RESUMEN
A conjugable analogue of the benzodiazepine 5-(2-hydroxyphenyl)-7-nitro-benzo[e][1,4]diazepin-2(3H)-one containing a bromide C(12)-aliphatic chain (BDC) at nitrogen N1 was synthesized. One-pot preparation of this benzodiazepine derivative was achieved using microwave irradiation giving 49% yield of the desired product. BDC inhibited FNZ binding to GABA(A)-R with an inhibition binding constant K(i) = 0.89 µM and expanded a model membrane packed up to 35 mN m(-1) when penetrating in it from the aqueous phase. BDC exhibited surface activity, with a collapse pressure π = 9.8 mN m(-1) and minimal molecular area A(min) = 52 Å(2)/molecule at the closest molecular packing, resulted fully and non-ideally mixed with a phospholipid in a monolayer up to a molar fraction xâ 0.1. A geometrical-thermodynamic analysis along the π-A phase diagram predicted that at low x(BDC) (<0.1) and at all π, including the equilibrium surface pressures of bilayers, dpPC-BDC mixtures dispersed in water were compatible with the formation of planar-like structures. These findings suggest that, in a potential surface grafted BDC, this compound could be stabilize though London-type interactions within a phospholipidic coating layer and/or through halogen bonding with an electron-donor surface via its terminal bromine atom while GABA(A)-R might be recognized through the CNZ moiety.