Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
1.
Physiol Res ; 73(2): 253-263, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710055

RESUMEN

Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.


Asunto(s)
Mitofagia , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Masculino , Humanos , Ratones
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1286-1294, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621976

RESUMEN

This study explored the specific mechanism by which tetrahydropalmatine(THP) inhibited mitophagy through the UNC-51-like kinase 1(ULK1)/FUN14 domain containing 1(FUNDC1) pathway to reduce hypoxia/reoxygenation(H/R) injury in H9c2 cells. This study used H9c2 cells as the research object to construct a cardiomyocyte H/R injury model. First, a cell viability detection kit was used to detect cell viability, and a micro-method was used to detect lactate dehydrogenase(LDH) leakage to evaluate the protective effect of THP on H/R injury of H9c2 cells. In order to evaluate the protective effect of THP on mitochondria, the chemical fluorescence method was used to detect intracellular reactive oxygen species, intramitochondrial reactive oxygen species, mitochondrial membrane potential, and autophagosomes, and the luciferin method was used to detect intracellular adenosine 5'-triphosphate(ATP) content. Western blot was further used to detect the ratio of microtubule-associated protein 1 light chain 3(LC3) membrane type(LC3-Ⅱ) and slurry type(LC3-Ⅰ) and activated cleaved caspase-3 expression level. In addition, ULK1 expression level and its phosphorylation degree at Ser555 site, as well as the FUNDC1 expression level and its phosphorylation degree of Ser17 site were detected to explore its specific mechanism. The results showed that THP effectively reduced mitochondrial damage in H9c2 cells after H/R. THP protected mitochondria by reducing the level of reactive oxygen species in cells and mitochondria, increasing mitochondrial membrane potential, thereby increasing cellular ATP production, enhancing cellular activity, reducing cellular LDH leakage, and finally alleviating H/R damage in H9c2 cells. Further studies have found that THP could reduce the production of autophagosomes, reduce the LC3-Ⅱ/LC3-Ⅰ ratio, and lower the expression of the apoptosis-related protein, namely cleaved caspase-3, indicating that THP could reduce apoptosis by inhibiting autophagy. In-depth studies have found that THP could inhibit the activation of the ULK1/FUNDC1 pathway of mitophagy and the occurrence of mitophagy by reducing the phosphorylation degree of ULK1 at Ser555 and FUNDC1 at Ser17. The application of ULK1 agonist BL-918 reversely verified the effect of THP on reducing the phosphorylation of ULK1 and FUNDC1. In summary, THP inhibited mitophagy through the ULK1/FUNDC1 pathway to reduce H/R injury in H9c2 cells.


Asunto(s)
Alcaloides de Berberina , Hipoxia , Mitofagia , Fenilacetatos , Humanos , Mitofagia/fisiología , Caspasa 3 , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Adenosina Trifosfato/farmacología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales
3.
Int J Surg ; 110(5): 2649-2668, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445453

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a leading cause of mortality in patients with sepsis due to proinflammatory endothelial changes and endothelial permeability defects. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of sepsis-induced ALI. Although mitophagy regulation of mitochondrial quality is well recognized, little is known about its role in lung ECs during sepsis-induced ALI. Sirtuin 1 (SIRT1) is a histone protein deacetylase involved in inflammation, mitophagy, and cellular senescence. Here, the authors show a type of late endosome-dependent mitophagy that inhibits NLRP3 and STING activation through SIRT1 signaling during sepsis-induced ALI. METHODS: C57BL/6J male mice with or without administration of the SIRT1 inhibitor EX527 in the CLP model and lung ECs in vitro were developed to identify mitophagy mechanisms that underlie the cross-talk between SIRT1 signaling and sepsis-induced ALI. RESULTS: SIRT1 deficient mice exhibited exacerbated sepsis-induced ALI. Knockdown of SIRT1 interfered with mitophagy through late endosome Rab7, leading to the accumulation of damaged mitochondria and inducing excessive mitochondrial reactive oxygen species (mtROS) generation and cytosolic release of mitochondrial DNA (mtDNA), which triggered NLRP3 inflammasome and the cytosolic nucleotide sensing pathways (STING) over-activation. Pharmacological inhibition of STING and NLRP3 i n vivo or genetic knockdown in vitro reversed SIRT1 deficiency mediated endothelial permeability defects and endothelial inflammation in sepsis-induced ALI. Moreover, activation of SIRT1 with SRT1720 in vivo or overexpression of SIRT1 in vitro protected against sepsis-induced ALI. CONCLUSION: These findings suggest that SIRT1 signaling is essential for restricting STING and NLRP3 hyperactivation by promoting endosomal-mediated mitophagy in lung ECs, providing potential therapeutic targets for treating sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Proteínas de la Membrana , Ratones Endogámicos C57BL , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/antagonistas & inhibidores , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/etiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Sepsis/metabolismo , Sepsis/complicaciones , Mitofagia/fisiología , Masculino , Ratones , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Transducción de Señal/fisiología , Endosomas/metabolismo , Modelos Animales de Enfermedad
4.
Cells ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474413

RESUMEN

Cardiomyocytes rely on proper mitochondrial homeostasis to maintain contractility and achieve optimal cardiac performance. Mitochondrial homeostasis is controlled by mitochondrial fission, fusion, and mitochondrial autophagy (mitophagy). Mitophagy plays a particularly important role in promoting the degradation of dysfunctional mitochondria in terminally differentiated cells. However, the precise mechanisms by which this is achieved in cardiomyocytes remain opaque. Our study identifies GRAF1 as an important mediator in PINK1-Parkin pathway-dependent mitophagy. Depletion of GRAF1 (Arhgap26) in cardiomyocytes results in actin remodeling defects, suboptimal mitochondria clustering, and clearance. Mechanistically, GRAF1 promotes Parkin-LC3 complex formation and directs autophagosomes to damaged mitochondria. Herein, we found that these functions are regulated, at least in part, by the direct binding of GRAF1 to phosphoinositides (PI(3)P, PI(4)P, and PI(5)P) on autophagosomes. In addition, PINK1-dependent phosphorylation of Parkin promotes Parkin-GRAF1-LC3 complex formation, and PINK1-dependent phosphorylation of GRAF1 (on S668 and S671) facilitates the clustering and clearance of mitochondria. Herein, we developed new phosphor-specific antibodies to these sites and showed that these post-translational modifications are differentially modified in human hypertrophic cardiomyopathy and dilated cardiomyopathy. Furthermore, our metabolic studies using serum collected from isoproterenol-treated WT and GRAF1CKO mice revealed defects in mitophagy-dependent cardiomyocyte fuel flexibility that have widespread impacts on systemic metabolism. In summary, our study reveals that GRAF1 co-regulates actin and membrane dynamics to promote cardiomyocyte mitophagy and that dysregulation of GRAF1 post-translational modifications may underlie cardiac disease pathogenesis.


Asunto(s)
Proteínas Activadoras de GTPasa , Mitofagia , Miocitos Cardíacos , Fosfatos de Fosfatidilinositol , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Actinas , Proteínas Activadoras de GTPasa/metabolismo , Mitofagia/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Biol Res ; 57(1): 10, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494498

RESUMEN

BACKGROUND: The senescence of renal tubular epithelial cells (RTECs) is crucial in the progression of diabetic kidney disease (DKD). Accumulating evidence suggests a close association between insufficient mitophagy and RTEC senescence. Yeast mitochondrial escape 1-like 1 (YME1L), an inner mitochondrial membrane metalloprotease, maintains mitochondrial integrity. Its functions in DKD remain unclear. Here, we investigated whether YME1L can prevent the progression of DKD by regulating mitophagy and cellular senescence. METHODS: We analyzed YME1L expression in renal tubules of DKD patients and mice, explored transcriptomic changes associated with YME1L overexpression in RTECs, and assessed its impact on RTEC senescence and renal dysfunction using an HFD/STZ-induced DKD mouse model. Tubule-specific overexpression of YME1L was achieved through the use of recombinant adeno-associated virus 2/9 (rAAV 2/9). We conducted both in vivo and in vitro experiments to evaluate the effects of YME1L overexpression on mitophagy and mitochondrial function. Furthermore, we performed LC-MS/MS analysis to identify potential protein interactions involving YME1L and elucidate the underlying mechanisms. RESULTS: Our findings revealed a significant decrease in YME1L expression in the renal tubules of DKD patients and mice. However, tubule-specific overexpression of YME1L significantly alleviated RTEC senescence and renal dysfunction in the HFD/STZ-induced DKD mouse model. Moreover, YME1L overexpression exhibited positive effects on enhancing mitophagy and improving mitochondrial function both in vivo and in vitro. Mechanistically, our LC-MS/MS analysis uncovered a crucial mitophagy receptor, BCL2-like 13 (BCL2L13), as an interacting partner of YME1L. Furthermore, YME1L was found to promote the phosphorylation of BCL2L13, highlighting its role in regulating mitophagy. CONCLUSIONS: This study provides compelling evidence that YME1L plays a critical role in protecting RTECs from cellular senescence and impeding the progression of DKD. Overexpression of YME1L demonstrated significant therapeutic potential by ameliorating both RTEC senescence and renal dysfunction in the DKD mice. Moreover, our findings indicate that YME1L enhances mitophagy and improves mitochondrial function, potentially through its interaction with BCL2L13 and subsequent phosphorylation. These novel insights into the protective mechanisms of YME1L offer a promising strategy for developing therapies targeting DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Ratones , Animales , Mitofagia/fisiología , Saccharomyces cerevisiae , Cromatografía Liquida , Espectrometría de Masas en Tándem , Células Epiteliales/metabolismo , Modelos Animales de Enfermedad , Senescencia Celular , Diabetes Mellitus/metabolismo , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/farmacología
6.
Exp Mol Med ; 56(3): 747-759, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531963

RESUMEN

Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Mitofagia , Proteína Desglicasa DJ-1 , Animales , Ratas , Apoptosis , Hexoquinasa/genética , Hexoquinasa/farmacología , Hexoquinasa/uso terapéutico , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Mitofagia/genética , Mitofagia/fisiología , Proteínas Proto-Oncogénicas c-akt , Ubiquitina-Proteína Ligasas/genética , Proteína Desglicasa DJ-1/metabolismo
7.
Exp Mol Med ; 56(3): 674-685, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443598

RESUMEN

Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.


Asunto(s)
Mitofagia , Neuroblastoma , Proteínas Serina-Treonina Quinasas , Serina-Treonina Quinasa 3 , Animales , Humanos , Ratones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Mitofagia/genética , Mitofagia/fisiología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Serina-Treonina Quinasa 3/genética , Serina-Treonina Quinasa 3/metabolismo , Drosophila/genética
8.
J Obstet Gynaecol Res ; 50(5): 775-792, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38417972

RESUMEN

AIM: Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by menstrual irregularities, androgen excess, and polycystic ovarian morphology, but its pathogenesis remains largely unknown. This review focuses on how androgen excess influences the molecular basis of energy metabolism, mitochondrial function, and mitophagy in granulosa cells and oocytes, summarizes our current understanding of the pathogenesis of PCOS, and discuss perspectives on future research directions. METHODS: A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. RESULTS: Female offspring born of pregnant animals exposed to androgens recapitulates the PCOS phenotype. Abnormal mitochondrial morphology, altered expression of genes related to glycolysis, mitochondrial biogenesis, fission/fusion dynamics, and mitophagy have been identified in PCOS patients and androgenic animal models. Androgen excess causes uncoupling of the electron transport chain and depletion of the cellular adenosine 5'-triphosphate pool, indicating further impairment of mitochondrial function. A shift toward mitochondrial fission restores mitochondrial quality control mechanisms. However, prolonged mitochondrial fission disrupts autophagy/mitophagy induction due to loss of compensatory reserve for mitochondrial biogenesis. Disruption of compensatory mechanisms that mediate the quality control switch from mitophagy to apoptosis may cause a disease phenotype. Furthermore, genetic predisposition, altered expression of genes related to glycolysis and oxidative phosphorylation, or a combination of these factors may also contribute to the development of PCOS. CONCLUSION: In conclusion, fetuses exposed to a hyperandrogenemic intrauterine environment may cause the PCOS phenotype possibly through disruption of the compensatory regulation of the mitophagy-apoptosis axis.


Asunto(s)
Apoptosis , Mitofagia , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Humanos , Mitofagia/fisiología , Apoptosis/fisiología , Animales , Mitocondrias/metabolismo
9.
Int J Biol Macromol ; 262(Pt 1): 129950, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320636

RESUMEN

Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Ratas , Animales , Regulación hacia Abajo , Núcleo Pulposo/metabolismo , Mitofagia/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Glucosa/metabolismo , Apoptosis
10.
Crit Rev Immunol ; 44(2): 25-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305334

RESUMEN

Platelet hyperactivity represents a deleterious physiological phenomenon in diabetes mellitus (DM). This study aimed to explore the role of FUN14 domain containing 1 (FUNDC1) in platelet activation within the context of DM and to uncover relevant mechanisms, with a focus on mitophagy. A mouse model of DM was established by high-fat feeding and streptozotocin injection. Platelets isolated from whole blood were exposed to carbonyl cyanide-4-(trifluo-romethoxy)phenylhydrazone (FCCP) to induce mitophagy. The relative mRNA expression of FUNDC1 was detected by quantitative real-time PCR (qRT-PCR). Western blotting was employed to measure the protein levels of FUNDC1, the ratio of LC3-II toLC3-I, and cleaved caspase-3. Immunofluorescence and flow cytometry were performed to assess LC3-positive mitochondria and platelet activation factor CD62P, respectively. Additionally, serum levels of ß-thrombo-globulin (ß-TG) and platelet factor 4 (PF4)were measured by enzyme-linked immunosorbent assay. FUNDC1 expression was elevated in DM mice, and its silencing decreased the body weight and fasting blood glucose. Inhibition of FUNDC1 also significantly attenuated FCCP-induced platelet mitophagy, as evidenced by the down-regulation of the LC3-II/LC3-I ratio, up-regulation of Tomm20, and diminished presence of LC3-positive mitochondria. Moreover, platelet activation was noted in DM mice; this activation was mitigated upon FUNDC1 silencing, which was confirmed by the down-regulation of cleaved caspase-3 and CD62P as well as reductions in ß-TG and PF4 serum levels. Silencing of FUNDC1 inhibited platelet hyperactivity in DM by impeding mitophagy. As such, FUNDC1-midiated mitophagy may be a promising target for the treatment of DM and its associated cardiovascular complications related cardiovascular events.


Asunto(s)
Diabetes Mellitus , Proteínas de la Membrana , Proteínas Mitocondriales , Mitofagia , Animales , Ratones , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Caspasa 3 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Activación Plaquetaria
11.
Zhongguo Zhong Yao Za Zhi ; 49(1): 46-54, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403337

RESUMEN

Diabetes mellitus(DM) is a chronic endocrine disease characterized by hyperglycemia caused by carbohydrate or lipid metabolism disorders or insulin dysfunction. Hyperglycemia and long-term metabolic disorders in DM can damage tissues and organs throughout the body, leading to serious complications. Mitochondrial autophagy(mitophagy) is an important mitochondrial quality control process in cells and a special autophagy phenomenon, in which damaged or redundant mitochondria can be selectively removed by autophagic lysosome, which is crucial to maintain cell stability and survival under stress. Studies have confirmed that changes in autophagy play a role in the development and control of DM and its complications. Mitophagy has become a research hotspot in recent years and it is closely associated with the pathogenesis of a variety of diseases. Substantial evidence suggests that mitophagy plays a crucial role in regulating the metabolic homeostasis in the case of DM and its complications. Because the destructive great vessel complications and microvascular complications cause increased mortality, blindness, renal failure, and declined quality of life of DM patients, it is urgent to develop targeted therapies to intervene in DM and its complications. Traditional Chinese medicine(TCM), with a multi-component, multi-target, and multi-level action manner, can prevent the development of drug resistance and have significant therapeutic effects in the prevention and treatment of DM and its complications. Therefore, exploring the mechanisms of TCM in regulating mito-phagy may become a new method for treating DM and its complications. With focus on the roles and mechanisms of mitophagy in DM and its complications, this paper summarizes and prospects the research on the treatment of DM and its complications with TCM via re-gulating mitophagy, aiming to provide new ideas for the clinical practice.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Humanos , Mitofagia/fisiología , Medicina Tradicional China , Calidad de Vida , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/genética
12.
Mol Cell ; 84(6): 1090-1100.e6, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340717

RESUMEN

To maintain mitochondrial homeostasis, damaged or excessive mitochondria are culled in coordination with the physiological state of the cell. The integrated stress response (ISR) is a signaling network that recognizes diverse cellular stresses, including mitochondrial dysfunction. Because the four ISR branches converge to common outputs, it is unclear whether mitochondrial stress detected by this network can regulate mitophagy, the autophagic degradation of mitochondria. Using a whole-genome screen, we show that the heme-regulated inhibitor (HRI) branch of the ISR selectively induces mitophagy. Activation of the HRI branch results in mitochondrial localization of phosphorylated eukaryotic initiation factor 2, which we show is sufficient to induce mitophagy. The HRI mitophagy pathway operates in parallel with the mitophagy pathway controlled by the Parkinson's disease related genes PINK1 and PARKIN and is mechanistically distinct. Therefore, HRI repurposes machinery that is normally used for translational initiation to trigger mitophagy in response to mitochondrial damage.


Asunto(s)
Mitofagia , Proteínas Quinasas , Mitofagia/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Autofagia/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal
13.
Mol Neurodegener ; 19(1): 12, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273330

RESUMEN

BACKGROUND: Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies. METHODS: We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays. RESULTS: We show that the Drosophila homolog Cisd accumulates in Pink1 and parkin mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of Pink1/parkin mutants. CONCLUSION: Altogether, our studies indicate that Cisd accumulation during ageing and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.


Asunto(s)
Proteínas de Drosophila , Enfermedad de Parkinson , Animales , Humanos , Anciano , Mitofagia/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteómica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Mitocondriales/metabolismo , Drosophila/metabolismo , Mitocondrias/metabolismo , Ubiquitinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Drosophila/genética
14.
EMBO J ; 43(1): 32-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177312

RESUMEN

Lysosomal degradation of autophagy receptors is a common proxy for selective autophagy. However, we find that two established mitophagy receptors, BNIP3 and BNIP3L/NIX, are constitutively delivered to lysosomes in an autophagy-independent manner. This alternative lysosomal delivery of BNIP3 accounts for nearly all its lysosome-mediated degradation, even upon mitophagy induction. To identify how BNIP3, a tail-anchored protein in the outer mitochondrial membrane, is delivered to lysosomes, we performed a genome-wide CRISPR screen for factors influencing BNIP3 flux. This screen revealed both known modifiers of BNIP3 stability as well as a pronounced reliance on endolysosomal components, including the ER membrane protein complex (EMC). Importantly, the endolysosomal system and the ubiquitin-proteosome system regulated BNIP3 independently. Perturbation of either mechanism is sufficient to modulate BNIP3-associated mitophagy and affect underlying cellular physiology. More broadly, these findings extend recent models for tail-anchored protein quality control and install endosomal trafficking and lysosomal degradation in the canon of pathways that tightly regulate endogenous tail-anchored protein localization.


Asunto(s)
Mitocondrias , Mitofagia , Mitofagia/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Autofagia/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
15.
Mol Cell ; 84(2): 183-185, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242095

RESUMEN

We talk to first author Yuqiu Sun and corresponding author Hui Jiang about their paths in science, mentorship, and the exciting moments in the journey towards their paper "A mitophagy sensor PPTC7 controls BNIP3 and NIX degradation to regulate mitochondrial mass" (this issue of Molecular Cell).


Asunto(s)
Proteínas de la Membrana , Proteínas Mitocondriales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitofagia/fisiología
16.
Pharmacol Res ; 200: 107056, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228256

RESUMEN

Sepsis is a dysregulated response to infection that can result in life-threatening organ failure, and septic cardiomyopathy is a serious complication involving ferroptosis. Olaparib, a classic targeted drug used in oncology, has demonstrated potential protective effects against sepsis. However, the exact mechanisms underlying its action remain to be elucidated. In our study, we meticulously screened ferroptosis genes associated with sepsis, and conducted comprehensive functional enrichment analyses to delineate the relationship between ferroptosis and mitochondrial damage. Eight sepsis-characterized ferroptosis genes were identified in sepsis patients, including DPP4, LPIN1, PGD, HP, MAPK14, POR, GCLM, and SLC38A1, which were significantly correlated with mitochondrial quality imbalance. Utilizing DrugBank and molecular docking, we demonstrated a robust interaction of Olaparib with these genes. Lipopolysaccharide (LPS)-stimulated HL-1 cells and monocytes were used to establish an in vitro sepsis model. Additionally, an in vivo model was developed using mice subjected to cecal ligation and perforation (CLP). Intriguingly, low-dose Olaparib (5 mg/kg) effectively targeted and mitigated markers associated with ferroptosis, concurrently improving mitochondrial quality. This led to a marked enhancement in cardiac function and a significant increase in survival rates in septic mice (p < 0.05). The mechanism through which Olaparib ameliorates ferroptosis in cardiac and leukocyte cells post-sepsis is attributed to its facilitation of mitophagy, thus favoring mitochondrial integrity. In conclusion, our findings suggest that low-dose Olaparib can improve mitochondrial quality by accelerating mitophagy flux, consequently inhibiting ferroptosis and preserving cardiac function after sepsis.


Asunto(s)
Ferroptosis , Ftalazinas , Piperazinas , Sepsis , Humanos , Ratones , Animales , Mitofagia/fisiología , Simulación del Acoplamiento Molecular , Fosfatidato Fosfatasa
17.
CNS Neurol Disord Drug Targets ; 23(3): 367-383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36974405

RESUMEN

Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Mitofagia/fisiología , Autofagia/fisiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo
18.
Am J Physiol Cell Physiol ; 326(1): C214-C228, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38073486

RESUMEN

Oxaliplatin-induced peripheral nerve pain (OIPNP) is a common chemotherapy-related complication, but the mechanism is complex. Mitochondria are vital for cellular homeostasis and regulating oxidative stress. Parkin-mediated mitophagy is a cellular process that removes damaged mitochondria, exhibiting a protective effect in various diseases; however, its role in OIPNP remains unclear. In this study, we found that Parkin-mediated mitophagy was decreased, and reactive oxygen species (ROS) was upregulated in OIPNP rat dorsal root ganglion (DRG) in vivo and in PC12 cells stimulated with oxaliplatin (OXA) in vitro. Overexpression of Parkin indicated that OXA might cause mitochondrial and cell damage by inhibiting mitophagy. We also showed that salidroside (SAL) upregulated Parkin-mediated mitophagy to eliminate damaged mitochondria and promote PC12 cell survival. Knockdown of Parkin indicated that mitophagy is crucial for apoptosis and mitochondrial homeostasis in PC12 cells. In vivo study also demonstrated that SAL enhances Parkin-mediated mitophagy in the DRG and alleviates peripheral nerve injury and pain. These results suggest that Parkin-mediated mitophagy is involved in the pathogenesis of OIPNP and may be a potential therapeutic target for OIPNP.NEW & NOTEWORTHY This article discusses the effects and mechanisms of Parkin-mediated mitophagy in oxaliplatin-induced peripheral nerve pain (OIPNP) from both in vivo and in vitro. We believe that our study makes a significant contribution to the literature because OIPNP has always been the focus of clinical medicine, and mitochondrial quality regulation mechanisms especially Parkin-mediated mitophagy, have been deeply studied in recent years. We use a variety of molecular biological techniques and animal experiments to support our argument.


Asunto(s)
Mitofagia , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Mitofagia/fisiología , Oxaliplatino/farmacología , Especies Reactivas de Oxígeno , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Dolor , Ubiquitina-Proteína Ligasas/genética
19.
Exp Dermatol ; 33(1): e14844, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37264692

RESUMEN

Alopecia areata (AA) is a T-cell-mediated autoimmune disease that causes chronic, relapsing hair loss; however, its precise pathogenesis remains to be elucidated. Recent studies have provided compelling evidence of crosstalk between inflammasomes and mitophagy-a process that contributes to the removal of damaged mitochondria. Our previous studies showed that the NLR family pyrin domain containing 3 (NLRP3) inflammasome is important for eliciting and progressing inflammation in AA. In this study, we detected mitochondrial DNA damage in AA-affected scalp tissues and IFNγ and poly(I:C) treated outer root sheath (ORS) cells. In addition, IFNγ and poly(I:C) treatment increased mitochondrial reactive oxygen species (ROS) levels in ORS cells. Moreover, we showed that mitophagy induction alleviates IFNγ and poly(I:C)-induced NLRP3 inflammasome activation in ORS cells. Lastly, PTEN-induced kinase 1 (PINK1) knockdown increased NLRP3 inflammasome activation, indicating that PINK1-mediated mitophagy plays a critical role in NLRP3 inflammasome activation in ORS cells. This study supports previous studies showing that oxidative stress disrupts immune privilege status and promotes autoimmunity in AA. The results emphasize the significance of crosstalk between mitophagy and inflammasomes in the pathogenesis of AA. Finally, mitophagy factors regulating mitochondrial dysfunction and inhibiting inflammasome activation could be novel therapeutic targets for AA.


Asunto(s)
Alopecia Areata , Inflamasomas , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Mitofagia/fisiología , Especies Reactivas de Oxígeno , Proteínas Quinasas , Fosfohidrolasa PTEN
20.
Int Urol Nephrol ; 56(1): 167-179, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37450241

RESUMEN

As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-ß signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Mitofagia/fisiología , Riñón/patología , Fibrosis , Lesión Renal Aguda/patología , Insuficiencia Renal Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...