Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.753
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125696

RESUMEN

Myocarditis (MC) is defined as an immunological inflammatory reaction with various etiologies, clinical presentations and prognoses within the myocardium. Currently, parvovirus B19 (PVB19) has become the main factor leading to this disease, replacing the previously dominant viruses A and B. In the case of chronic heart failure with subsequent dilated cardiomyopathy, approximately 67% have a viral etiology, and most of them are the result of PVB19 infection. However, the analysis showed a correlation between PVB19 infection and the risk of developing inflammatory dilated cardiomyopathy (DCMi). PVB19 is detected in 23% of patients with DCMi. Chronic infection may also contribute to progressive left ventricular failure in patients with a history of MC. The above effect suggests the active replication of PVB19 only in heart biopsies with inflammation due to MC or DCMi. Moreover, the supply of IFN-ß to suppress the active transcription of PVB19 accompanied by DCMi over a period of 6 months results in the normalization of NT-proBNP and an improvement in LVEF along with NYHA performance. The small number of reports on this topic and inaccuracies resulting from constantly conducted research and ongoing changes make it impossible to clearly answer the question of whether PVB19 is a factor inducing de novo MC and DCM or only accompanies the above conditions. However, large clinical cohort studies lead to the perception of PVB19 as a viral etiological agent capable of causing de novo MC together with DCMi.


Asunto(s)
Insuficiencia Cardíaca , Miocarditis , Infecciones por Parvoviridae , Parvovirus B19 Humano , Humanos , Miocarditis/virología , Miocarditis/etiología , Parvovirus B19 Humano/patogenicidad , Insuficiencia Cardíaca/virología , Insuficiencia Cardíaca/etiología , Infecciones por Parvoviridae/complicaciones , Infecciones por Parvoviridae/virología , Cardiomiopatía Dilatada/virología , Cardiomiopatía Dilatada/patología
2.
BMC Cardiovasc Disord ; 24(1): 375, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026189

RESUMEN

BACKGROUND: Acute myocardial injury, cytokine storms, hypoxemia and pathogen-mediated damage were the major causes responsible for mortality induced by coronavirus disease 2019 (COVID-19)-related myocarditis. These need ECMO treatment. We investigated differentially expressed genes (DEGs) in patients with COVID-19-related myocarditis and ECMO prognosis. METHODS: GSE150392 and GSE93101 were analyzed to identify DEGs. A Venn diagram was used to obtain the same transcripts between myocarditis-related and ECMO-related DEGs. Enrichment pathway analysis was performed and hub genes were identified. Pivotal miRNAs, transcription factors, and chemicals with the screened gene interactions were identified. The GSE167028 dataset and single-cell sequencing data were used to validate the screened genes. RESULTS: Using a Venn diagram, 229 overlapping DEGs were identified between myocarditis-related and ECMO-related DEGs, which were mainly involved in T cell activation, contractile actin filament bundle, actomyosin, cyclic nucleotide phosphodiesterase activity, and cytokine-cytokine receptor interaction. 15 hub genes and 15 neighboring DEGs were screened, which were mainly involved in the positive regulation of T cell activation, integrin complex, integrin binding, the PI3K-Akt signaling pathway, and the TNF signaling pathway. Data in GSE167028 and single-cell sequencing data were used to validate the screened genes, and this demonstrated that the screened genes CCL2, APOE, ITGB8, LAMC2, COL6A3 and TNC were mainly expressed in fibroblast cells; IL6, ITGA1, PTK2, ITGB5, IL15, LAMA4, CAV1, SNCA, BDNF, ACTA2, CD70, MYL9, DPP4, ENO2 and VEGFC were expressed in cardiomyocytes; IL6, PTK2, ITGB5, IL15, APOE, JUN, SNCA, CD83, DPP4 and ENO2 were expressed in macrophages; and IL6, ITGA1, PTK2, ITGB5, IL15, VCAM1, LAMA4, CAV1, ACTA2, MYL9, CD83, DPP4, ENO2, VEGFC and IL32 were expressed in vascular endothelial cells. CONCLUSION: The screened hub genes, IL6, ITGA1, PTK2, ITGB3, ITGB5, CCL2, IL15, VCAM1, GZMB, APOE, ITGB8, LAMA4, LAMC2, COL6A3 and TNFRSF9, were validated using GEO dataset and single-cell sequencing data, which may be therapeutic targets patients with myocarditis to prevent MI progression and adverse cardiovascular events.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Miocarditis , Humanos , COVID-19/genética , COVID-19/terapia , COVID-19/complicaciones , Miocarditis/genética , Miocarditis/terapia , Miocarditis/virología , Pronóstico , Perfilación de la Expresión Génica , Bases de Datos Genéticas , SARS-CoV-2 , Redes Reguladoras de Genes , Transcriptoma
3.
Virulence ; 15(1): 2383559, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39066684

RESUMEN

A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.


Asunto(s)
Infecciones por Cardiovirus , Virus de la Encefalomiocarditis , Interacciones Huésped-Patógeno , Inmunidad Innata , Virus de la Encefalomiocarditis/patogenicidad , Virus de la Encefalomiocarditis/inmunología , Virus de la Encefalomiocarditis/fisiología , Animales , Infecciones por Cardiovirus/virología , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/veterinaria , Porcinos , Humanos , Interacciones Huésped-Patógeno/inmunología , Miocarditis/virología , Miocarditis/inmunología , Virulencia , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología
4.
Viruses ; 16(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39066216

RESUMEN

As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, which could not be attributed to parasitism by spirorchid flukes or bacterial infections. We, therefore, undertook an investigation to determine whether virus infections might be part of the pathogenesis. Deep sequencing revealed abundant DNA virus contigs in the heart tissue, of which CRESS and circoviruses appeared to be the most consistently present. Further analysis revealed the homology of some of the circoviruses to the beak and feather disease virus. While a causative link to myocarditis could not be established, the presence of these viruses may play a contributing role by affecting the immune system and overall health of animals exposed to pollutants, higher water temperatures, and decreasing nutrition.


Asunto(s)
Virus ADN , Miocarditis , Tortugas , Viroma , Animales , Tortugas/virología , Miocarditis/virología , Miocarditis/veterinaria , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus ADN/clasificación , Miocardio/patología , ADN Viral/genética , Corazón/virología , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Queensland
5.
Virology ; 597: 110156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981316

RESUMEN

This study aims to elucidate the role of TIP30 (30 KDa HIV-1 TAT-Interacting Protein) in the progression of coxsackievirus B3 (CVB3)-induced viral myocarditis. TIP30 knockout and wildtype mice were intraperitoneally infected with CVB3 and evaluated at day 7 post-infection. HeLa cells were transfected with TIP30 lentiviral particles and subsequently infected with CVB3 to evaluate viral replication, cellular pathogenesis, and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Deletion of the TIP30 gene heightened heart virus titers and mortality rates in mice with CVB3-induced myocarditis, exacerbating cardiac damage and fibrosis, and elevating pro-inflammatory factors level. In vitro experiments demonstrated the modulation of mTORC1 signaling by TIP30 during CVB3 infection in HeLa cells. TIP30 overexpression mitigated CVB3-induced cellular pathogenesis and VP1 expression, with rapamycin, an mTOR1 inhibitor, reversing these effects. These findings suggest TIP30 plays a critical protective role against CVB3-induced myocarditis by regulating mTORC1 signaling.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Miocarditis , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/metabolismo , Modelos Animales de Enfermedad , Enterovirus Humano B/fisiología , Células HeLa , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocarditis/virología , Miocarditis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Replicación Viral
6.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892033

RESUMEN

The Epstein-Barr virus (EBV) is frequently found in endomyocardial biopsies (EMBs) from patients with heart failure, but the detection of EBV-specific DNA has not been associated with progressive hemodynamic deterioration. In this paper, we investigate the use of targeted next-generation sequencing (NGS) to detect EBV transcripts and their correlation with myocardial inflammation in EBV-positive patients with heart failure with reduced ejection fraction (HFrEF). Forty-four HFrEF patients with positive EBV DNA detection and varying degrees of myocardial inflammation were selected. EBV-specific transcripts from EMBs were enriched using a custom hybridization capture-based workflow and, subsequently, sequenced by NGS. The short-read sequencing revealed the presence of EBV-specific transcripts in 17 patients, of which 11 had only latent EBV genes and 6 presented with lytic transcription. The immunohistochemical staining for CD3+ T lymphocytes showed a significant increase in the degree of myocardial inflammation in the presence of EBV lytic transcripts, suggesting a possible influence on the clinical course. These results imply the important role of EBV lytic transcripts in the pathogenesis of inflammatory heart disease and emphasize the applicability of targeted NGS in EMB diagnostics as a basis for specific treatment.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Insuficiencia Cardíaca , Herpesvirus Humano 4 , Miocarditis , Humanos , Herpesvirus Humano 4/genética , Insuficiencia Cardíaca/virología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Masculino , Femenino , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Persona de Mediana Edad , Miocarditis/virología , Miocarditis/patología , Anciano , Secuenciación de Nucleótidos de Alto Rendimiento , Miocardio/patología , Miocardio/metabolismo , ADN Viral/genética , Adulto , Biopsia
7.
Mol Med ; 30(1): 92, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898389

RESUMEN

BACKGROUND: COVID-19 is a new infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Since the outbreak in December 2019, it has caused an unprecedented world pandemic, leading to a global human health crisis. Although SARS CoV-2 mainly affects the lungs, causing interstitial pneumonia and severe acute respiratory distress syndrome, a number of patients often have extensive clinical manifestations, such as gastrointestinal symptoms, cardiovascular damage and renal dysfunction. PURPOSE: This review article discusses the pathogenic mechanisms of cardiovascular damage in COVID-19 patients and provides some useful suggestions for future clinical diagnosis, treatment and prevention. METHODS: An English-language literature search was conducted in PubMed and Web of Science databases up to 12th April, 2024 for the terms "COVID-19", "SARS CoV-2", "cardiovascular damage", "myocardial injury", "myocarditis", "hypertension", "arrhythmia", "heart failure" and "coronary heart disease", especially update articles in 2023 and 2024. Salient medical literatures regarding the cardiovascular damage of COVID-19 were selected, extracted and synthesized. RESULTS: The most common cardiovascular damage was myocarditis and pericarditis, hypertension, arrhythmia, myocardial injury and heart failure, coronary heart disease, stress cardiomyopathy, ischemic stroke, blood coagulation abnormalities, and dyslipidemia. Two important pathogenic mechanisms of the cardiovascular damage may be direct viral cytotoxicity as well as indirect hyperimmune responses of the body to SARS CoV-2 infection. CONCLUSIONS: Cardiovascular damage in COVID-19 patients is common and portends a worse prognosis. Although the underlying pathophysiological mechanisms of cardiovascular damage related to COVID-19 are not completely clear, two important pathogenic mechanisms of cardiovascular damage may be the direct damage of the SARSCoV-2 infection and the indirect hyperimmune responses.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Pandemias , SARS-CoV-2 , Humanos , COVID-19/complicaciones , Enfermedades Cardiovasculares/etiología , Neumonía Viral/complicaciones , Neumonía Viral/inmunología , Neumonía Viral/virología , Neumonía Viral/patología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Betacoronavirus , Miocarditis/etiología , Miocarditis/virología
8.
Sci Rep ; 14(1): 12653, 2024 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825590

RESUMEN

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Asunto(s)
Arritmias Cardíacas , Infecciones por Coxsackievirus , Modelos Animales de Enfermedad , Enterovirus Humano B , Fibrosis , Ratones Endogámicos C57BL , Miocarditis , Condicionamiento Físico Animal , Animales , Miocarditis/virología , Miocarditis/patología , Masculino , Ratones , Arritmias Cardíacas/etiología , Infecciones por Coxsackievirus/patología , Infecciones por Coxsackievirus/complicaciones , Miocardio/patología , Entrenamiento Aeróbico
9.
BMC Cardiovasc Disord ; 24(1): 282, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811883

RESUMEN

Sudden cardiac death (SCD) is a major public health issue worldwide. In the young (< 40 years of age), genetic cardiomyopathies and viral myocarditis, sometimes in combination, are the most frequent, but underestimated, causes of SCD. Molecular autopsy is essential for prevention. Several studies have shown an association between genetic cardiomyopathies and viral myocarditis, which is probably underestimated due to insufficient post-mortem investigations. We report on four autopsy cases illustrating the pathogenesis of these combined pathologies. In two cases, a genetic hypertrophic cardiomyopathy was diagnosed in combination with Herpes Virus Type 6 (HHV6) and/or Parvovirus-B19 (PVB19) in the heart. In the third case, autopsy revealed a dilated cardiomyopathy and virological analyses revealed acute myocarditis caused by three viruses: PVB19, HHV6 and Epstein-Barr virus. Genetic analyses revealed a mutation in the gene coding for desmin. The fourth case illustrated a channelopathy and a PVB19/HHV6 coinfection. Our four cases illustrate the highly probable deleterious role of cardiotropic viruses in the occurrence of SCD in subjects with genetic cardiomyopathies. We discuss the pathogenetic link between viral myocarditis and genetic cardiomyopathy. Molecular autopsy is essential in prevention of these SCD, and a close collaboration between cardiologists, pathologists, microbiologists and geneticians is mandatory.


Asunto(s)
Autopsia , Muerte Súbita Cardíaca , Herpesvirus Humano 6 , Miocarditis , Parvovirus B19 Humano , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/virología , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Causas de Muerte , Coinfección , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/patología , Muerte Súbita Cardíaca/prevención & control , Infecciones por Virus de Epstein-Barr/complicaciones , Resultado Fatal , Predisposición Genética a la Enfermedad , Herpesvirus Humano 4/genética , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/aislamiento & purificación , Mutación , Miocarditis/virología , Miocarditis/patología , Miocarditis/genética , Infecciones por Parvoviridae/complicaciones , Parvovirus B19 Humano/genética , Infecciones por Roseolovirus/complicaciones , Infecciones por Roseolovirus/virología , Infecciones por Roseolovirus/diagnóstico , Infecciones por Roseolovirus/patología
10.
Nat Commun ; 15(1): 4153, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755212

RESUMEN

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Asunto(s)
Proteínas ADAM , Infecciones por Cardiovirus , Virus de la Encefalomiocarditis , Inmunidad Innata , Interferón Tipo I , Helicasa Inducida por Interferón IFIH1 , Proteínas de la Membrana , Miocarditis , Animales , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/virología , Virus de la Encefalomiocarditis/inmunología , Células HEK293 , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocarditis/inmunología , Miocarditis/virología , Transducción de Señal/inmunología
12.
Cardiovasc Pathol ; 72: 107652, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38750778

RESUMEN

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.


Asunto(s)
Infecciones por Coxsackievirus , Modelos Animales de Enfermedad , Enterovirus Humano B , Ratones Endogámicos C57BL , Miocarditis , Miocardio , Animales , Miocarditis/virología , Miocarditis/patología , Femenino , Masculino , Infecciones por Coxsackievirus/patología , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/patogenicidad , Miocardio/patología , Factores Sexuales , Progresión de la Enfermedad , Factores de Tiempo , Fibrosis , Ratones
13.
Sci Rep ; 14(1): 11124, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750107

RESUMEN

Influenza is a significant public health and economic threat around the world. Epidemiological studies have demonstrated a close association between influenza pandemics and cardiovascular mortality. Moreover, it has been shown that there is a decrease in cardiovascular mortality in high-risk patients following vaccination with the influenza vaccine. Here, we have investigated the role of anti-viral STAT1 signaling in influenza-induced myocarditis. Wild-type mice (C57BL/6) were infected with either influenza A/PR/8/34 or control, and cellular response and gene expression analysis from the heart samples were assessed 7 days later. The expression of interferon response genes STAT1, STAT2, Mx1, OASL2, ISG15, chemokines CCL2, CCL3, CXCL9 and CXCL10, and the frequency of neutrophils (CD45+CD11b+Ly6G+) and CD4+ T cells (CD45+CD4+) were all significantly increased in influenza-infected mice when compared to vehicle controls. These data suggest that influenza infection induces interferons, inflammatory chemokines, and cellular recruitment during influenza infection. We further investigated the role of STAT1 in influenza-induced myocarditis. The frequency of neutrophils and the levels of lipocalin 2 were significantly increased in STAT1-/- mice when compared to WT controls. Finally, we investigated the role of Lcn2 in viral-induced myocarditis. We found that in the absence of Lcn2, there was preserved cardiac function in Lcn2-/- mice when compared to WT controls. These data suggest that the absence of Lcn2 is cardioprotective during viral-induced myocarditis.


Asunto(s)
Lipocalina 2 , Ratones Endogámicos C57BL , Miocarditis , Infecciones por Orthomyxoviridae , Factor de Transcripción STAT1 , Animales , Ratones , Lipocalina 2/metabolismo , Lipocalina 2/genética , Ratones Noqueados , Miocarditis/virología , Miocarditis/metabolismo , Miocarditis/etiología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética
15.
Viruses ; 16(5)2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38793559

RESUMEN

Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.


Asunto(s)
Antivirales , Infecciones por Coxsackievirus , Modelos Animales de Enfermedad , Enterovirus Humano B , Miocarditis , Animales , Miocarditis/tratamiento farmacológico , Miocarditis/virología , Ratones , Infecciones por Coxsackievirus/tratamiento farmacológico , Infecciones por Coxsackievirus/virología , Humanos , Enterovirus Humano B/efectos de los fármacos , Células HeLa , Antivirales/farmacología , Antivirales/uso terapéutico , Masculino , Ratones Endogámicos BALB C , Inflamación/tratamiento farmacológico , Inflamación/virología , Replicación Viral/efectos de los fármacos
16.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696536

RESUMEN

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , Interferón Tipo I , Miocarditis , Miocitos Cardíacos , ARN Viral , Miocarditis/virología , Miocarditis/inmunología , Miocarditis/genética , Animales , Miocitos Cardíacos/virología , Miocitos Cardíacos/metabolismo , Ratones , Enterovirus Humano B/inmunología , Infecciones por Coxsackievirus/inmunología , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/genética , Interferón Tipo I/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Inmunidad Innata , Transducción de Señal , Interferón beta/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Masculino , Regiones no Traducidas 5'
18.
Sci Rep ; 14(1): 10289, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704437

RESUMEN

Myocarditis is considered a fatal form of foot-and-mouth disease (FMD) in suckling calves. In the present study, a total of 17 calves under 4 months of age and suspected clinically for FMD were examined for clinical lesions, respiratory rate, heart rate, and heart rhythm. Lesion samples, saliva, nasal swabs, and whole blood were collected from suspected calves and subjected to Sandwich ELISA and reverse transcription multiplex polymerase chain reaction (RT-mPCR) for detection and serotyping of FMD virus (FMDV). The samples were found to be positive for FMDV serotype "O". Myocarditis was suspected in 6 calves based on tachypnoea, tachycardia, and gallop rhythm. Serum aspartate aminotransferase (AST), creatinine kinase myocardial band (CK-MB) and lactate dehydrogenase (LDH), and cardiac troponins (cTnI) were measured. Mean serum AST, cTn-I and LDH were significantly higher (P < 0.001) in < 2 months old FMD-infected calves showing clinical signs suggestive of myocarditis (264.833 ± 4.16; 11.650 ± 0.34 and 1213.33 ± 29.06) than those without myocarditis (< 2 months old: 110.00 ± 0.00, 0.06 ± 0.00, 1050.00 ± 0.00; > 2 months < 4 months: 83.00 ± 3.00, 0.05 ± 0.02, 1159.00 ± 27.63) and healthy control groups (< 2 months old: 67.50 ± 3.10, 0.047 ± 0.01, 1120.00 ± 31.62; > 2 months < 4 months: 72.83 ± 2.09, 0.47 ± 0.00, 1160.00 ± 18.44). However, mean serum CK-MB did not differ significantly amongst the groups. Four calves under 2 months old died and a necropsy revealed the presence of a pathognomic gross lesion of the myocardial form of FMD known as "tigroid heart". Histopathology confirmed myocarditis. This study also reports the relevance of clinical and histopathological findings and biochemical markers in diagnosing FMD-related myocarditis in suckling calves.


Asunto(s)
Fiebre Aftosa , Miocarditis , Animales , Bovinos , Miocarditis/veterinaria , Miocarditis/virología , Miocarditis/patología , Fiebre Aftosa/virología , Fiebre Aftosa/patología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/patología , Virus de la Fiebre Aftosa/patogenicidad , Virus de la Fiebre Aftosa/aislamiento & purificación , Animales Lactantes , Factores de Edad , Aspartato Aminotransferasas/sangre , Masculino , L-Lactato Deshidrogenasa/sangre
19.
Front Immunol ; 15: 1380697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715608

RESUMEN

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Asunto(s)
COVID-19 , Miocarditis , SARS-CoV-2 , Miocarditis/virología , Miocarditis/inmunología , Miocarditis/terapia , Miocarditis/genética , Humanos , COVID-19/inmunología , COVID-19/genética , COVID-19/terapia , SARS-CoV-2/fisiología , Metilación , 5-Metilcitosina/metabolismo , Inmunidad Innata , Tratamiento Farmacológico de COVID-19 , Animales , ARN Viral/genética , ARN Viral/metabolismo , Procesamiento Postranscripcional del ARN
20.
Int Immunopharmacol ; 133: 112073, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636372

RESUMEN

BACKGROUND: Myocarditis is an important clinical issue which lacks specific treatment by now. Ivermectin (IVM) is an inhibitor of importin α/ß-mediated nuclear translocation. This study aimed to explore the therapeutic effects of IVM on acute myocarditis. METHODS: Mouse models of coxsackie B3 virus (CVB3) infection-induced myocarditis and experimental autoimmune myocarditis (EAM) were established to evaluate the effects of IVM. Cardiac functions were evaluated by echocardiography and Millar catheter. Cardiac inflammatory infiltration was assessed by histological staining. Cytometric bead array and quantitative real-time PCR were used to detect the levels of pro-inflammatory cytokines. The macrophages and their M1/M2 polarization were analyzed via flow cytometry. Protein expression and binding were detected by co-immunoprecipitation, Western blotting and histological staining. The underlying mechanism was verified in vitro using CVB3-infected RAW264.7 macrophages. Cyclic polypeptide (cTN50) was synthesized to selectively inhibit the nuclear translocation of NF-κB/p65, and CVB3-infected RAW264.7 cells were treated with cTN50. RESULTS: Increased expression of importin ß was observed in both models. IVM treatment improved cardiac functions and reduced the cardiac inflammation associated with CVB3-myocarditis and EAM. Furthermore, the pro-inflammatory cytokine (IL-1ß/IL-6/TNF-α) levels were downregulated via the inhibition of the nuclear translocation of NF-κB/p65 in macrophages. IVM and cTN50 treatment also inhibited the nuclear translocation of NF-κB/p65 and downregulated the expression of pro-inflammatory cytokines in RAW264.7 macrophages. CONCLUSIONS: Ivermectin inhibits the nuclear translocation of NF-κB/p65 and the expression of major pro-inflammatory cytokines in myocarditis. The therapeutic effects of IVM on viral and non-viral myocarditis models suggest its potential application in the treatment of acute myocarditis.


Asunto(s)
Ivermectina , Miocarditis , Factor de Transcripción ReIA , Animales , Humanos , Masculino , Ratones , Enfermedades Autoinmunes/tratamiento farmacológico , beta Carioferinas/metabolismo , Infecciones por Coxsackievirus/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enterovirus Humano B , Ivermectina/uso terapéutico , Ivermectina/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos BALB C , Miocarditis/tratamiento farmacológico , Miocarditis/virología , Miocardio/patología , Miocardio/metabolismo , Células RAW 264.7 , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA