Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Cell Stress Chaperones ; 28(2): 151-165, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653727

RESUMEN

Endoplasmic reticulum (ER) stress and associated oxidative stress are involved in the genesis and progression of skeletal muscle diseases such as myositis and atrophy or muscle wasting. Targeting the ER stress and associated downstream pathways can aid in the development of better treatment strategies for these diseases with limited therapeutic approaches. There is a growing interest in identifying natural products against ER stress due to the lower toxicity and cost effectiveness. In the present study, we investigated the protective effect of Tangeretin, a citrus methoxyflavone found in citrus peels against Tunicamycin (pharmacological ER stress inducer)-induced ER stress and associated complications in rat skeletal muscle L6 cell lines. Treatment with Tunicamycin for a period of 24 h resulted in the upregulation of ER stress marker proteins, ER resident oxidoreductases and cellular reactive oxygen species (ROS). Co-treatment with Tangeretin was effective in alleviating Tunicamycin-induced ER stress and associated redox-related complications by significantly downregulating the unfolded protein response (UPR), ER resident oxidoreductase proteins, cellular ROS and improving the antioxidant enzyme activity. Tunicamycin also induced upregulation of phosphorylated p38 MAP Kinase and loss of mitochondrial membrane potential. Tangeretin significantly reduced the levels of phosphorylated p38 MAP Kinase and improved the mitochondrial membrane potential. From the results, it is evident that Tangeretin can be explored further as a potential candidate for skeletal muscle diseases involving protein misfolding and ER stress.


Asunto(s)
Flavonas , Mioblastos Esqueléticos , Animales , Ratas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Línea Celular , Flavonas/farmacología , Relación Dosis-Respuesta a Droga , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Membranas Mitocondriales/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos
2.
Aging Cell ; 22(3): e13764, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625257

RESUMEN

Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.


Asunto(s)
Autofagia , Senescencia Celular , Morfolinas , Desarrollo de Músculos , Mioblastos Esqueléticos , Inhibidores de Proteínas Quinasas , Purinas , Senescencia Celular/efectos de los fármacos , Morfolinas/farmacología , Purinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/fisiología , Autofagia/efectos de los fármacos , Insulina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Glucólisis/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Resistencia a la Insulina , Células Cultivadas , Desarrollo de Músculos/efectos de los fármacos
3.
Front Endocrinol (Lausanne) ; 12: 785242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917036

RESUMEN

Intrauterine growth restricted (IUGR) fetuses are born with lower skeletal muscle mass, fewer proliferating myoblasts, and fewer myofibers compared to normally growing fetuses. Plasma concentrations of insulin, a myogenic growth factor, are lower in IUGR fetuses. We hypothesized that a two-week insulin infusion at 75% gestation would increase myoblast proliferation and fiber number in IUGR fetal sheep. Catheterized control fetuses received saline (CON-S, n=6), and the IUGR fetuses received either saline (IUGR-S, n=7) or insulin (IUGR-I, 0.014 ± 0.001 units/kg/hr, n=11) for 14 days. Fetal arterial blood gases and plasma amino acid levels were measured. Fetal skeletal muscles (biceps femoris, BF; and flexor digitorum superficialis, FDS) and pancreases were collected at necropsy (126 ± 2 dGA) for immunochemistry analysis, real-time qPCR, or flow cytometry. Insulin concentrations in IUGR-I and IUGR-S were lower vs. CON-S (P ≤ 0.05, group). Fetal arterial PaO2, O2 content, and glucose concentrations were lower in IUGR-I vs. CON-S (P ≤ 0.01) throughout the infusion period. IGF-1 concentrations tended to be higher in IUGR-I vs. IUGR-S (P=0.06), but both were lower vs. CON-S (P ≤ 0.0001, group). More myoblasts were in S/G2 cell cycle stage in IUGR-I vs. both IUGR-S and CON-S (145% and 113%, respectively, P ≤ 0.01). IUGR-I FDS muscle weighed 40% less and had 40% lower fiber number vs. CON-S (P ≤ 0.05) but were not different from IUGR-S. Myonuclear number per fiber and the mRNA expression levels of muscle regulatory factors were not different between groups. While the pancreatic ß-cell mass was lower in both IUGR-I and IUGR-S compared to CON-S, the IUGR groups were not different from each other indicating that feedback inhibition by endogenous insulin did not reduce ß-cell mass. A two-week insulin infusion at 75% gestation promoted myoblast proliferation in the IUGR fetus but did not increase fiber or myonuclear number. Myoblasts in the IUGR fetus retain the capacity to proliferate in response to mitogenic stimuli, but intrinsic defects in the fetal myoblast by 75% gestation may limit the capacity to restore fiber number.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Fibras Musculares Esqueléticas/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Esquema de Medicación , Femenino , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/patología , Infusiones Intravenosas , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/patología , Mioblastos Esqueléticos/fisiología , Embarazo , Ovinos
4.
Biomed Pharmacother ; 143: 112188, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34563947

RESUMEN

An extract from Artemisia dracunculus L. (termed PMI-5011) improves glucose homeostasis by enhancing insulin action and reducing ectopic lipid accumulation, while increasing fat oxidation in skeletal muscle tissue in obese insulin resistant male mice. A chalcone, DMC-2, in PMI-5011 is the major bioactive that enhances insulin signaling and activation of AKT. However, the mechanism by which PMI-5011 improves lipid metabolism is unknown. AMPK is the cellular energy and metabolic sensor and a key regulator of lipid metabolism in muscle. This study examined PMI-5011 activation of AMPK signaling using murine C2C12 muscle cell culture and skeletal muscle tissue. Findings show that PMI-5011 increases Thr172-phosphorylation of AMPK in muscle cells and skeletal muscle tissue, while hepatic AMPK activation by PMI-5011 was not observed. Increased AMPK activity by PMI-5011 affects downstream signaling of AMPK, resulting in inhibition of ACC and increased SIRT1 protein levels. Selective deletion of DMC-2 from PMI-5011 demonstrates that compounds other than DMC-2 in a "DMC-2 knock out extract" (KOE) are responsible for AMPK activation and its downstream effects. Compared to 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and metformin, the phytochemical mixture characterizing the KOE appears to more efficiently activate AMPK in muscle cells. KOE-mediated AMPK activation was LKB-1 independent, suggesting KOE does not activate AMPK via LKB-1 stimulation. Through AMPK activation, compounds in PMI-5011 may regulate lipid metabolism in skeletal muscle. Thus, the AMPK-activating potential of the KOE adds therapeutic value to PMI-5011 and its constituents in treating insulin resistance or type 2 diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Artemisia , Activadores de Enzimas/farmacología , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Músculo Esquelético/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Artemisia/química , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Activación Enzimática , Activadores de Enzimas/aislamiento & purificación , Hipoglucemiantes/aislamiento & purificación , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/enzimología , Fosforilación , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Ribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos
5.
Am J Physiol Cell Physiol ; 321(4): C749-C759, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34406904

RESUMEN

Recently, methods for creating three-dimensional (3-D) human skeletal muscle tissues from myogenic cell lines have been reported. Bioengineered muscle tissues are contractile and respond to electrical and chemical stimulation. In this study, we provide an electrophysiological analysis of healthy and dystrophic 3-D bioengineered skeletal muscle tissues, focusing on Duchenne muscular dystrophy (DMD). We enlist the 3-D in vitro model of DMD muscle tissue to evaluate muscle cell electrical properties uncoupled from presynaptic neural inputs, an understudied aspect of DMD. Our data show that previously reported electrophysiological aspects of DMD, including effects on membrane potential and membrane resistance, are replicated in the 3-D muscle tissue model. Furthermore, we test a potential therapeutic compound, poloxamer 188, and demonstrate capacity for improving the membrane potential in DMD muscle. Therefore, this study serves as a baseline for a new in vitro method to examine potential therapies for muscular disorders.


Asunto(s)
Distrofina/metabolismo , Potenciales de la Membrana , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos Esqueléticos/metabolismo , Ingeniería de Tejidos , Adolescente , Estudios de Casos y Controles , Técnicas de Cultivo de Célula , Línea Celular , Niño , Distrofina/genética , Impedancia Eléctrica , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/ultraestructura , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mutación , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/ultraestructura , Poloxámero/farmacología , Sodio/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 321(4): R572-R587, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431403

RESUMEN

Hyperoxic conditions are known to accelerate skeletal muscle regeneration after injuries. In the early phase of regeneration, macrophages invade the injured area and subsequently secrete various growth factors, which regulate myoblast proliferation and differentiation. Although hyperoxic conditions accelerate muscle regeneration, it is unknown whether this effect is indirectly mediated by macrophages. Here, using C2C12 cells, we show that not only hyperoxia but also hypoxia enhance myoblast proliferation directly, without accelerating differentiation into myotubes. Under hyperoxic conditions (95% O2 + 5% CO2), the cell membrane was damaged because of lipid oxidization, and a disrupted cytoskeletal structure, resulting in suppressed cell proliferation. However, a culture medium containing vitamin C (VC), an antioxidant, prevented this lipid oxidization and cytoskeletal disruption, resulting in enhanced proliferation in response to hyperoxia exposure of ≤4 h/day. In contrast, exposure to hypoxic conditions (95% N2 + 5% CO2) for ≤8 h/day enhanced cell proliferation. Hyperoxia did not promote cell differentiation into myotubes, regardless of whether the culture medium contained VC. Similarly, hypoxia did not accelerate cell differentiation. These results suggest that regardless of hyperoxia or hypoxia, changes in oxygen tension can enhance cell proliferation directly, but do not influence differentiation efficiency in C2C12 cells. Moreover, excess oxidative stress abrogated the enhancement of myoblast proliferation induced by hyperoxia. This research will contribute to basic data for applying the effects of hyperoxia or hypoxia to muscle regeneration therapy.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Desarrollo de Músculos , Mioblastos Esqueléticos/metabolismo , Estrés Oxidativo , Oxígeno/metabolismo , Regeneración , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Cinética , Metabolismo de los Lípidos , Ratones , Desarrollo de Músculos/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , Estrés Oxidativo/efectos de los fármacos , Oxígeno/toxicidad , Regeneración/efectos de los fármacos
7.
Int J Biol Macromol ; 187: 603-613, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34314795

RESUMEN

Although crotoxin B (CB) is a well-established catalytically active secretory phospholipase A2 group IIA (sPLA2-IIA) myotoxin, we investigated its potential stimulatory effect on myogenesis with the involvement of prostaglandins (PGs) produced by cyclooxygenase (COX)-1 and -2 pathways. Myoblast C2C12 were cultured in proliferation or commitment protocols and incubated with CB followed by lumiracoxib (selective COX-2 inhibitor) or valeryl salicylate (selective COX-1 inhibitor) and subjected to analysis of PG release, cell proliferation and activation of myogenic regulatory factors (MRFs). Our data showed that CB in non-cytotoxic concentrations induces an increase of COX-2 protein expression and stimulates the activity of both COX isoforms to produce PGE2, PGD2 and 15d-PGJ2. CB induced an increase in the proliferation of C2C12 myoblast cells dependent on PGs from both COX-1 and COX-2 pathways. In addition, CB stimulated the activity of Pax7, MyoD, Myf5 and myogenin in proliferated cells. Otherwise, CB increased myogenin activity but not MyoD in committed cells. Our findings evidence the role of COX-1- and COX-2-derived PGs in modulating CB-induced activation of MRFs. This study contributes to the knowledge that CB promote early myogenic events via regulatory mechanisms on PG-dependent COX pathways, showing new concepts about the effect of sPLA2-IIA in skeletal muscle repair.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Crotoxina/farmacología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Fosfolipasas A2 Grupo II/farmacología , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Neurotoxinas/farmacología , Prostaglandinas/metabolismo , Animales , Línea Celular , Ratones , Proteína MioD/metabolismo , Mioblastos Esqueléticos/enzimología , Factor 5 Regulador Miogénico/metabolismo , Miogenina/metabolismo , Factor de Transcripción PAX7/metabolismo , Transducción de Señal
8.
Molecules ; 26(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809377

RESUMEN

Muscle fatigue is induced by an acute or chronic physical performance inability after excessive physical activity often associated with lactate accumulation, the end-product of glycolysis. In this study, the water-extracted roots of Sanguisorba officinalis L., a herbal medicine traditionally used for inflammation and diarrhea, reduced the activities of lactate dehydrogenase A (LDHA) in in vitro enzyme assay myoblast C2C12 cells and murine muscle tissue. Physical performance measured by a treadmill test was improved in the S. officinalis-administrated group. The analysis of mouse serum and tissues showed significant changes in lactate levels. Among the proteins related to energy metabolism-related physical performance, phosphorylated-AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor-coactivator-1 alpha (PGC-1α) levels were enhanced, whereas the amount of LDHA was suppressed. Therefore, S. officinalis might be a candidate for improving physical performance via inhibiting LDHA and glycolysis.


Asunto(s)
Lactato Deshidrogenasa 5/antagonistas & inhibidores , Rendimiento Físico Funcional , Extractos Vegetales/administración & dosificación , Plantas Medicinales/química , Sanguisorba/química , Proteínas Quinasas Activadas por AMP/metabolismo , Administración Oral , Animales , Línea Celular , Prueba de Esfuerzo , Glucólisis/efectos de los fármacos , Ácido Láctico/metabolismo , Masculino , Medicina Tradicional Coreana , Ratones , Ratones Endogámicos C57BL , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Resistencia Física/efectos de los fármacos , Fitoquímicos/administración & dosificación , Fitoquímicos/química , Fitoterapia , Extractos Vegetales/química
9.
Sci Rep ; 11(1): 6152, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731782

RESUMEN

Acute ischemia-reperfusion injury in skeletal muscle is a significant clinical concern in the trauma setting. The mitochondrial permeability transition inhibitor NIM-811 has previously been shown to reduce ischemic injury in the liver and kidney. The effects of this treatment on skeletal muscle are, however, not well understood. We first used an in vitro model of muscle cell ischemia in which primary human skeletal myoblasts were exposed to hypoxic conditions (1% O2 and 5% CO2) for 6 h. Cells were treated with NIM-811 (0-20 µM). MTS assay was used to quantify cell survival and LDH assay to quantify cytotoxicity 2 h after treatment. Results indicate that NIM-811 treatment of ischemic myotubes significantly increased cell survival and decreased LDH in a dose-dependent manner. We then examined NIM-811 effects in vivo using orthodontic rubber bands (ORBs) for 90 min of single hindlimb ischemia. Mice received vehicle or NIM-811 (10 mg/kg BW) 10 min before reperfusion and 3 h later. Ischemia and reperfusion were monitored using laser speckle imaging. In vivo data demonstrate that mice treated with NIM-811 showed increased gait speed and improved Tarlov scores compared to vehicle-treated mice. The ischemic limbs of female mice treated with NIM-811 showed significantly lower levels of MCP-1, IL-23, IL-6, and IL-1α compared to limbs of vehicle-treated mice. Similarly, male mice treated with NIM-811 showed significantly lower levels of MCP-1 and IL-1a. These findings are clinically relevant as MCP-1, IL-23, IL-6, and IL-1α are all pro-inflammatory factors that are thought to contribute directly to tissue damage after ischemic injury. Results from the in vitro and in vivo experiments suggest that NIM-811 and possibly other mitochondrial permeability transition inhibitors may be effective for improving skeletal muscle salvage and survival after ischemia-reperfusion injury.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclosporina/farmacología , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Femenino , Humanos , Masculino , Ratones , Músculo Esquelético/patología , Mioblastos Esqueléticos/patología , Cultivo Primario de Células
10.
J Cell Physiol ; 236(10): 7033-7044, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33738797

RESUMEN

Fatty acids (FA) exert physiological and pathophysiological effects leading to changes in skeletal muscle metabolism and function, however, in vitro models to investigate these changes are limited. These experiments sought to establish the effects of physiological and pathophysiological concentrations of exogenous FA upon the function of tissue engineered skeletal muscle (TESkM). Cultured initially for 14 days, C2C12 TESkM was exposed to FA-free bovine serum albumin alone or conjugated to a FA mixture (oleic, palmitic, linoleic, and α-linoleic acids [OPLA] [ratio 45:30:24:1%]) at different concentrations (200 or 800 µM) for an additional 4 days. Subsequently, TESkM morphology, functional capacity, gene expression and insulin signaling were analyzed. There was a dose response increase in the number and size of lipid droplets within the TESkM (p < .05). Exposure to exogenous FA increased the messenger RNA expression of genes involved in lipid storage (perilipin 2 [p < .05]) and metabolism (pyruvate dehydrogenase lipoamide kinase isozyme 4 [p < .01]) in a dose dependent manner. TESkM force production was reduced (tetanic and single twitch) (p < .05) and increases in transcription of type I slow twitch fiber isoform, myosin heavy chain 7, were observed when cultured with 200 µM OPLA compared to control (p < .01). Four days of OPLA exposure results in lipid accumulation in TESkM which in turn results in changes in muscle function and metabolism; thus, providing insight ito the functional and mechanistic changes of TESkM in response to exogenous FA.


Asunto(s)
Ácidos Grasos/toxicidad , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Insulina/farmacología , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Ingeniería de Tejidos
11.
J Steroid Biochem Mol Biol ; 210: 105861, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675951

RESUMEN

BACKGROUND: Evidence is growing for a role of vitamin D in regulating skeletal muscle mass, strength and functional capacity. Given the role the kidneys play in activating total vitamin D, and the high prevalence of vitamin D deficiency in Chronic Kidney Disease (CKD), it is possible that deficiency contributes to the low levels of physical function and muscle mass in these patients. METHODS: This is a secondary cross-sectional analysis of previously published interventional study, with in vitro follow up work. 34 CKD patients at stages G3b-5 (eGFR 25.5 ± 8.3 mL/min/1.73m2; age 61 ± 12 years) were recruited, with a sub-group (n = 20) also donating a muscle biopsy. Vitamin D and associated metabolites were analysed in plasma by liquid chromatography tandem-mass spectroscopy and correlated to a range of physiological tests of muscle size, function, exercise capacity and body composition. The effects of 1α,25(OH)2D3 supplementation on myogenesis and myotube size was investigated in primary skeletal muscle cells from vitamin D deficient donors. RESULTS: In vivo, there was no association between total or active vitamin D and muscle size or strength, but a significant correlation with V̇O2Peak was seen with total vitamin D (25OHD). in vitro, 1α,25(OH)2D3 supplementation reduced IL-6 mRNA expression, but had no effect upon proliferation, differentiation or myotube diameter. CONCLUSIONS: Vitamin D deficiency is not a prominent factor driving the loss of muscle mass in CKD, but may play a role in reduced exercise capacity.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Insuficiencia Renal Crónica/fisiopatología , Deficiencia de Vitamina D/fisiopatología , Anciano , Calcitonina/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estudios Transversales , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Insuficiencia Renal Crónica/complicaciones , Vitamina D/sangre , Vitamina D/metabolismo , Deficiencia de Vitamina D/etiología
12.
Am J Physiol Cell Physiol ; 320(4): C577-C590, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439777

RESUMEN

The peroxisome proliferator-activated receptors (PPARs) have been previously implicated in the pathophysiology of skeletal muscle dysfunction in women with breast cancer (BC) and animal models of BC. This study investigated alterations induced in skeletal muscle by BC-derived factors in an in vitro conditioned media (CM) system and tested the hypothesis that BC cells secrete a factor that represses PPAR-γ (PPARG) expression and its transcriptional activity, leading to downregulation of PPARG target genes involved in mitochondrial function and other metabolic pathways. We found that BC-derived factors repress PPAR-mediated transcriptional activity without altering protein expression of PPARG. Furthermore, we show that BC-derived factors induce significant alterations in skeletal muscle mitochondrial function and lipid accumulation, which are rescued with exogenous expression of PPARG. The PPARG agonist drug rosiglitazone was able to rescue BC-induced lipid accumulation but did not rescue effects of BC-derived factors on PPAR-mediated transcription or mitochondrial function. These data suggest that BC-derived factors alter lipid accumulation and mitochondrial function via different mechanisms that are both related to PPARG signaling, with mitochondrial dysfunction likely being altered via repression of PPAR-mediated transcription, and lipid accumulation being altered via transcription-independent functions of PPARG.


Asunto(s)
Neoplasias de la Mama/metabolismo , Caquexia/metabolismo , Metabolismo de los Lípidos , Mitocondrias Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , PPAR gamma/metabolismo , Comunicación Paracrina , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/patología , Caquexia/etiología , Caquexia/genética , Caquexia/patología , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Femenino , Células HEK293 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/patología , PPAR gamma/agonistas , PPAR gamma/genética , Rosiglitazona/farmacología , Transducción de Señal , Transcripción Genética
13.
Am J Physiol Cell Physiol ; 320(4): C566-C576, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33406027

RESUMEN

Muscle progenitor cells (MPCs) in aged muscle exhibit impaired activation into proliferating myoblasts, thereby impairing fusion and changes in secreted factors. The antihyperglycemic drug metformin, currently studied as a candidate antiaging therapy, may have potential to promote function of aged MPCs. We evaluated the impact of 2 wk of metformin ingestion on primary myoblast function measured in vitro after being extracted from muscle biopsies of older adult participants. MPCs were isolated from muscle biopsies of community-dwelling older (4 male/4 female, ∼69 yr) adult participants before (pre) and after (post) the metformin ingestion period and studied in vitro. Cells were extracted from Young participants (4 male/4 female, ∼27 yr) to serve as a "youthful" comparator. MPCs from Old subjects had lower fusion index and myoblast-endothelial cell homing compared with Young, while Old MPCs, extracted after short-term metformin ingestion, performed better at both tasks. Transcriptomic analyses of Old MPCs (vs. Young) revealed decreased histone expression and increased myogenic pathway activity, yet this phenotype was partially restored by metformin. However, metformin ingestion exacerbated pathways related to inflammation signaling. Together, this study demonstrated that 2 wk of metformin ingestion induced persistent effects on Old MPCs that improved function in vitro and altered their transcriptional signature including histone and chromatin remodeling.


Asunto(s)
Envejecimiento Saludable , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Mioblastos Esqueléticos/efectos de los fármacos , Adulto , Factores de Edad , Anciano , Comunicación Celular , Fusión Celular , Movimiento Celular , Células Cultivadas , Técnicas de Cocultivo , Esquema de Medicación , Células Endoteliales/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Mioblastos Esqueléticos/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transcriptoma/efectos de los fármacos
14.
Front Endocrinol (Lausanne) ; 12: 772925, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002962

RESUMEN

Metabolic dysfunction, dysregulated differentiation, and atrophy of skeletal muscle occur as part of a cluster of abnormalities associated with the development of Type 2 diabetes mellitus (T2DM). Recent interest has turned to the attention of the role of 1-deoxysphingolipids (1-DSL), atypical class of sphingolipids which are found significantly elevated in patients diagnosed with T2DM but also in the asymptomatic population who later develop T2DM. In vitro studies demonstrated that 1-DSL have cytotoxic properties and compromise the secretion of insulin from pancreatic beta cells. However, the role of 1-DSL on the functionality of skeletal muscle cells in the pathophysiology of T2DM still remains unclear. This study aimed to investigate whether 1-DSL are cytotoxic and disrupt the cellular processes of skeletal muscle precursors (myoblasts) and differentiated cells (myotubes) by performing a battery of in vitro assays including cell viability adenosine triphosphate assay, migration assay, myoblast fusion assay, glucose uptake assay, and immunocytochemistry. Our results demonstrated that 1-DSL significantly reduced the viability of myoblasts in a concentration and time-dependent manner, and induced apoptosis as well as cellular necrosis. Importantly, myoblasts were more sensitive to the cytotoxic effects induced by 1-DSL rather than by saturated fatty acids, such as palmitate, which are critical mediators of skeletal muscle dysfunction in T2DM. Additionally, 1-DSL significantly reduced the migration ability of myoblasts and the differentiation process of myoblasts into myotubes. 1-DSL also triggered autophagy in myoblasts and significantly reduced insulin-stimulated glucose uptake in myotubes. These findings demonstrate that 1-DSL directly compromise the functionality of skeletal muscle cells and suggest that increased levels of 1-DSL observed during the development of T2DM are likely to contribute to the pathophysiology of muscle dysfunction detected in this disease.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Esfingolípidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo
15.
Chem Biol Interact ; 336: 109311, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33171136

RESUMEN

3-Monochloro-1,2-propanediol (3-MCPD) is a chemical compound that is unintentionally produced during food processing such as acid hydrolysis. There has been reports regarding the role of this chemical compound in reproductive toxicity, as well as genotoxicity, neurotoxicity, and kidney toxicity. In this study, the in vitro muscle toxicity of 3-MCPD was assessed using C2C12 myoblast cells. The reduction in muscle regulatory factors (MRFs), which is related to muscle differentiation, was identified as significant with the increase concentration of 3-MCPD. Also, significantly decreased protein expression in mTOR and p70S6 kinase, which are the downstream targets of the pathway associated with muscle synthesis, was also confirmed. Therefore, the inhibitory effect of 3-MCPD on muscle differentiation is considered to be the cause of suppressing mTOR and p70S6 kinase expression. In conclusion, it was confirmed that 3-MCPD inhibits muscle differentiation in C2C12 myoblasts through suppressing the expression of several genetic factors involving muscle differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , alfa-Clorhidrina/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ratones , Relación Estructura-Actividad
16.
Mar Drugs ; 18(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33265937

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is a rare congenital disorder with heterotopic ossification (HO) in soft tissues. The abnormal activation of bone morphogenetic protein (BMP) signaling by a mutant activin receptor-like kinase-2 (ALK2) leads to the development of HO in FOP patients, and, thus, BMP signaling inhibitors are promising therapeutic applications for FOP. In the present study, we screened extracts of 188 Indonesian marine invertebrates for small molecular inhibitors of BMP-induced alkaline phosphatase (ALP) activity, a marker of osteoblastic differentiation in a C2C12 cell line stably expressing ALK2(R206H) (C2C12(R206H) cells), and identified five marine sponges with potent ALP inhibitory activities. The activity-guided purification of an EtOH extract of marine sponge Dysidea sp. (No. 256) resulted in the isolation of dysidenin (1), herbasterol (2), and stellettasterol (3) as active components. Compounds 1-3 inhibited ALP activity in C2C12(R206H) cells with IC50 values of 2.3, 4.3, and 4.2 µM, respectively, without any cytotoxicity, even at 18.4-21.4 µM. The direct effects of BMP signaling examined using the Id1WT4F-luciferase reporter assay showed that compounds 1-3 did not decrease the reporter activity, suggesting that they inhibit the downstream of the Smad transcriptional step in BMP signaling.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Dysidea/metabolismo , Inhibidores Enzimáticos/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Miositis Osificante/tratamiento farmacológico , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Esteroles/farmacología , Tiazoles/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Proteína Morfogenética Ósea 4/toxicidad , Línea Celular , Inhibidores Enzimáticos/aislamiento & purificación , Indonesia , Ratones , Estructura Molecular , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Miositis Osificante/metabolismo , Miositis Osificante/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Esteroles/aislamiento & purificación , Relación Estructura-Actividad , Tiazoles/aislamiento & purificación
17.
Biochem Biophys Res Commun ; 532(3): 482-488, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32892951

RESUMEN

Leucine-rich repeat containing family 8 (LRRC8) proteins form the volume-regulated anion channel (VRAC). Recently, they were shown to be required for normal differentiation and fusion of C2C12 myoblasts, by promoting membrane hyperpolarization and intracellular Ca2+ signals. However, the mechanism by which they are involved remained obscure. Here, using a FRET-based sensor for VRAC activity, we show temporary activation of VRAC within the first 2 h of myogenic differentiation. During this period, we also observed a significant decrease in the intracellular Cl- concentration that was abolished by the VRAC inhibitor carbenoxolone. However, lowering the intracellular Cl- concentration by extracellular Cl- depletion did not promote differentiation as judged by the percentage of myogenin-positive nuclei or total myogenin levels in C2C12 cells. Instead, it inhibited myosin expression and myotube formation. Together, these data suggest that VRAC is activated and mediates Cl- efflux early on during myogenic differentiation, and a moderate intracellular Cl- concentration is necessary for myoblast fusion.


Asunto(s)
Cloruros/metabolismo , Proteínas de la Membrana/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Animales , Carbenoxolona/farmacología , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Transporte Iónico/efectos de los fármacos , Ratones , Desarrollo de Músculos/fisiología , Mioblastos Esqueléticos/efectos de los fármacos
18.
J Pharm Pharmacol ; 72(12): 1667-1693, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32812252

RESUMEN

OBJECTIVES: The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS: C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY: The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic ß-cells and endothelial cells, was discovered.


Asunto(s)
Desarrollo de Medicamentos , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Resistencia a la Insulina , Insulina/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Línea Celular , Portadores de Fármacos , Composición de Medicamentos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Hipoglucemiantes/química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Nanopartículas , Puntos Cuánticos , Transducción de Señal
19.
Toxins (Basel) ; 12(7)2020 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708381

RESUMEN

Vermeersiekte or "vomiting disease" is an economically important disease of ruminants following ingestion of Geigeria (G.) species in South Africa. Sheep are more susceptible, and poisoning is characterized by stiffness, regurgitation, bloat, paresis, and paralysis. Various sesquiterpene lactones have been implicated as the cause of poisoning. The in vitro cytotoxicity of two sesquiterpene lactones, namely, ivalin (purified from Geigeria aspera) and parthenolide (a commercially available sesquiterpene lactone), were compared using mouse skeletal myoblast (C2C12) and rat embryonic cardiac myocyte (H9c2) cell lines, representing the oesophageal, skeletal and cardiac muscles, which are affected in sheep. For 24, 48, and 72 h, both cell lines were exposed. A colorimetric viability assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), was used to assess cytotoxicity. A concentration-dependent cytotoxic response was observed in both cell lines, however, the C2C12 cells were more sensitive, with the half-maximal effective concentrations (EC50s) ranging between 2.7 and 3.3 µM. In addition, the effect that ivalin and parthenolide has on desmin, an important cytoskeletal intermediate filament in myocytes, was evaluated using the C2C12 myoblasts. Disorganization and aggregation of desmin were caused by both sesquiterpene lactones, which could clarify some of the ultrastructural lesions described in vermeersiekte.


Asunto(s)
Citoesqueleto/efectos de los fármacos , Desmina/metabolismo , Lactonas/toxicidad , Mioblastos Esqueléticos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sesquiterpenos/toxicidad , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Ratones , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
20.
FASEB J ; 34(9): 11562-11576, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652761

RESUMEN

In skeletal muscle fibers, mitochondria are densely packed adjacent to myofibrils because adenosine triphosphate (ATP) is needed to fuel sarcomere shortening. However, despite this close physical and biochemical relationship, the effects of mitochondrial dynamics on skeletal muscle contractility are poorly understood. In this study, we analyzed the effects of Mitochondrial Division Inhibitor 1 (mdivi-1), an inhibitor of mitochondrial fission, on the structure and function of both mitochondria and myofibrils in skeletal muscle tissues engineered on micromolded gelatin hydrogels. Treatment with mdivi-1 did not alter myotube morphology, but did increase the mitochondrial turbidity and oxidative capacity, consistent with reduced mitochondrial fission. Mdivi-1 also significantly increased basal, twitch, and tetanus stresses, as measured using the Muscular Thin Film (MTF) assay. Finally, mdivi-1 increased sarcomere length, potentially due to mdivi-1-induced changes in mitochondrial volume and compression of myofibrils. Together, these results suggest that mdivi-1 increases contractile stress generation, which may be caused by an increase in maximal respiration and/or sarcomere length due to increased volume of individual mitochondria. These data reinforce that mitochondria have both biochemical and biomechanical roles in skeletal muscle and that mitochondrial dynamics can be manipulated to alter muscle contractility.


Asunto(s)
Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinazolinonas/farmacología , Animales , Línea Celular , Dinaminas/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales/fisiología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Sarcómeros/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...