Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Acta Neuropathol ; 146(5): 725-745, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37773216

RESUMEN

Inclusion body myositis (IBM) is unique across the spectrum of idiopathic inflammatory myopathies (IIM) due to its distinct clinical presentation and refractoriness to current treatment approaches. One explanation for this resistance may be the engagement of cell-autonomous mechanisms that sustain or promote disease progression of IBM independent of inflammatory activity. In this study, we focused on senescence of tissue-resident cells as potential driver of disease. For this purpose, we compared IBM patients to non-diseased controls and immune-mediated necrotizing myopathy patients. Histopathological analysis suggested that cellular senescence is a prominent feature of IBM, primarily affecting non-myogenic cells. In-depth analysis by single nuclei RNA sequencing allowed for the deconvolution and study of muscle-resident cell populations. Among these, we identified a specific cluster of fibro-adipogenic progenitors (FAPs) that demonstrated key hallmarks of senescence, including a pro-inflammatory secretome, expression of p21, increased ß-galactosidase activity, and engagement of senescence pathways. FAP function is required for muscle cell health with changes to their phenotype potentially proving detrimental. In this respect, the transcriptomic landscape of IBM was also characterized by changes to the myogenic compartment demonstrating a pronounced loss of type 2A myofibers and a rarefication of acetylcholine receptor expressing myofibers. IBM muscle cells also engaged a specific pro-inflammatory phenotype defined by intracellular complement activity and the expression of immunogenic surface molecules. Skeletal muscle cell dysfunction may be linked to FAP senescence by a change in the collagen composition of the latter. Senescent FAPs lose collagen type XV expression, which is required to support myofibers' structural integrity and neuromuscular junction formation in vitro. Taken together, this study demonstrates an altered phenotypical landscape of muscle-resident cells and that FAPs, and not myofibers, are the primary senescent cell type in IBM.


Asunto(s)
Miositis por Cuerpos de Inclusión , Miositis , Humanos , Miositis por Cuerpos de Inclusión/metabolismo , Adipogénesis , Colágeno/metabolismo , Músculo Esquelético/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445853

RESUMEN

Inclusion body myositis (IBM) is a chronic, mostly treatment-resistant, inflammatory myopathy with a pathology that centers around specific interactions between inflammation and protein accumulation. The study aimed to identify the inflammasome as a key event in the complex network of pathomechanisms. Regulation of the inflammasome was assessed in a well-established pro-inflammatory cell culture model using human myoblasts and primary human myotubes. By quantitative PCR, western blot and immunocytochemistry, inflammasome markers including NLRP3 were assessed in muscle cells exposed to the cytokines IL-1ß and IFN-γ. The data were corroborated by analysis of muscle biopsies from patients with IBM compared to other myositis subtypes. In the cell culture model of IBM, the NLRP3 inflammasome was significantly overexpressed, as evidenced by western blot (p = 0.03) and quantitative PCR (p < 0.01). Target genes that play a role in inflammasome assembly, T-cell migration, and MHC-I expression (p = 0.009) were highly co-upregulated. NLRP3 was significantly overexpressed in muscle biopsies from IBM samples compared to disease controls (p = 0.049), including other inflammatory myopathies. Due to the extraordinary features of the pathogenesis and the pronounced upregulation of NLRP3 in IBM, the inflammasome could serve as a key molecule that drives the inflammatory cascade as well as protein accumulation in the muscle. These data can be useful for future therapeutic developments.


Asunto(s)
Miositis por Cuerpos de Inclusión , Miositis , Humanos , Miositis por Cuerpos de Inclusión/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Cultivadas , Músculo Esquelético/metabolismo , Miositis/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
3.
Front Immunol ; 14: 1153789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063893

RESUMEN

Introduction: Inclusion body myositis (IBM) is a progressive inflammatory myopathy characterised by skeletal muscle infiltration and myofibre invasion by CD8+ T lymphocytes. In some cases, IBM has been reported to be associated with a systemic lymphoproliferative disorder of CD8+ T cells exhibiting a highly differentiated effector phenotype known as T cell Large Granular Lymphocytic Leukemia (T-LGLL). Methods: We investigated the incidence of a CD8+ T-LGL lymphoproliferative disorder in 85 IBM patients and an aged-matched group of 56 Healthy Controls (HC). Further, we analysed the phenotypical characteristics of the expanded T-LGLs and investigated whether their occurrence was associated with any particular HLA alleles or clinical characteristics. Results: Blood cell analysis by flow cytometry revealed expansion of T-LGLs in 34 of the 85 (40%) IBM patients. The T cell immunophenotype of T-LGLHIGH patients was characterised by increased expression of surface molecules including CD57 and KLRG1, and to a lesser extent of CD94 and CD56 predominantly in CD8+ T cells, although we also observed modest changes in CD4+ T cells and γδ T cells. Analysis of Ki67 in CD57+ KLRG1+ T cells revealed that only a small proportion of these cells was proliferating. Comparative analysis of CD8+ and CD4+ T cells isolated from matched blood and muscle samples donated by three patients indicated a consistent pattern of more pronounced alterations in muscles, although not significant due to small sample size. In the T-LGLHIGH patient group, we found increased frequencies of perforin-producing CD8+ and CD4+ T cells that were moderately correlated to combined CD57 and KLRG1 expression. Investigation of the HLA haplotypes of 75 IBM patients identified that carriage of the HLA-C*14:02:01 allele was significantly higher in T-LGLHIGH compared to T-LGLLOW individuals. Expansion of T-LGL was not significantly associated with seropositivity patient status for anti-cytosolic 5'-nucleotidase 1A autoantibodies. Clinically, the age at disease onset and disease duration were similar in the T-LGLHIGH and T-LGLLOW patient groups. However, metadata analysis of functional alterations indicated that patients with expanded T-LGL more frequently relied on mobility aids than T-LGLLOW patients indicating greater disease severity. Conclusion: Altogether, these results suggest that T-LGL expansion occurring in IBM patients is correlated with exacerbated immune dysregulation and increased disease burden.


Asunto(s)
Leucemia Linfocítica Granular Grande , Miositis por Cuerpos de Inclusión , Humanos , Linfocitos T CD8-positivos , Miositis por Cuerpos de Inclusión/metabolismo , Músculo Esquelético/metabolismo , Fenotipo , Gravedad del Paciente
4.
J Cachexia Sarcopenia Muscle ; 14(2): 964-977, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36860172

RESUMEN

BACKGROUND: Inclusion body myositis (IBM) is an inflammatory myopathy clinically characterized by proximal and distal muscle weakness, with inflammatory infiltrates, rimmed vacuoles and mitochondrial changes in muscle histopathology. There is scarce knowledge on IBM aetiology, and non-established biomarkers or effective treatments are available, partly due to the lack of validated disease models. METHODS: We have performed transcriptomics and functional validation of IBM muscle pathological hallmarks in fibroblasts from IBM patients (n = 14) and healthy controls (n = 12), paired by age and sex. The results comprise an mRNA-seq, together with functional inflammatory, autophagy, mitochondrial and metabolic changes between patients and controls. RESULTS: Gene expression profile of IBM vs control fibroblasts revealed 778 differentially expressed genes (P-value adj < 0.05) related to inflammation, mitochondria, cell cycle regulation and metabolism. Functionally, an increased inflammatory profile was observed in IBM fibroblasts with higher supernatant cytokine secretion (three-fold increase). Autophagy was reduced considering basal protein mediators (18.4% reduced), time-course autophagosome formation (LC3BII 39% reduced, P-value < 0.05), and autophagosome microscopic evaluation. Mitochondria displayed reduced genetic content (by 33.9%, P-value < 0.05) and function (30.2%-decrease in respiration, 45.6%-decline in enzymatic activity (P-value < 0.001), 14.3%-higher oxidative stress, 135.2%-increased antioxidant defence (P-value < 0.05), 11.6%-reduced mitochondrial membrane potential (P-value < 0.05) and 42.8%-reduced mitochondrial elongation (P-value < 0.05)). In accordance, at the metabolite level, organic acid showed a 1.8-fold change increase, with conserved amino acid profile. Correlating to disease evolution, oxidative stress and inflammation emerge as potential markers of prognosis. CONCLUSIONS: These findings confirm the presence of molecular disturbances in peripheral tissues from IBM patients and prompt patients' derived fibroblasts as a promising disease model, which may eventually be exported to other neuromuscular disorders. We additionally identify new molecular players in IBM associated with disease progression, setting the path to deepen in disease aetiology, in the identification of novel biomarkers or in the standardization of biomimetic platforms to assay new therapeutic strategies for preclinical studies.


Asunto(s)
Miositis por Cuerpos de Inclusión , Miositis , Humanos , Miositis por Cuerpos de Inclusión/diagnóstico , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Músculos/metabolismo , Inflamación/patología , Biomarcadores/metabolismo
5.
Orphanet J Rare Dis ; 17(1): 272, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841038

RESUMEN

BACKGROUND: Valosin containing protein (VCP) is an important protein with many vital functions mostly related to the ubiquitin-proteasome system that provides protein quality control. VCP-associated inclusion body myopathy with Paget disease of bone and frontotemporal dementia, also termed VCP disease and multisystem proteinopathy (MSP 1), is an autosomal dominant disorder caused by monoallelic variants in the VCP gene on human chromosome 9. VCP has also been strongly involved in cancer, with over-activity of VCP found in several cancers such as prostate, pancreatic, endometrial, esophageal cancers and osteosarcoma. Since MSP1 is caused by gain of function variants in the VCP gene, we hypothesized our patients would show increased risk for developing malignancies. We describe cases of 3 rare malignancies and 4 common cancers from a retrospective dataset. RESULTS: Upon surveying 106 families with confirmed VCP variants, we found a higher rate of rare tumors including malignant peripheral nerve sheath tumor, anaplastic pleomorphic xanthoastrocytoma and thymoma. Some of these subjects developed cancer before displaying other classic VCP disease manifestations. We also present cases of common cancers; however, we did not find an increased rate compared to the general population. This could be related to the early mortality associated with this disease, since most patients die in their 50-60 s due to respiratory failure or cardiomyopathy which is earlier than the age at which most cancers appear. CONCLUSION: This is the first study that expands the phenotype of VCP disease to potentially include rare cancers and highlights the importance of further investigation of the role of VCP in cancer development. The results of this study in VCP disease patients suggest that patients may be at an increased risk for rare tumors. A larger study will determine if patients with VCP disease develop cancer at a higher rate than the general population. If that is the case, they should be followed up more frequently and screened for recurrence and metastasis of their cancer.


Asunto(s)
Miositis por Cuerpos de Inclusión , Neoplasias , Proteína que Contiene Valosina , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Masculino , Mutación , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Estudios Retrospectivos , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743185

RESUMEN

Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.


Asunto(s)
Demencia Frontotemporal , Músculo Estriado , Miositis por Cuerpos de Inclusión , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutación , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Proteostasis/genética , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Neuromuscul Disord ; 32(6): 493-502, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35595645

RESUMEN

Sporadic inclusion body myositis (sIBM) is characterised by skeletal muscle inflammation, progressive muscle loss and weakness, which is largely refractory to immunosuppressive treatment. Low-load blood-flow restricted (BFR) training has been shown to evoke gains in myofibre cross sectional area (mCSA) in healthy adults. This could partially be due to the activation and integration of muscle satellite cells (SC) resulting in myonuclei addition. Consequently, this study investigated the effect of 12-weeks lower limb low-load BFR resistance training in sIBM patients on SC and myonuclei content, myofibre size and capillarization. Muscle biopsies from sIBM patients randomised to 12-weeks of low-load BFR resistance training (n = 11) or non-exercising controls (CON) (n = 9) were analysed for SC and myonuclei content, myofibre size and capillarization using three-colour immunofluorescence microscopy and computerised quantification procedures. No between-group differences (time-by-group interactions) or within-groups changes were observed for resident SCs (Pax7+/Six1+), proliferating SCs (Pax7+/ Ki67+), myonuclei (Six1+), type 1 mCSA or capillary number (CD31+). However, a time-by-group interaction for type 2 mCSA was observed (p = 0.04). Satellite cell content, myonuclei number, mCSA and capillary density remained unaffected following 12-weeks low-load BFR resistance training, indicating limited myogenic capacity and satellite cell plasticity in long-term sIBM patients.


Asunto(s)
Miositis por Cuerpos de Inclusión , Entrenamiento de Fuerza/métodos , Células Satélite del Músculo Esquelético , Adulto , Proliferación Celular , Ejercicio Físico/fisiología , Proteínas de Homeodominio/metabolismo , Humanos , Hipertrofia/patología , Microscopía Fluorescente , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Miositis por Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/patología , Miositis por Cuerpos de Inclusión/terapia , Células Satélite del Músculo Esquelético/fisiología
8.
Ann Neurol ; 91(3): 317-328, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064929

RESUMEN

OBJECTIVE: This study aimed to elucidate the molecular features of inclusion body myositis (IBM). METHODS: We performed RNA sequencing analysis of muscle biopsy samples from 67 participants, consisting of 58 myositis patients with the pathological finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class I (43 IBM, 6 polymyositis, and 9 unclassifiable myositis), and 9 controls. RESULTS: Cluster analysis, principal component analysis, and pathway analysis showed that differentially expressed genes and pathways identified in IBM and polymyositis were mostly comparable. However, pathways related to cell adhesion molecules were upregulated in IBM as compared with polymyositis and controls (p < 0.01). Notably, CDH1, which encodes the epidermal cell junction protein cadherin 1, was overexpressed in the muscles of IBM, which was validated by another RNA sequencing dataset from previous publications. Western blotting confirmed the presence of mature cadherin 1 protein in the muscles of IBM. Immunohistochemical staining confirmed the positivity for anti-cadherin 1 antibody in the muscles of IBM, whereas there was no muscle fiber positive for anti-cadherin 1 antibody in immune-mediated necrotizing myopathy, antisynthetase syndrome, and controls. The fibers stained with anti-cadherin 1 antibody did not have rimmed vacuoles or abnormal protein accumulation. Experimental skeletal muscle regeneration and differentiation systems showed that CDH1 is expressed during skeletal muscle regeneration and differentiation. INTERPRETATION: CDH1 was detected as a differentially expressed gene, and immunohistochemistry showed that cadherin 1 exists in the muscles of IBM, whereas it was rarely seen in those of other idiopathic inflammatory myopathies. Cadherin 1 upregulation in muscle could provide a valuable clue to the pathological mechanisms of IBM. ANN NEUROL 2022;91:317-328.


Asunto(s)
Cadherinas/metabolismo , Músculo Esquelético/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Transcriptoma , Anciano , Anciano de 80 o más Años , Cadherinas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miositis por Cuerpos de Inclusión/genética
9.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360842

RESUMEN

IBMPFD/ALS is a genetic disorder caused by a single amino acid mutation on the p97 ATPase, promoting ATPase activity and cofactor dysregulation. The disease mechanism underlying p97 ATPase malfunction remains unclear. To understand how the mutation alters the ATPase regulation, we assembled a full-length p97R155H with its p47 cofactor and first visualized their structures using single-particle cryo-EM. More than one-third of the population was the dodecameric form. Nucleotide presence dissociates the dodecamer into two hexamers for its highly elevated function. The N-domains of the p97R155H mutant all show up configurations in ADP- or ATPγS-bound states. Our functional and structural analyses showed that the p47 binding is likely to impact the p97R155H ATPase activities via changing the conformations of arginine fingers. These functional and structural analyses underline the ATPase dysregulation with the miscommunication between the functional modules of the p97R155H.


Asunto(s)
Demencia Frontotemporal/metabolismo , Modelos Moleculares , Distrofia Muscular de Cinturas/metabolismo , Mutación , Miositis por Cuerpos de Inclusión/metabolismo , Osteítis Deformante/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Proteína que Contiene Valosina/genética , Demencia Frontotemporal/genética , Humanos , Microscopía Electrónica de Transmisión , Distrofia Muscular de Cinturas/genética , Miositis por Cuerpos de Inclusión/genética , Osteítis Deformante/genética , Conformación Proteica , Proteína que Contiene Valosina/metabolismo
10.
Cells ; 10(5)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068623

RESUMEN

In recent years, an autoantibody directed against the 5'-citosolic nucleotidase1A (cN1A) was identified in the sera of sporadic inclusion body myositis (s-IBM) patients with widely variable sensitivity (33%-76%) and specificity (87%-100%). We assessed the sensitivity/specificity of anti-cN1A antibodies in an Italian cohort of s-IBM patients, searching for a potential correlation with clinical data. We collected clinical data and sera from 62 consecutive s-IBM patients and 62 other inflammatory myopathies patients. Testing for anti-cN1A antibodies was performed using a commercial ELISA. Anti-cN1A antibodies were detected in 23 s-IBM patients, resulting in a sensitivity of 37.1% with a specificity of 96.8%. Positive and negative predictive values were 92.0% and 60.6%, respectively. We did not find significant difference regarding demographic variables, nor quadriceps or finger flexor weakness. Nevertheless, we found that anti-cN1A-positive patients presented significantly lower scores in IBMFRS item 1 (swallowing, p = 0.045) and more frequently reported more severe swallowing problems, expressed as an IBMFRS item 1 score ≤ 2 (p < 0.001). We confirmed the low sensitivity and high specificity of anti-cN1A Ab in s-IBM patients with a high positive predictive value. The presence of anti-CN1A antibodies identified patients with a greater risk of more severe dysphagia.


Asunto(s)
Autoanticuerpos/química , Trastornos de Deglución/metabolismo , Miositis por Cuerpos de Inclusión/inmunología , Anciano , Biopsia , Femenino , Humanos , Inmunosupresores , Inflamación , Italia/epidemiología , Masculino , Persona de Mediana Edad , Debilidad Muscular , Músculo Esquelético , Miositis por Cuerpos de Inclusión/metabolismo , Valor Predictivo de las Pruebas , Prevalencia , Sensibilidad y Especificidad
11.
BMJ Case Rep ; 14(2)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563691

RESUMEN

While sporadic inclusion body myositis (sIBM) is the most commonly acquired inflammatory myopathy above 50 years of age, its refractory response to conventional immunosuppressive treatments raises questions about its perplexing pathogenesis. Muscle biopsy typically reveals major histocompatibility complex I antigens and CD8+ T cell endomysial infiltrates invading non-necrotic muscle fibres early in the disease course with rimmed vacuoles, protein aggregates and amyloid inclusions later in the disease. Transactive response DNA-binding protein-43 (TDP-43), a protein implicated in transcriptional repression in neurodegenerative diseases, is also found in sIBM. C5b-9 membrane attack complex, an effector protein involved in the complement cascade of the immune response, is commonly found in dermatomyositis, but has rarely been reported in IBM. We describe a novel case of IBM with simultaneous C5b-9 and TDP-43 staining on quadriceps biopsy, raising the question of a possibility of concurrent immune-mediated inflammatory and myodegenerative pathogenesis.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas de Unión al ADN/metabolismo , Miositis por Cuerpos de Inclusión/diagnóstico , Miositis por Cuerpos de Inclusión/metabolismo , Anciano , Biomarcadores/sangre , Biopsia , Diagnóstico Diferencial , Humanos , Masculino , Coloración y Etiquetado
12.
Hum Mol Genet ; 29(24): 3945-3953, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33410456

RESUMEN

Knock-in homozygote VCPR155H/R155H mutant mice are a lethal model of valosin-containing protein (VCP)-associated inclusion body myopathy associated with Paget disease of bone, frontotemporal dementia and amyotrophic lateral sclerosis. Ceramide (d18:1/16:0) levels are elevated in skeletal muscle of the mutant mice, compared to wild-type controls. Moreover, exposure to a lipid-enriched diet reverses lethality, improves myopathy and normalizes ceramide levels in these mutant mice, suggesting that dysfunctions in lipid-derived signaling are critical to disease pathogenesis. Here, we investigated the potential role of ceramide in VCP disease using pharmacological agents that manipulate the ceramide levels in myoblast cultures from VCP mutant mice and VCP patients. Myoblasts from wild-type, VCPR155H/+ and VCPR155H/R155H mice, as well as patient-induced pluripotent stem cells (iPSCs), were treated with an inhibitor of ceramide degradation to increase ceramide via acid ceramidase (ARN082) for proof of principle. Three chemically distinct inhibitors of ceramide biosynthesis via serine palmitoyl-CoA transferase (L-cycloserine, myriocin or ARN14494) were used as a therapeutic strategy to reduce ceramide in myoblasts. Acid ceramidase inhibitor, ARN082, elevated cellular ceramide levels and concomitantly enhanced pathology. Conversely, inhibitors of ceramide biosynthesis L-cycloserine, myriocin and ARN14494 reduced ceramide production. The results point to ceramide-mediated signaling as a key contributor to pathogenesis in VCP disease and suggest that manipulating this pathway by blocking ceramide biosynthesis might exert beneficial effects in patients with this condition. The ceramide pathway appears to be critical in VCP pathogenesis, and small-molecule inhibitors of ceramide biosynthesis might provide therapeutic benefits in VCP and related neurodegenerative diseases.


Asunto(s)
Ceramidas/metabolismo , Modelos Animales de Enfermedad , Cuerpos de Inclusión/patología , Enfermedades Musculares/patología , Mioblastos/patología , Miositis por Cuerpos de Inclusión/patología , Proteína que Contiene Valosina/metabolismo , Animales , Autofagia , Humanos , Cuerpos de Inclusión/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Mioblastos/metabolismo , Miositis por Cuerpos de Inclusión/etiología , Miositis por Cuerpos de Inclusión/metabolismo , Proteína que Contiene Valosina/genética
13.
Nat Commun ; 12(1): 513, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479240

RESUMEN

Missense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson's disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal-lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.


Asunto(s)
Longevidad/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Mutación , Enfermedades Neurodegenerativas/genética , Proteínas de Unión a Fosfato/genética , Proteína que Contiene Valosina/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Osteítis Deformante/genética , Osteítis Deformante/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Unión Proteica , Proteína que Contiene Valosina/metabolismo
14.
Brain Pathol ; 31(3): e12931, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33354847

RESUMEN

Muscle pathology in inclusion body myositis (IBM) typically includes inflammatory cell infiltration, muscle fibers with rimmed vacuoles and cytochrome c oxidase (COX)-deficient fibers. Previous studies have revealed clonal expansion of large mitochondrial DNA (mtDNA) deletions in the COX-deficient muscle fibers. Technical limitations have prevented complete investigations of the mtDNA deletions and other mtDNA variants. Detailed characterization by deep sequencing of mtDNA in muscle samples from 21 IBM patients and 10 age-matched controls was performed after whole genome sequencing with a mean depth of mtDNA coverage of 46,000x. Multiple large mtDNA deletions and duplications were identified in all IBM and control muscle samples. In general, the IBM muscles demonstrated a larger number of deletions and duplications with a mean heteroplasmy level of 10% (range 1%-35%) compared to controls (1%, range 0.2%-3%). There was also a small increase in the number of somatic single nucleotide variants in IBM muscle. More than 200 rearrangements were recurrent in at least two or more IBM muscles while 26 were found in both IBM and control muscles. The deletions and duplications, with a high recurrence rate, were mainly observed in three mtDNA regions, m.534-4429, m.6330-13993, and m.8636-16072, where some were flanked by repetitive sequences. The mtDNA copy number in IBM muscle was reduced to 42% of controls. Immunohistochemical and western blot analyses of IBM muscle revealed combined complex I and complex IV deficiency affecting the COX-deficient fibers. In conclusion, deep sequencing and quantitation of mtDNA variants revealed that IBM muscles had markedly increased levels of large deletions and duplications, and there were also indications of increased somatic single nucleotide variants and reduced mtDNA copy numbers compared to age-matched controls. The distribution and type of variants were similar in IBM muscle and controls indicating an accelerated aging process in IBM muscle, possibly associated with chronic inflammation.


Asunto(s)
ADN Mitocondrial/genética , Fibras Musculares Esqueléticas/patología , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/patología , Anciano , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Deficiencia de Citocromo-c Oxidasa/patología , Femenino , Reordenamiento Génico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo
15.
PLoS One ; 15(12): e0231064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264289

RESUMEN

Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.


Asunto(s)
Ácidos Indolacéticos/uso terapéutico , Mitocondrias Musculares/metabolismo , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Fenilbutiratos/uso terapéutico , Adenosina Trifosfato/biosíntesis , Anciano , Anciano de 80 o más Años , Butionina Sulfoximina/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , ADN Mitocondrial/genética , Evaluación Preclínica de Medicamentos , Dinaminas/biosíntesis , Dinaminas/genética , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Fibroblastos/efectos de los fármacos , GTP Fosfohidrolasas/biosíntesis , GTP Fosfohidrolasas/genética , Factor 15 de Diferenciación de Crecimiento/biosíntesis , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Ácidos Indolacéticos/farmacología , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/ultraestructura , Miositis por Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/patología , Consumo de Oxígeno , Fenilbutiratos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estudios Retrospectivos
16.
Rheumatology (Oxford) ; 59(11): 3515-3525, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830270

RESUMEN

OBJECTIVE: Damage to the vascular endothelium is strongly implicated in the pathogenesis of idiopathic inflammatory myopathies (IIM). Normally, high-density lipoprotein (HDL) protects the vascular endothelium from damage from oxidized phospholipids, which accumulate under conditions of oxidative stress. The current work evaluated the antioxidant function of HDL in IIM patients. METHODS: HDL's antioxidant function was measured in IIM patients using a cell-free assay, which assesses the ability of isolated patient HDL to inhibit oxidation of low-density lipoproteins and is reported as the HDL inflammatory index (HII). Cholesterol profiles were measured for all patients, and subgroup analysis included assessment of oxidized fatty acids in HDL and plasma MPO activity. A subgroup of IIM patients was compared with healthy controls. RESULTS: The antioxidant function of HDL was significantly worse in patients with IIM (n = 95) compared with healthy controls (n = 41) [mean (S.d.) HII 1.12 (0.61) vs 0.82 (0.13), P < 0.0001]. Higher HII associated with higher plasma MPO activity [mean (S.d.) 13.2 (9.1) vs 9.1 (4.6), P = 0.0006] and higher oxidized fatty acids in HDL. Higher 5-hydroxyeicosatetraenoic acid in HDL correlated with worse diffusion capacity in patients with interstitial lung disease (r = -0.58, P = 0.02), and HDL's antioxidant function was most impaired in patients with autoantibodies against melanoma differentiation-associated protein 5 (MDA5) or anti-synthetase antibodies. In multivariate analysis including 182 IIM patients, higher HII was associated with higher disease activity and DM diagnosis. CONCLUSION: The antioxidant function of HDL is abnormal in IIM patients and may warrant further investigation for its role in propagating microvascular inflammation and damage in this patient population.


Asunto(s)
Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Enfermedades Pulmonares Intersticiales/metabolismo , Miositis/metabolismo , Adulto , Anciano , Aminoacil-ARNt Sintetasas/inmunología , Autoanticuerpos/inmunología , Estudios de Casos y Controles , Cromatografía Liquida , Dermatomiositis/tratamiento farmacológico , Dermatomiositis/inmunología , Dermatomiositis/metabolismo , Endotelio Vascular , Ácidos Grasos/metabolismo , Femenino , Glucocorticoides/uso terapéutico , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Factores Inmunológicos/uso terapéutico , Inmunosupresores/uso terapéutico , Helicasa Inducida por Interferón IFIH1/inmunología , Enfermedades Pulmonares Intersticiales/inmunología , Masculino , Persona de Mediana Edad , Miositis/tratamiento farmacológico , Miositis/inmunología , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Miositis por Cuerpos de Inclusión/inmunología , Miositis por Cuerpos de Inclusión/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Polimiositis/tratamiento farmacológico , Polimiositis/inmunología , Polimiositis/metabolismo , Capacidad de Difusión Pulmonar , Espectrometría de Masa por Ionización de Electrospray
17.
Biomolecules ; 10(4)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32235474

RESUMEN

Myo-inositol exerts many cellular functions, which include osmo-protection, membrane functioning, and secondary messaging. Its Na+/myo-inositol co-transporter SLC5A3 is expressed in muscle tissue and further accumulates in myositis. In this study we focused on the peculiar subgroup of sporadic inclusion body myositis (IBM), in which auto-inflammatory responses and degenerative changes co-exist. A cohort of nine patients was selected with clinically confirmed IBM, in which SLC5A3 protein was immune-localized to the different tissue constituents using immunofluorescence, and expression levels were evaluated using Western blotting. In normal muscle tissue, SLC5A3 expression was restricted to blood vessels and occasional low levels on muscle fiber membranes. In IBM tissues, SLC5A3 staining was markedly increased, with discontinuous staining of the muscle fiber membranes, and accumulation of SLC5A3 near inclusions and on the rims of vacuoles. A subset of muscle-infiltrating auto-aggressive immune cells was SLC5A3 positive, of which most were T-cells and M1 lineage macrophages. We conclude that SLC5A3 is overexpressed in IBM muscle, where it associates with protein aggregation and inflammatory infiltration. Based on our results, functional studies could be initiated to explore the possibilities of therapeutic osmolyte pathway intervention for preventing protein aggregation in muscle cells.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Inositol/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Simportadores/metabolismo , Anciano , Anciano de 80 o más Años , Transporte Biológico , Femenino , Humanos , Inflamación/metabolismo , Masculino , Persona de Mediana Edad
18.
Cytokine ; 127: 154966, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31901761

RESUMEN

BACKGROUND: The cytokine growth differentiation factor-15 (GDF-15) has been associated with inflammatory and mitochondrial disease, warranting exploration of its expression in myositis patients. METHODS: GDF-15 protein levels are evaluated in 35 idiopathic inflammatory myopathy (IIM) serum samples using enzyme-linked immunosorbent assays, comparing with levels in samples from healthy individuals and from patients with genetically confirmed hereditary muscular dystrophies and mitochondrial disorders. Muscle tissue expression of GDF-15 protein is evaluated using immunofluorescent staining and Western blotting. RESULTS: GDF-15 protein levels are significantly higher in IIM sera (625 ± 358 pg/ml) than in that of healthy controls (326 ± 204 pg/ml, p = 0.01). Western blotting confirms increased GDF-15 protein levels in IIM muscle. In skeletal muscle tissue of IIM patients, GDF-15 localizes mostly to small regenerating or denervated muscle fibres. In patients diagnosed with sporadic inclusion body myositis, GDF-15 co-localizes with the characteristic protein aggregates within affected muscle fibres. CONCLUSIONS: We describe for the first time that GDF-15 is a myokine upregulated in myositis and present the cytokine as a potential diagnostic serum biomarker.


Asunto(s)
Biomarcadores/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Agregado de Proteínas/fisiología , Adulto , Femenino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Polimiositis/metabolismo , Estudios Retrospectivos , Adulto Joven
19.
Muscle Nerve ; 61(1): 116-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31644823

RESUMEN

INTRODUCTION: Sporadic inclusion body myositis (sIBM) is characterized by myopathological features including rimmed vacuoles (RVs) and proteins associated with protein aggregation, autophagy, and inflammation. Previous proteomic studies of RV areas revealed an overrepresentation of several chaperones and subunits of the T-complex protein 1 (TCP-1), which is involved in prevention of protein aggregation. METHODS: To validate our proteomic findings, immunofluorescence analyses of selected chaperones and quantitative Western blot analysis of TCP-1 proteins were performed in five sIBM patients and five healthy controls. RESULTS: Immunofluorescence studies confirmed increased immunoreactivity for VCP, UNC45B, GRP-75, αB-crystallin, LAMP-2, Rab-7a, and TCP-1α and TCP-θ in RVs. Quantitative Western blot analysis revealed a significantly higher level of TCP-1 in sIBM muscle tissue when compared with healthy controls. DISCUSSION: Our study findings validate new insights in protein quality control and degradation processes that seem to be relevant in sIBM. These data provide an important basis for future functional and therapeutic studies.


Asunto(s)
Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Proteómica , Autofagia , Chaperonina con TCP-1/genética , Humanos , Inflamación/etiología , Inflamación/patología , Vacuolas/patología
20.
Acta Neuropathol Commun ; 7(1): 197, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796104

RESUMEN

Protein aggregation is a pathological feature of neurodegenerative disorders. We previously demonstrated that protein inclusions in the brain are composed of supersaturated proteins, which are abundant and aggregation-prone, and form a metastable subproteome. It is not yet clear, however, whether this phenomenon is also associated with non-neuronal protein conformational disorders. To respond to this question, we analyzed proteomic datasets from biopsies of patients with genetic and acquired protein aggregate myopathy (PAM) by quantifying the changes in composition, concentration and aggregation propensity of proteins in the fibers containing inclusions and those surrounding them. We found that a metastable subproteome is present in skeletal muscle from healthy patients. The expression of this subproteome escalate as proteomic samples are taken more proximal to the pathologic inclusion, eventually exceeding its solubility limits and aggregating. While most supersaturated proteins decrease or maintain steady abundance across healthy fibers and inclusion-containing fibers, proteins within the metastable subproteome rise in abundance, suggesting that they escape regulation. Taken together, our results show in the context of a human conformational disorder that the supersaturation of a metastable subproteome underlies widespread aggregation and correlates with the histopathological state of the tissue.


Asunto(s)
Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Proteoma/metabolismo , Humanos , Cuerpos de Inclusión/química , Cuerpos de Inclusión/genética , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Miositis por Cuerpos de Inclusión/patología , Agregado de Proteínas/fisiología , Estabilidad Proteica , Proteoma/análisis , Proteoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...