of lab animals in biomedical research. Therefore, selecting an effective anesthesia protocol is pivotal for the design and success of experiments. Hence, continuous development and refinement of anesthetic agents are imperative to improve research outcomes and elevate animal welfare. "Balanced anesthesia" involves using multiple drugs to optimize efficacy while minimizing side effects. The medetomidine, midazolam, and butorphanol, called MMB, and medetomidine, alfaxalone, and butorphanol, called MAB, are popular in Japan. However, the drawbacks of midazolam, including its extended recovery time, and the narrow safety margin of MAB, have prompted research for suitable alternatives. This study replaced midazolam in the MMB combination with remimazolam (RMZ), which is noted for its ultra-short half-life. The resulting combination, called MRB, was effective in providing a wider safety margin compared to MAB while maintaining an anesthesia depth equivalent level to that of MMB in mice. Notably, MRB consistently exhibited better recovery scores after antagonist administration in contrast to MMB. Furthermore, the re-sedation phenomenon observed with MMB was not observed with MRB. The rapid metabolism of RMZ enables reliable anesthesia induction, circumventing the complications linked to MAB. Overall, MRB excelled in providing extended surgical anesthesia and swift post-antagonist recovery. These results highlight the potential of RMZ for broader animal research applications.


Asunto(s)
Butorfanol , Medetomidina , Animales , Medetomidina/administración & dosificación , Medetomidina/farmacología , Butorfanol/administración & dosificación , Butorfanol/farmacología , Ratones , Masculino , Anestesia/métodos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Benzodiazepinas/administración & dosificación , Benzodiazepinas/farmacología , Anestésicos Combinados/administración & dosificación , Midazolam/administración & dosificación , Midazolam/farmacología
14.
J Pharmacol Exp Ther ; 388(2): 376-385, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37770198

RESUMEN

Status epilepticus (SE) is a life-threatening development of self-sustaining seizures that becomes resistant to benzodiazepines when treatment is delayed. Benzodiazepine pharmacoresistance is thought in part to result from internalization of synaptic GABAA receptors, which are the main target of the drug. The naturally occurring neurosteroid allopregnanolone is a therapy of interest against SE for its ability to modulate all isoforms of GABAA receptors. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been partially effective in combination with benzodiazepines in mitigating SE-associated neurotoxicity. In this study, allopregnanolone as an adjunct to midazolam or midazolam-ketamine combination therapy was evaluated for efficacy against cholinergic-induced SE. Adult male rats implanted with electroencephalographic (EEG) telemetry devices were exposed to the organophosphorus chemical (OP) soman (GD) and treated with an admix of atropine sulfate and HI-6 at 1 minute after exposure followed by midazolam, midazolam-allopregnanolone, or midazolam-ketamine-allopregnanolone 40 minutes after seizure onset. Neurodegeneration, neuronal loss, and neuroinflammation were assessed 2 weeks after GD exposure. Seizure activity, EEG power integral, and epileptogenesis were also compared among groups. Overall, midazolam-ketamine-allopregnanolone combination therapy was effective in reducing cholinergic-induced toxic signs and neuropathology, particularly in the thalamus and hippocampus. Higher dosage of allopregnanolone administered in combination with midazolam and ketamine was also effective in reducing EEG power integral and epileptogenesis. The current study reports that there is a promising potential of neurosteroids in combination with benzodiazepine and ketamine treatments in a GD model of SE. SIGNIFICANCE STATEMENT: Allopregnanolone, a naturally occurring neurosteroid, reduced pathologies associated with soman (GD) exposure such as epileptogenesis, neurodegeneration, and neuroinflammation, and suppressed GD-induced toxic signs when used as an adjunct to midazolam and ketamine in a delayed treatment model of soman-induced status epilepticus (SE) in rats. However, protection was incomplete, suggesting that further studies are needed to identify optimal combinations of antiseizure medications and routes of administration for maximal efficacy against cholinergic-induced SE.


Asunto(s)
Ketamina , Neuroesteroides , Soman , Estado Epiléptico , Ratas , Masculino , Animales , Midazolam/farmacología , Midazolam/uso terapéutico , Ketamina/farmacología , Ketamina/uso terapéutico , Pregnanolona/efectos adversos , Soman/toxicidad , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Enfermedades Neuroinflamatorias , Neuroesteroides/uso terapéutico , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Benzodiazepinas , Colinérgicos/efectos adversos , Receptores de GABA-A , Ácido gamma-Aminobutírico
15.
J Pharmacol Exp Ther ; 388(2): 313-324, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37770202

RESUMEN

Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage. Current therapies for OP poisoning and SE do not consider neuronal variations between male and female brains. Therefore, we investigated sex-dependent differences in electrographic seizure activity and neuronal injury using the DFP model of refractory SE in rats. Electroencephalogram recordings were used to monitor DFP-induced SE, and the extent of brain injury was determined using fluoro-jade-B staining to detect cellular necrosis. After DFP exposure, we observed striking sex-dependent differences in SE and seizure activity patterns as well as protective responses to midazolam treatment. Following acute DFP exposure, male animals displayed more severe SE with intense epileptiform spiking and greater mortality than females. In contrast, we observed significantly more injured cells and cellular necrosis in the hippocampus and other brain regions in females than in males. We also observed extensive neuronal injury in the somatosensory cortex of males. The anticonvulsant effect of midazolam against SE was limited in this model and found to be similar in males and females. However, unlike males, females exhibited substantially more protection against neuronal damage after midazolam treatment. Overall, these results demonstrate significant sex-dependent differences in DFP-induced refractory SE and neuronal damage patterns, suggesting that it may be possible to develop sex-specific neuroprotective strategies for OP intoxication and refractory SE. SIGNIFICANCE STATEMENT: Sex-dependent differences in neurotoxicity and status epilepticus (SE) are key biological variables after organophosphate (OP) exposure. Here, we investigated sex-dependent differences in SE and brain injury after acute diisopropylfluorophosphate exposure. Male rats had more severe SE and less survival than females, while females had more neuronal damage. Females had more neuroprotection to midazolam than males, while both sexes had similar but partial anticonvulsant effects. These findings suggest that a sex-specific therapeutic approach may prevent neurological complications of OP-induced SE.


Asunto(s)
Lesiones Encefálicas , Intoxicación por Organofosfatos , Estado Epiléptico , Humanos , Femenino , Masculino , Ratas , Animales , Benzodiazepinas/farmacología , Anticonvulsivantes/efectos adversos , Midazolam/farmacología , Isoflurofato/farmacología , Organofosfatos/farmacología , Caracteres Sexuales , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Encéfalo , Intoxicación por Organofosfatos/tratamiento farmacológico , Lesiones Encefálicas/tratamiento farmacológico , Necrosis/tratamiento farmacológico
16.
J Pharmacol Exp Ther ; 388(2): 399-415, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38071567

RESUMEN

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes. Additionally, there are few effective neuroprotectants for mitigating the long-term effects of acute OP intoxication. We have pioneered neurosteroids as novel anticonvulsants and neuroprotectants for OP intoxication and seizures. In this study, we evaluated the efficacy of two novel synthetic, water-soluble neurosteroids, valaxanolone (VX) and lysaxanolone (LX), in combating the long-term behavioral and neuropathological impairments caused by acute OP intoxication and SE. Animals were exposed to the OP nerve agent surrogate diisopropylfluorophosphate (DFP) and were treated with VX or LX in addition to midazolam at 40 minutes postexposure. The extent of neurodegeneration, along with various behavioral and memory deficits, were assessed at 3 months postexposure. VX significantly reduced deficits of aggressive behavior, anxiety, memory, and depressive-like traits in control (DFP-exposed, midazolam-treated) animals; VX also significantly prevented the DFP-induced chronic loss of NeuN(+) principal neurons and PV(+) inhibitory neurons in the hippocampus and other regions. Additionally, VX-treated animals exhibited a reduced inflammatory response with decreased GFAP(+) astrogliosis and IBA1(+) microgliosis in the hippocampus, amygdala, and other regions. Similarly, LX showed significant improvement in behavioral and memory deficits, and reduced neurodegeneration and cellular neuroinflammation. Together, these results demonstrate the neuroprotectant effects of the novel synthetic neurosteroids in mitigating the long-term neurologic dysfunction and neurodegeneration associated with OP exposure. SIGNIFICANCE STATEMENT: Survivors of nerve agents and organophosphate (OP) exposures suffer from long-term neurological deficits. Currently, there is no specific drug therapy for mitigating the impact of OP exposure. However, novel synthetic neurosteroids that activate tonic inhibition provide a viable option for treating OP intoxication. The data from this study indicates the neuroprotective effects of synthetic, water-soluble neurosteroids for attenuation of long-term neurological deficits after OP intoxication. These findings establish valaxanolone and lysaxanolone as potent and efficacious neuroprotectants suitable for injectable dosing.


Asunto(s)
Agentes Nerviosos , Fármacos Neuroprotectores , Neuroesteroides , Intoxicación por Organofosfatos , Compuestos Organotiofosforados , Estado Epiléptico , Ratas , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuroesteroides/uso terapéutico , Isoflurofato/farmacología , Midazolam/farmacología , Enfermedades Neuroinflamatorias , Encéfalo , Agentes Nerviosos/farmacología , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/patología , Convulsiones/tratamiento farmacológico , Intoxicación por Organofosfatos/tratamiento farmacológico , Organofosfatos/farmacología , Trastornos de la Memoria/patología
17.
J Pharmacol Exp Ther ; 388(2): 432-450, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37739807

RESUMEN

Acute exposure to nerve agents induces a peripheral cholinergic crisis and prolonged status epilepticus (SE), causing death or long-term brain damage. To provide preclinical data pertinent to the protection of infants and newborns, we compared the antiseizure and neuroprotective effects of treating soman-induced SE with midazolam (MDZ) versus tezampanel (LY293558) in combination with caramiphen (CRM) in 12- and 7-day-old rats. The anticonvulsants were administered 1 hour after soman exposure; neuropathology data were collected up to 6 months postexposure. In both ages, the total duration of SE within 24 hours after soman exposure was significantly shorter in the LY293558 plus CRM groups compared with the MDZ groups. Neuronal degeneration was substantial in the MDZ-treated groups but absent or minimal in the groups treated with LY293558 plus CRM. Loss of neurons and interneurons in the basolateral amygdala and CA1 hippocampal area was significant in the MDZ-treated groups but virtually absent in the LY293558 plus CRM groups. Atrophy of the amygdala and hippocampus occurred only in MDZ-treated groups. Neuronal/interneuronal loss and atrophy of the amygdala and hippocampus deteriorated over time. Reduction of inhibitory activity in the basolateral amygdala and increased anxiety were found only in MDZ groups. Spontaneous recurrent seizures developed in the MDZ groups, deteriorating over time; a small percentage of rats from the LY293558 plus CRM groups also developed seizures. These results suggest that brain damage can be long lasting or permanent if nerve agent-induced SE in infant victims is treated with midazolam at a delayed timepoint after SE onset, whereas antiglutamatergic treatment with tezampanel and caramiphen provides significant neuroprotection. SIGNIFICANCE STATEMENT: To protect the brain and the lives of infants in a mass exposure to nerve agents, an anticonvulsant treatment must be administered that will effectively stop seizures and prevent neuropathology, even if offered with a relative delay after seizure onset. The present study shows that midazolam, which was recently approved by the Food and Drug Administration for the treatment of nerve agent-induced status epilepticus, is not an effective neuroprotectant, whereas brain damage can be prevented by targeting glutamate receptors.


Asunto(s)
Lesiones Encefálicas , Ciclopentanos , Isoquinolinas , Agentes Nerviosos , Fármacos Neuroprotectores , Soman , Estado Epiléptico , Tetrazoles , Humanos , Recién Nacido , Ratas , Animales , Agentes Nerviosos/toxicidad , Midazolam/farmacología , Midazolam/uso terapéutico , Soman/toxicidad , Neuroprotección , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/efectos adversos , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Encéfalo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Atrofia/tratamiento farmacológico
18.
Can J Physiol Pharmacol ; 102(3): 206-217, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909404

RESUMEN

Hypotensive influences of benzodiazepines and other GABAA receptor ligands, recognized in clinical practice, seem to stem from the existence of "vascular" GABAA receptors in peripheral blood vessels, besides any mechanisms in the central and peripheral nervous systems. We aimed to further elucidate the vasodilatatory effects of ligands acting through GABAA receptors. Using immunohistochemistry, the rat aortic smooth muscle layer was found to express GABAA γ2 and α1-5 subunit proteins. To confirm the role of "vascular" GABAA receptors, we investigated the vascular effects of standard benzodiazepines, midazolam, and flumazenil, as well as the novel compound MP-III-058. Using two-electrode voltage clamp electrophysiology and radioligand binding assays, MP-III-058 was found to have modest binding but substantial functional selectivity for α5ß3γ2 over other αxß3γ2 GABAA receptors. Tissue bath assays revealed comparable vasodilatory effects of MP-III-058 and midazolam, both of which at 100 µmol/L concentrations had efficacy similar to prazosin. Flumazenil exhibited weak vasoactivity per se, but significantly prevented the relaxant effects of midazolam and MP-III-058. These studies indicate the existence of functional GABAA receptors in the rat aorta, where ligands exert vasodilatory effects by positive modulation of the benzodiazepine binding site, suggesting the potential for further quest for leads with optimized pharmacokinetic properties as prospective adjuvant vasodilators.


Asunto(s)
Flumazenil , Midazolam , Animales , Ratas , Midazolam/farmacología , Flumazenil/farmacología , Benzodiazepinas/farmacología , Aorta , Receptores de GABA-A , Ácido gamma-Aminobutírico
19.
Am J Vet Res ; 85(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38039626

RESUMEN

OBJECTIVE: To compare dexmedetomidine-ketamine (DK; 0.1 and 10 mg/kg, respectively) with midazolam (M; 1.0 mg/kg) or 0.9% sodium chloride (S; 0.2 mL/kg) administered IM in the forelimb (F) or hindlimb (H) in eastern box turtles (Terrapene carolina carolina). ANIMALS: 20 clinically healthy, captive adult eastern box turtles. METHODS: In a randomized, blinded, complete crossover study with 1-week washout periods, turtles were administered each of 3 treatments: F-DKS, F-DKM, or H-DKM. Palpebral reflex, muscle tone, and withdrawal responses were serially assessed and used to calculate cumulative sedation scores at each 5-minute time point. The ability to intubate was evaluated. At 60 minutes, atipamezole (1.0 mg/kg) and either flumazenil (F-DKM, H-DKM; 0.05 mg/kg) or 0.9% sodium chloride (F-DKS; 0.5 mL/kg) were administered IM. RESULTS: All treatments resulted in clinically relevant anesthetic effects. F-DKM produced significantly higher sedation scores than H-DKM or F-DKS at all time points between 10 and 60 minutes (P < .05). Sedation score variability was observed with all treatments with significantly higher variability for H-DKM (P < .05). Intubation was successful in 32, 89, and 11% of turtles in F-DKS, F-DKM, and H-DKM, respectively. Median (range) recovery time was 10 (5-22), 16 (7-45), and 12 (4-28) minutes for F-DKS, F-DKM, and H-DKM, respectively. CLINICAL RELEVANCE: In eastern box turtles, forelimb dexmedetomidine-ketamine resulted in clinically relevant anesthetic effects that were heightened with the addition of midazolam. Hindlimb administration of midazolam-dexmedetomidine-ketamine resulted in reduced and more variable anesthetic effects compared to forelimb administration, supporting a hepatic first-pass effect.


Asunto(s)
Anestésicos , Dexmedetomidina , Ketamina , Tortugas , Animales , Ketamina/farmacología , Midazolam/farmacología , Dexmedetomidina/farmacología , Estudios Cruzados , Cloruro de Sodio , Miembro Posterior , Miembro Anterior , Hipnóticos y Sedantes/farmacología
20.
Vet Med Sci ; 10(1): e1330, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009426

RESUMEN

BACKGROUND: According to the findings of several studies, sedatives and anaesthetics have different effects on the functioning of the cardiovascular system and intraocular pressure (IOP). For accurate diagnosis, treatment and surgery with minimal complications, it is necessary to be aware of the effects of sedatives and anaesthetics on the cardiovascular system and IOP. OBJECTIVES: The aim of this study was to evaluate the effects of sedatives (medetomidine and midazolam) and anaesthetics (ketamine, propofol and isoflurane) on IOP, heart rate (HR) and blood pressure in dogs. METHODS: In this study, 10 dogs participated in three treatments using a randomised cross-over design, with a 1-week washout period between each treatment. Dogs in all treatments were premedicated with medetomidine and midazolam. Anaesthesia was induced using ketamine, propofol, or isoflurane and maintained for 60 min with the appropriate doses of each drug. The cardiovascular variables (heart rate, and systolic, diastolic and mean arterial pressures) and IOP were measured at different timepoints: before premedication (baseline values, T-Bas), 15 min after medetomidine administration (T-Med), 20 min after midazolam administration (T-Mid) and at 15 (T-15), 30 (T-30), 45 (T-45) and 60 (T-60) min after anaesthesia induction. RESULTS: Medetomidine significantly reduced the IOP and HR and did not significantly change the mean arterial pressure (MAP). Midazolam significantly reduced the IOP while did not significantly change the HR and MAP. Ketamine and isoflurane significantly increased the IOP and HR while did not significantly change the MAP. Propofol significantly increased the HR, but did not cause significant changes in IOP and MAP. CONCLUSIONS: Considering that anaesthetics are typically administered in conjunction with pre-anaesthetic drugs, the increases in IOP induced by ketamine and isoflurane are not important, as the IOP did not exceed the baseline values. However, further studies are required to investigate these effects in patients with elevated IOP.


Asunto(s)
Anestésicos , Isoflurano , Ketamina , Propofol , Animales , Perros , Presión Sanguínea , Frecuencia Cardíaca , Hipnóticos y Sedantes/farmacología , Presión Intraocular , Isoflurano/farmacología , Ketamina/farmacología , Medetomidina/farmacología , Midazolam/farmacología , Propofol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...