Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79.038
Filtrar
1.
Med Sci Monit ; 30: e945188, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775003

RESUMEN

This publication has been retracted by the Editor due to the identification of non-original figure images and manuscript content that raise concerns regarding the credibility and originality of the study and the manuscript. Reference: Ying-Jun Zhang, He Huang, Yu Liu, Bin Kong, Guangji Wang. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-kappaB) Signaling Pathway. Med Sci Monit, 2019; 25: 7898-7907. DOI: 10.12659/MSM.919861.


Asunto(s)
Apoptosis , Cardiotoxicidad , Doxorrubicina , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/deficiencia , FN-kappa B/metabolismo , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Apoptosis/efectos de los fármacos , Animales , Cardiotoxicidad/metabolismo , Cardiotoxicidad/etiología , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Inflamación/patología , Miocardio/patología , Miocardio/metabolismo , Ratones , Antígeno 96 de los Linfocitos/metabolismo , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo
2.
J Tradit Chin Med ; 44(3): 448-457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767628

RESUMEN

OBJECTIVE: Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.


Asunto(s)
Combinación de Medicamentos , Medicamentos Herbarios Chinos , Fibrosis , Insuficiencia Cardíaca , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Ratas , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/etiología , Masculino , Fibrosis/tratamiento farmacológico , Humanos , Miocardio/metabolismo , Miocardio/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Transducción de Señal/efectos de los fármacos , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Sarcoma/metabolismo
3.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770680

RESUMEN

Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.


Asunto(s)
Distrofina , Ratones Endogámicos mdx , Ratones Noqueados , Receptores de Glucocorticoides , Animales , Receptores de Glucocorticoides/metabolismo , Distrofina/metabolismo , Distrofina/genética , Distrofina/deficiencia , Miocardio/patología , Miocardio/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Ratones , Cardiomiopatías/patología , Cardiomiopatías/metabolismo , Ratones Endogámicos C57BL , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/metabolismo , Fenotipo , Sístole/efectos de los fármacos
4.
Cardiovasc Toxicol ; 24(6): 527-538, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720122

RESUMEN

Adolescents commonly co-abuse many drugs including anabolic androgenic steroids either they are athletes or non-athletes. Stanozolol is the major anabolic used in recent years and was reported grouped with cannabis. The current study aimed at evaluating the biochemical and histopathological changes related to the hypertrophic effects of stanozolol and/or cannabis whether in condition of exercise practice or sedentary conditions. Adult male Wistar albino rats received either stanozolol (5 mg/kg, s.c), cannabis (10 mg/kg, i.p.), and a combination of both once daily for two months. Swimming exercise protocol was applied as a training model. Relative heart weight, oxidative stress biomarkers, cardiac tissue fibrotic markers were evaluated. Left ventricular morphometric analysis and collagen quantification was done. The combined treatment exhibited serious detrimental effects on the heart tissues. It increased heart tissue fibrotic markers (Masson's trichrome stain (p < 0.001), cardiac COL3 (p < 0.0001), and VEGF-A (p < 0.05)), lowered heart glutathione levels (p < 0.05) and dramatically elevated oxidative stress (increased malondialdehyde (p < 0.0001) and 8-OHDG (p < 0.0001)). Training was not ameliorating for the observed effects. Misuse of cannabis and stanozolol resulted in more hypertrophic consequences of the heart than either drug alone, which were at least largely assigned to oxidative stress, heart tissue fibrotic indicators, histological alterations, and morphometric changes.


Asunto(s)
Anabolizantes , Cardiomegalia Inducida por el Ejercicio , Fibrosis , Estrés Oxidativo , Ratas Wistar , Estanozolol , Animales , Estanozolol/toxicidad , Masculino , Estrés Oxidativo/efectos de los fármacos , Anabolizantes/toxicidad , Cardiomegalia Inducida por el Ejercicio/efectos de los fármacos , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/prevención & control , Remodelación Ventricular/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Doping en los Deportes , Biomarcadores/metabolismo , Natación , Condicionamiento Físico Animal/fisiología , Ratas , Modelos Animales de Enfermedad
5.
PLoS One ; 19(5): e0299557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718072

RESUMEN

The continued development in methylome analysis has enabled a more precise assessment of DNA methylation, but treatment of target tissue prior to analysis may affect DNA analysis. Prediction of age based on methylation levels in the genome (DNAmAge) has gained much interest in disease predisposition (biological age estimation), but also in chronological donor age estimation in crime case samples. Various epigenetic clocks were designed to predict the age. However, it remains unknown how the storage of the tissues affects the DNAmAge estimation. In this study, we investigated the storage method impact of DNAmAge by the comparing the DNAmAge of the two commonly used storage methods, freezing and formalin-fixation and paraffin-embedding (FFPE) to DNAmAge of fresh tissue. This was carried out by comparing paired heart tissue samples of fresh tissue, samples stored by freezing and FFPE to chronological age and whole blood samples from the same individuals. Illumina EPIC beadchip array was used for methylation analysis and the DNAmAge was evaluated with the following epigenetic clocks: Horvath, Hannum, Levine, Horvath skin+blood clock (Horvath2), PedBE, Wu, BLUP, EN, and TL. We observed differences in DNAmAge among the storage conditions. FFPE samples showed a lower DNAmAge compared to that of frozen and fresh samples. Additionally, the DNAmAge of the heart tissue was lower than that of the whole blood and the chronological age. This highlights caution when evaluating DNAmAge for FFPE samples as the results were underestimated compared with fresh and frozen tissue samples. Furthermore, the study also emphasizes the need for a DNAmAge model based on heart tissue samples for an accurate age estimation.


Asunto(s)
Metilación de ADN , Formaldehído , Miocardio , Adhesión en Parafina , Fijación del Tejido , Humanos , Adhesión en Parafina/métodos , Formaldehído/química , Miocardio/metabolismo , Fijación del Tejido/métodos , Masculino , Adulto , Femenino , Persona de Mediana Edad , Criopreservación/métodos , Adolescente , Anciano , Adulto Joven
6.
Sci Adv ; 10(19): eadl3549, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718121

RESUMEN

Metabolic reprogramming is critical in the onset of pressure overload-induced cardiac remodeling. Our study reveals that proline dehydrogenase (PRODH), the key enzyme in proline metabolism, reprograms cardiomyocyte metabolism to protect against cardiac remodeling. We induced cardiac remodeling using transverse aortic constriction (TAC) in both cardiac-specific PRODH knockout and overexpression mice. Our results indicate that PRODH expression is suppressed after TAC. Cardiac-specific PRODH knockout mice exhibited worsened cardiac dysfunction, while mice with PRODH overexpression demonstrated a protective effect. In addition, we simulated cardiomyocyte hypertrophy in vitro using neonatal rat ventricular myocytes treated with phenylephrine. Through RNA sequencing, metabolomics, and metabolic flux analysis, we elucidated that PRODH overexpression in cardiomyocytes redirects proline catabolism to replenish tricarboxylic acid cycle intermediates, enhance energy production, and restore glutathione redox balance. Our findings suggest PRODH as a modulator of cardiac bioenergetics and redox homeostasis during cardiac remodeling induced by pressure overload. This highlights the potential of PRODH as a therapeutic target for cardiac remodeling.


Asunto(s)
Ratones Noqueados , Miocitos Cardíacos , Prolina , Remodelación Ventricular , Animales , Prolina/metabolismo , Miocitos Cardíacos/metabolismo , Ratones , Ratas , Prolina Oxidasa/metabolismo , Prolina Oxidasa/genética , Metabolismo Energético , Miocardio/metabolismo , Miocardio/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/etiología , Modelos Animales de Enfermedad , Oxidación-Reducción , Masculino , Reprogramación Metabólica
8.
J Physiol Pharmacol ; 75(2): 123-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736260

RESUMEN

Myocardial infarction (MI) is a significant global health issue and the leading cause of death. Myocardial infarction (MI) is characterized by events such as damage to heart cells and stress generated by inflammation. Punicalagin (PCN), a naturally occurring bioactive compound found in pomegranates, exhibits a diverse array of pharmacological effects against many disorders. This study aimed to assess the preventive impact of PCN, with its potential anti-inflammatory and antioxidant properties, on myocardial injury caused by isoproterenol (ISO) in rats and elucidate the possible underlying mechanisms. Experimental rats were randomly categorized into four groups: control group (fed a regular diet for 15 days), PCN group (orally administered PCN at 50 mg/kg body weight (b.w.) for 15 days), ISO group (subcutaneously administered ISO (85 mg/kg b.w.) on days 14 and 15 to induce MI), and PCN+ISO group (orally preadministered PCN (50 mg/kg b.w.) for 15 days and administered ISO (85 mg/kg b.w.) on days 14 and 15). The rat cardiac tissue was then investigated for cardiac marker, oxidative stress marker, and inflammatory marker expression levels. PCN prevented ISO-induced myocardial injury, suppressing the levels of creatine kinase-myocardial band, C-reactive protein, homocysteine, cardiac troponin T, and cardiac troponin I in the rats. Moreover, PCN treatment reversed (P<0.01) the ISO-induced increase in blood pressure, attenuated lipid peroxidation markers, and depleted both enzymatic and nonenzymatic markers in the rats. Additionally, PCN inhibited (P<0.01) ISO-induced overexpression of oxidative stress markers (p-38, p-c-Jun N-terminal kinase, and p-extracellular signal-regulated kinase 1), inflammatory markers (nuclear factor-kappa B, tumor necrosis factor-alpha, and interleukin-6), and matrix metalloproteinases and decreased the levels (P<0.01) of apoptosis proteins in the rats. Nuclear factor erythroid 2-related factor 2/silent information regulator transcript-1 (Nrf2/Sirt1) is a major cellular defense protein that regulates and scavenges oxidative toxic substances through apoptosis. Therefore, overexpression of Nrf2/Sirt1 to inhibit inflammation and oxidative stress is considered a novel target for preventing MI. PCN also significantly enhanced the expression of Nrf2/Sirt1 in ISO-induced rats. Histopathological analyses of cardiac tissue revealed that PCN treatment exhibited a protective effect on the heart tissue, mitigating damage. These findings show that by activating the Nrf2/Sirt1 pathway, PCN regulates oxidative stress, inflammation, and apoptosis, hence providing protection against ISO-induced myocardial ischemia.


Asunto(s)
Taninos Hidrolizables , Inflamación , Isoproterenol , Infarto del Miocardio , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Sirtuina 1 , Animales , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/prevención & control , Infarto del Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Masculino , Taninos Hidrolizables/farmacología , Sirtuina 1/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/inducido químicamente , Ratas , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Wistar , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Antioxidantes/farmacología , Miocardio/metabolismo , Miocardio/patología
9.
BMC Genomics ; 25(1): 454, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720264

RESUMEN

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Asunto(s)
Anuros , Hibernación , Metabolómica , Músculo Esquelético , Animales , Hibernación/genética , Hibernación/fisiología , Músculo Esquelético/metabolismo , Anuros/genética , Anuros/metabolismo , Anuros/fisiología , Miocardio/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Estaciones del Año , Metaboloma , Tibet
10.
Exp Biol Med (Maywood) ; 249: 10112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715976

RESUMEN

Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.


Asunto(s)
Macrófagos , Ratas Endogámicas SHR , Receptores Sensibles al Calcio , Animales , Receptores Sensibles al Calcio/metabolismo , Macrófagos/metabolismo , Ratas , Masculino , Remodelación Ventricular/fisiología , Miocardio/patología , Miocardio/metabolismo , Fibrosis/metabolismo , Presión Sanguínea , Ratones , Hipertensión/metabolismo , Hipertensión/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
11.
J Biochem Mol Toxicol ; 38(5): e23718, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738849

RESUMEN

According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.


Asunto(s)
FN-kappa B , Oxidación-Reducción , Material Particulado , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Wistar , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Material Particulado/toxicidad , Ratas , Femenino , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , FN-kappa B/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Miocardio/metabolismo , Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Estrés Oxidativo/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos
12.
J Cardiothorac Surg ; 19(1): 283, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730417

RESUMEN

OBJECTIVE: Myocardial infarction (MI) -induced cardiac dysfunction can be attenuated by aerobic exercises. This study explored the mechanism of interval training (IT) regulating cardiac function in MI rats, providing some theoretical basis for clarifying MI pathogenesis and new ideas for clinically treating MI. METHODS: Rats were subjected to MI modeling, IT intervention, and treatments of the Transforming growth factor-ß1 (TGF-ß1) pathway or the nod-like receptor protein 3 (NLRP3) activators. Cardiac function and hemodynamic indicator alterations were observed. Myocardial pathological damage and fibrosis, reactive oxygen species (ROS) level, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, MDA content, inflammasome-associated protein levels, and inflammatory factor levels were assessed. The binding between TGF-ß1 and receptor was detected. RESULTS: MI rats exhibited decreased left ventricle ejection fraction (LVEF), left ventricle fractional shortening  (LVFS), left ventricular systolic pressure  (LVSP), positive and negative derivates max/min (dP/dt max/min) and increased left ventricular end-systolic pressure (LVEDP), a large number of scar areas in myocardium, disordered cell arrangement and extensive fibrotic lesions, increased TGF-ß1 and receptor binding, elevated ROS level and MDA content and weakened SOD, CAT and GSH-Px activities, and up-regulated NLRP3, apoptosis-associated speck-like protein containing a CARD  (ASC) and cleaved-caspase-1 levels, while IT intervention caused ameliorated cardiac function. IT inactivated the TGF-ß1 pathway to decrease oxidative stress in myocardial tissues of MI rats and inhibit NLRP3 inflammasome activation. Activating NLRP3 partially reversed IT-mediated improvement on cardiac function in MI rats. CONCLUSION: IT diminished oxidative stress in myocardial tissues and suppressed NLRP3 inflammasome activation via inactivating the TGF-ß1 pathway, thus improving the cardiac function of MI rats.


Asunto(s)
Inflamasomas , Infarto del Miocardio , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Animales , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Factor de Crecimiento Transformador beta1/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Inflamasomas/metabolismo , Masculino , Modelos Animales de Enfermedad , Transducción de Señal/fisiología , Condicionamiento Físico Animal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Función Ventricular Izquierda/fisiología , Miocardio/metabolismo , Miocardio/patología
13.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731803

RESUMEN

This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium's response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes.


Asunto(s)
Atletas , Biomarcadores , Hipoxia , Humanos , Masculino , Hipoxia/metabolismo , Proyectos Piloto , Natación/fisiología , Adulto Joven , Miocardio/metabolismo , Mioglobina/metabolismo , Troponina I/metabolismo , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Adolescente , Proteínas de Unión a Ácidos Grasos/metabolismo , Resistencia Física/fisiología , Forma MB de la Creatina-Quinasa/sangre , Forma MB de la Creatina-Quinasa/metabolismo , Adaptación Fisiológica , Altitud
14.
Exp Cell Res ; 438(2): 114061, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692345

RESUMEN

Acute myocardial infarction (AMI) is a prevalent cardiovascular disease with high morbidity and mortality rates worldwide. Pyroptosis is an inflammatory form of programmed cell death that has been linked to various pathological conditions. However, its exact contribution to the onset and progression of heart injury in AMI has not yet fully elucidated. Herein, we established mouse AMI model by ligating the left anterior descending artery and performed transcriptome analysis during the early phase of AMI. Mouse HL-1 and human AC-16 cardiomyocytes were subjected to hypoxia to simulate ischemic injury in vitro. Our results revealed a significant activation of the inflammatory response at 3 h post-ligation, as confirmed by RNA sequencing. We identified the occurrence of NLRP3 inflammasome-mediated pyroptosis in the cardiac tissues of human cases with AMI, as well as in mouse models of AMI and hypoxia-induced cardiomyocytes, using immunohistochemistry staining and Western blotting assays. Concurrently, pharmacological inhibition of NLRP3 inflammasome-mediated pyroptosis with MCC950 and VX-765 effectively decreased hypoxia-induced cardiomyocytes injury, while mitigating myocardial oxidative stress, apoptosis and inflammation caused by hypoxia. Moreover, the circulating levels of gasdermin D (GSDMD), the pyroptosis executor, were remarkably elevated in the plasma of mice with early AMI and in the supernatant of hypoxia-exposed cardiomyocytes in a time-dependent manner using ELISA and Western blotting. Furthermore, the change in circulating GSDMD positively correlated with Creatine Kinase-MB (CK-MB) in the plasma of early-stage AMI mouse. In summary, these findings indicated a critical role for NLRP3 inflammasome-mediated pyroptosis in the progression of AMI, the administration of MCC950 and VX-765 may be attractive candidate therapeutic approaches for cardiac injury caused by acute hypoxia or even AMI. Additionally, the circulating GSDMD exhibits potential as a newly diagnostic biomarker for AMI.


Asunto(s)
Apoptosis , Furanos , Inflamación , Ratones Endogámicos C57BL , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , Piroptosis , Sulfonamidas , Piroptosis/efectos de los fármacos , Animales , Ratones , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sulfonamidas/farmacología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Masculino , Furanos/farmacología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/tratamiento farmacológico , Indenos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , para-Aminobenzoatos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Modelos Animales de Enfermedad , Miocardio/metabolismo , Miocardio/patología , Hipoxia/metabolismo , Hipoxia/complicaciones , Dipéptidos
15.
J Nanobiotechnology ; 22(1): 223, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702815

RESUMEN

Cardiac muscle targeting is a notoriously difficult task. Although various nanoparticle (NP) and adeno-associated viral (AAV) strategies with heart tissue tropism have been developed, their performance remains suboptimal. Significant off-target accumulation of i.v.-delivered pharmacotherapies has thwarted development of disease-modifying cardiac treatments, such as gene transfer and gene editing, that may address both rare and highly prevalent cardiomyopathies and their complications. Here, we present an intriguing discovery: cargo-less, safe poly (lactic-co-glycolic acid) particles that drastically improve heart delivery of AAVs and NPs. Our lead formulation is referred to as ePL (enhancer polymer). We show that ePL increases selectivity of AAVs and virus-like NPs (VLNPs) to the heart and de-targets them from the liver. Serotypes known to have high (AAVrh.74) and low (AAV1) heart tissue tropisms were tested with and without ePL. We demonstrate up to an order of magnitude increase in heart-to-liver accumulation ratios in ePL-injected mice. We also show that ePL exhibits AAV/NP-independent mechanisms of action, increasing glucose uptake in the heart, increasing cardiac protein glycosylation, reducing AAV neutralizing antibodies, and delaying blood clearance of AAV/NPs. Current approaches utilizing AAVs or NPs are fraught with challenges related to the low transduction of cardiomyocytes and life-threatening immune responses; our study introduces an exciting possibility to direct these modalities to the heart at reduced i.v. doses and, thus, has an unprecedented impact on drug delivery and gene therapy. Based on our current data, the ePL system is potentially compatible with any therapeutic modality, opening a possibility of cardiac targeting with numerous pharmacological approaches.


Asunto(s)
Dependovirus , Vectores Genéticos , Miocardio , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Dependovirus/genética , Animales , Nanopartículas/química , Ratones , Miocardio/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Humanos , Ratones Endogámicos C57BL , Corazón , Terapia Genética/métodos , Técnicas de Transferencia de Gen , Hígado/metabolismo , Tropismo Viral , Células HEK293
16.
Cell Death Dis ; 15(5): 308, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693114

RESUMEN

Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.


Asunto(s)
Fibrosis , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Miocitos Cardíacos , Organoides , Humanos , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , Organoides/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocardio/patología , Miocardio/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología
17.
Sci Rep ; 14(1): 10206, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702334

RESUMEN

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Asunto(s)
Altitud , Hipoxia , Leptina , Transducción de Señal , Leptina/metabolismo , Leptina/sangre , Animales , Ratas , Masculino , Hipoxia/metabolismo , Hipoxia/fisiopatología , Humanos , Mal de Altura/metabolismo , Mal de Altura/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Adulto , Corazón/fisiopatología
18.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700644

RESUMEN

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Asunto(s)
Corazón , Regeneración , Sindecano-4 , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo , Regeneración/genética , Corazón/fisiología , Corazón/fisiopatología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proliferación Celular/genética , Miocardio/metabolismo , Miocardio/patología , Técnicas de Silenciamiento del Gen
19.
Sci Rep ; 14(1): 9991, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693202

RESUMEN

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Asunto(s)
Células Endoteliales , Perfilación de la Expresión Génica , Infarto del Miocardio , Animales , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transcriptoma , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Modelos Animales de Enfermedad , Proliferación Celular , Movimiento Celular/genética
20.
PLoS One ; 19(5): e0302732, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739599

RESUMEN

BACKGROUND: We aimed to determine whether serum levels of proteins related to changes in cardiac extracellular matrix (ECM) were associated with ischemic injury assessed by cardiac magnetic resonance (CMR) and mortality in patients with ST-elevation myocardial infarction (STEMI). METHODS: The concentrations of six ECM-related proteins (periostin, osteopontin, syndecan-1, syndecan-4, bone morphogenetic protein 7, and growth differentiation factor (GDF)-15) were measured in serum samples from patients on Day 1 and Month 4 after STEMI (n = 239). Ischemic injury was assessed by myocardial salvage index, microvascular obstruction, infarct size, and left ventricular function measured by CMR conducted during the initial admission (median 2 days after admission) and after 4 months. All-cause mortality was recorded after a median follow-up time of 70 months. RESULTS: Levels of periostin increased from Day 1 to Month 4 after hospitalization, while the levels of GDF-15, osteopontin, syndecan-1, and syndecan-4 declined. At both time points, high levels of syndecan-1 were associated with microvascular obstruction, large infarct size, and reduced left ventricular ejection fraction, whereas high levels of syndecan-4 at Month 4 were associated with a higher myocardial salvage index and less dilatation of the left ventricle. Higher mortality rates were associated with periostin levels at both time points, low syndecan-4 levels at Month 4, or high GDF-15 levels at Month 4. CONCLUSIONS: In patients with STEMI, we found an association between serum levels of ECM biomarkers and ischemic injury and mortality. The results provide new insight into the role ECM components play in ischemic injury following STEMI and suggests a potential for these biomarkers in prognostication after STEMI.


Asunto(s)
Biomarcadores , Infarto del Miocardio con Elevación del ST , Humanos , Masculino , Biomarcadores/sangre , Infarto del Miocardio con Elevación del ST/sangre , Infarto del Miocardio con Elevación del ST/mortalidad , Femenino , Persona de Mediana Edad , Anciano , Matriz Extracelular/metabolismo , Miocardio/metabolismo , Miocardio/patología , Osteopontina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...