Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
1.
Sci Rep ; 14(1): 761, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191892

RESUMEN

This study aims to the function of miR-22 original mesenchymal stem cells (MSC) on osteosarcoma (OS) proliferation, migration and invasion. Bio-informatics analysis including GEO2R analysis, Gene Ontology analysis, integration analysis were used to confirmed the target genes (miR-22, Twist1, CADM1) in OS. RT-qPCR and western blotting confirmed the different expression of miR-22, Twist1, CADM1 in OS tissues, MG63 and Saos cell lines. MTS assay, CCK8 assay, colony forming assay, EdU assay were performed to detect the proliferation effect of miR-22 on MG63. Transwell migration assay, transwell invasion assay, wound healing assay were used to verify the migration and invasion effect of miR-22 on MG63. Luciferase reporter assay confirm the binding sites between miR-22 and Twist1. RT-qPCR confirmed miR-22 and CADM1 downregulated and Twist1 upregulated in OS tissues, MG63 and Saos. Exosome original MSC labeled with PKH-26 could be uptake by MG63, which upregulated the expression of miR-22 in MG63. High expression of miR-22 in MG63 inhibited proliferation, migration and invasion, which could be rescued by Twist1. Dual luciferase reporter analysis confirmed Twist1 was a target of miR-22. Exosome modified with miR-22 mimic inhibit proliferation, migration and invasion more efficient than exosome original MSC. miR-22 cargo in exo-MSC could uptake by MG63 and supply MG63 with miR-22, which inhibit MG63 proliferation, migration and invasion through targeting Twist1.


Asunto(s)
Neoplasias Óseas , Exosomas , MicroARNs , Osteosarcoma , Humanos , Exosomas/genética , Osteosarcoma/genética , Neoplasias Óseas/genética , Luciferasas , Proliferación Celular/genética , MicroARNs/genética , Molécula 1 de Adhesión Celular/genética
2.
BMC Genomics ; 25(1): 82, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245670

RESUMEN

Glucosidase II beta subunit (GluIIß), encoded from PRKCSH, is a subunit of the glucosidase II enzyme responsible for quality control of N-linked glycoprotein folding and suppression of GluIIß led to inhibitory effect of the receptor tyrosine kinase (RTKs) activities known to be critical for survival and development of cancer. In this study, we investigated the effect of GluIIß knockout on the global gene expression of cancer cells and its impact on functions of immune cells. GluIIß knockout lung adenocarcinoma A549 cell line was generated using CRISPR/Cas9-based genome editing system and subjected to transcriptomic analysis. Among 23,502 expressed transcripts, 1068 genes were significantly up-regulated and 807 genes greatly down-regulated. The KEGG enrichment analysis showed significant down-regulation of genes related extracellular matrix (ECM), ECM-receptor interaction, cytokine-cytokine receptor interaction and cell adhesion molecules (CAMs) in GluIIß knockout cells. Of 9 CAMs encoded DEG identified by KEGG enrichment analysis, real time RT-PCR confirmed 8 genes to be significantly down-regulated in all 3 different GluIIß knockout clones, which includes cadherin 4 (CDH4), cadherin 2 (CDH2), versican (VCAN), integrin subunit alpha 4 (ITGA4), endothelial cell-selective adhesion molecule (ESAM), CD274 (program death ligand-1 (PD-L1)), Cell Adhesion Molecule 1 (CADM1), and Nectin Cell Adhesion Molecule 3 (NECTIN3). Whereas PTPRF (Protein Tyrosine Phosphatase Receptor Type F) was significantly decreased only in 1 out of 3 knockout clones. Microscopic analysis revealed distinctively different cell morphology of GluIIß knockout cells with lesser cytoplasmic and cell surface area compared to parental A549 cells and non-targeted transfected cells.Further investigations revealed that Jurkat E6.1 T cells or human peripheral blood mononuclear cells (PBMCs) co-cultured with GluIIß knockout A549 exhibited significantly increased viability and tumor cell killing activity compared to those co-cultured with non-target transfected cells. Analysis of cytokine released from Jurkat E6.1 T cells co-cultured with GluIIß knockout A549 cells showed significant increased level of angiogenin and significant decreased level of ENA-78. In conclusion, knockout of GluIIß from cancer cells induced altered gene expression profile that improved anti-tumor activities of co-cultured T lymphocytes and PBMCs thus suppression of GluIIß may represent a novel approach of boosting anti-tumor immunity.


Asunto(s)
Moléculas de Adhesión Celular , Leucocitos Mononucleares , alfa-Glucosidasas , Humanos , Células A549 , Moléculas de Adhesión Celular/genética , Perfilación de la Expresión Génica , Citocinas , Adhesión Celular , Molécula 1 de Adhesión Celular
3.
Int Immunopharmacol ; 128: 111500, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237222

RESUMEN

Oxidative stress and inflammation are highly important for sepsis-mediated myocardial damage. The long noncoding RNA (lncRNA) MCM3AP-AS1 is involved in inflammatory diseases, but its function in acute myocardial injury during sepsis has not been fully elucidated. LPS and cecal ligation and puncture (CLP) were used to construct in vitro and in vivo sepsis-induced myocardial damage models, respectively. qRT-PCR was used to evaluate alterations in MCM3AP-AS1 and miR-501-3p alterations. After the MCM3AP-AS1 and miR-501-3p knockdown or overexpression models were established, the viability, apoptosis, inflammation, oxidative stress, and mitochondrial function of the myocardial cells were examined. Dual luciferase activity assay, RNA immunoprecipitation, and fluorescence in situ hybridization (FISH) confirmed the correlation among MCM3AP-AS1, miR-501-3p, and CADM1. Previous studies revealed that MCM3AP-AS1 was downregulated in sepsis patients, myocardial cells treated with LPS, and in the CLP mouse sepsis model, whereas miR-501-3p expression was increased. MCM3AP-AS1 overexpression hampered myocardial damage mediated by LPS and abated inflammation, oxidative stress, and mitochondrial dysfunction in myocardial cells and THP-1 cells. In contrast, MCM3AP-AS1 knockdown or miR-501-3p overexpression promoted all the effects of LPS. In vivo, MCM3AP-AS1 overexpression increased the survival rate of CLP mice; ameliorated myocardial injury; decreased the levels of TNF-α, IL-1ß, IL-6, iNOS, COX2, ICAM1, VCAM1, PGE2, and MDA; and increased the levels of SOD, GSH-PX, Nrf2, and HO-1. Mechanistic studies demonstrated that MCM3AP-AS1 acted as a competitive endogenous RNA to repress miR-501-3p, enhance CADM1 expression, and dampen STAT3/nuclear factor-kappaB (NF-κB) activation. MCM3AP-AS1 suppresses myocardial injury elicited by sepsis by mediating the miR-501-3p/CADM1/STAT3/NF-κB axis.


Asunto(s)
Cardiomiopatías , MicroARNs , ARN Largo no Codificante , Factor de Transcripción STAT3 , Sepsis , Humanos , Animales , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética , FN-kappa B/metabolismo , Lipopolisacáridos/metabolismo , Hibridación Fluorescente in Situ , Inflamación , Apoptosis , Estrés Oxidativo , Acetiltransferasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo
4.
J Oral Biosci ; 66(1): 151-159, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38030062

RESUMEN

OBJECTIVES: This study aimed to clarify the molecular mechanism underlying the higher invasion and metastasis abilities of LMF4 cells than those of HSC-3 cells by comparing the expression levels of the tumor suppressor factor, cell adhesion molecule 1 (CADM1). METHODS: We explored 1) whether CADM1 expression level was downregulated in LMF4 cells compared with HSC-3 cells, 2) whether CADM1 expression knockdown increased the expression levels of matrix metalloproteinases (MMPs), 3) the exact cellular signaling pathways responsible for increased MMP expression after knockdown of CADM1 expression, and 4) whether disruption of CADM1-dependent HSC-3 cell adhesion increased the migratory and invasive activities of HSC-3 cells. RESULTS: CADM1 expression was lower in the LMF4 than in the HSC-3 cells. The knockdown of CADM1 increased the expression of MMP-2 and MMP-9 in HSC-3 cells. In addition, the upregulation of MMP-2 expression after CADM1 knockdown was abrogated by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 and the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. The upregulation of MMP-9 expression after the knockdown of CADM1 was abrogated by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the p38 MAP kinase (MAPK) inhibitor SB203580 and LY294002. Anti-CADM1 neutralizing antibody evoked migratory and invasive abilities of HSC-3 cells. CONCLUSION: The disruption of CADM1-dependent cell-cell adhesion in human oral squamous cell carcinoma cells resulted in tumor progression, possibly through an increase in MMP-2 expression in a MEK/PI3K-dependent manner and an increase in MMP-9 expression in a JNK/p38 MAPK/PI3K-dependent manner.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Adhesión Celular/genética , Neoplasias de la Boca/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo
5.
BMC Cancer ; 23(1): 1072, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932662

RESUMEN

BACKGROUND: Methylation levels may be associated with and serve as markers to predict risk of progression of precancerous cervical lesions. We conducted an epigenome-wide association study (EWAS) of CpG methylation and progression to high-grade cervical intraepithelial neoplasia (CIN2 +) following an abnormal screening test. METHODS: A prospective US cohort of 289 colposcopy patients with normal or CIN1 enrollment histology was assessed. Baseline cervical sample DNA was analyzed using Illumina HumanMethylation 450K (n = 76) or EPIC 850K (n = 213) arrays. Participants returned at provider-recommended intervals and were followed up to 5 years via medical records. We assessed continuous CpG M values for 9 cervical cancer-associated genes and time-to-progression to CIN2+. We estimated CpG-specific time-to-event ratios (TTER) and hazard ratios using adjusted, interval-censored Weibull accelerated failure time models. We also conducted an exploratory EWAS to identify novel CpGs with false discovery rate (FDR) < 0.05. RESULTS: At enrollment, median age was 29.2 years; 64.0% were high-risk HPV-positive, and 54.3% were non-white. During follow-up (median 24.4 months), 15 participants progressed to CIN2+. Greater methylation levels were associated with a shorter time-to-CIN2+ for CADM1 cg03505501 (TTER = 0.28; 95%CI 0.12, 0.63; FDR = 0.03) and RARB Cluster 1 (TTER = 0.46; 95% CI 0.29, 0.71; FDR = 0.01). There was evidence of similar trends for DAPK1 cg14286732, PAX1 cg07213060, and PAX1 Cluster 1. The EWAS detected 336 novel progression-associated CpGs, including those located in CpG islands associated with genes FGF22, TOX, COL18A1, GPM6A, XAB2, TIMP2, GSPT1, NR4A2, and APBB1IP. CONCLUSIONS: Using prospective time-to-event data, we detected associations between CADM1-, DAPK1-, PAX1-, and RARB-related CpGs and cervical disease progression, and we identified novel progression-associated CpGs. IMPACT: Methylation levels at novel CpG sites may help identify individuals with ≤CIN1 histology at higher risk of progression to CIN2+ and inform risk-based cervical cancer screening guidelines.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Estados Unidos , Adulto , Neoplasias del Cuello Uterino/patología , Estudios Prospectivos , Epigenoma , Detección Precoz del Cáncer , Metilación de ADN , Displasia del Cuello del Útero/diagnóstico , Infecciones por Papillomavirus/complicaciones , Papillomaviridae/genética , Molécula 1 de Adhesión Celular/genética
6.
BMC Cancer ; 23(1): 955, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814227

RESUMEN

The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.


Asunto(s)
Leucemia , MicroARNs , Humanos , MicroARNs/metabolismo , Células HL-60 , Doxorrubicina/farmacología , Ciclo Celular/genética , Leucemia/tratamiento farmacológico , Leucemia/genética , Ciclinas , Proliferación Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Molécula 1 de Adhesión Celular/genética
7.
Clin Epigenetics ; 15(1): 125, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533074

RESUMEN

BACKGROUND: Screening plays a key role in secondary prevention of cervical cancer. High-risk human papillomavirus (hrHPV) testing, a highly sensitive test but with limited specificity, has become the gold standard frontline for screening programs. Thus, the importance of effective triage strategies, including DNA methylation markers, has been emphasized. Despite the potential reported in individual studies, methylation markers still require validation before being recommended for clinical practice. This systematic review and meta-analysis aimed to evaluate the performance of DNA methylation-based biomarkers for detecting high-grade intraepithelial lesions (HSIL) in hrHPV-positive women. METHODS: Hence, PubMed, Scopus, and Cochrane databases were searched for studies that assessed methylation in hrHPV-positive women in cervical scrapes. Histologically confirmed HSIL was used as endpoint and QUADAS-2 tool enabled assessment of study quality. A bivariate random-effect model was employed to pool the estimated sensitivity and specificity as well as positive (PPV) and negative (NPV) predictive values. RESULTS: Twenty-three studies were included in this meta-analysis, from which cohort and referral population-based studies corresponded to nearly 65%. Most of the women analyzed were Dutch, and CADM1, FAM19A4, MAL, and miR124-2 were the most studied genes. Pooled sensitivity and specificity were 0.68 (CI 95% 0.63-0.72) and 0.75 (CI 95% 0.71-0.80) for cervical intraepithelial neoplasia (CIN) 2+ detection, respectively. For CIN3+ detection, pooled sensitivity and specificity were 0.78 (CI 95% 0.74-0.82) and 0.74 (CI 95% 0.69-0.78), respectively. For pooled prevalence, PPV for CIN2+ and CIN3+ detection were 0.514 and 0.392, respectively. Furthermore, NPV for CIN2+ and CIN3+ detection were 0.857 and 0.938, respectively. CONCLUSIONS: This meta-analysis confirmed the great potential of DNA methylation-based biomarkers as triage tool for hrHPV-positive women in cervical cancer screening. Standardization and improved validation are, however, required. Nevertheless, these markers might represent an excellent alternative to cytology and genotyping for colposcopy referral of hrHPV-positive women, allowing for more cost-effective screening programs.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Embarazo , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Metilación de ADN , Detección Precoz del Cáncer , Colposcopía , Triaje , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/complicaciones , Derivación y Consulta , Papillomaviridae/genética , Molécula 1 de Adhesión Celular/genética
8.
PLoS Biol ; 21(7): e3002197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410725

RESUMEN

Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.


Asunto(s)
Síndrome de Down , Proteínas de Drosophila , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Síndrome de Down/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neuronas/metabolismo
9.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511031

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) has become a widely studied subject due to its increasing prevalence and links to diseases such as type 2 diabetes and obesity. It has severe complications, including nonalcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, and portal hypertension that can lead to liver transplantation in some cases. To better prevent and treat this pathology, it is important to understand its underlying physiology. Here, we identify two main factors that play a crucial role in the pathophysiology of NAFLD: oxidative stress and the key role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). We discuss the pathophysiology linking these factors to NAFLD pathophysiology.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Humanos , Antígeno Carcinoembrionario , Molécula 1 de Adhesión Celular , Diabetes Mellitus Tipo 2/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
10.
Nat Genet ; 55(6): 1009-1021, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37291193

RESUMEN

Aldosterone-producing adenomas (APAs) are the commonest curable cause of hypertension. Most have gain-of-function somatic mutations of ion channels or transporters. Herein we report the discovery, replication and phenotype of mutations in the neuronal cell adhesion gene CADM1. Independent whole exome sequencing of 40 and 81 APAs found intramembranous p.Val380Asp or p.Gly379Asp variants in two patients whose hypertension and periodic primary aldosteronism were cured by adrenalectomy. Replication identified two more APAs with each variant (total, n = 6). The most upregulated gene (10- to 25-fold) in human adrenocortical H295R cells transduced with the mutations (compared to wildtype) was CYP11B2 (aldosterone synthase), and biological rhythms were the most differentially expressed process. CADM1 knockdown or mutation inhibited gap junction (GJ)-permeable dye transfer. GJ blockade by Gap27 increased CYP11B2 similarly to CADM1 mutation. Human adrenal zona glomerulosa (ZG) expression of GJA1 (the main GJ protein) was patchy, and annular GJs (sequelae of GJ communication) were less prominent in CYP11B2-positive micronodules than adjacent ZG. Somatic mutations of CADM1 cause reversible hypertension and reveal a role for GJ communication in suppressing physiological aldosterone production.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Adenoma Corticosuprarrenal , Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona , Citocromo P-450 CYP11B2 , Uniones Comunicantes , Mutación , Molécula 1 de Adhesión Celular
11.
J Appl Toxicol ; 43(10): 1511-1521, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37147272

RESUMEN

Asbestos is a fibrous silicate mineral exhibiting biopersistence and carcinogenic properties and contributes to mesothelioma. Despite the concept of gene-environmental interaction in pathogenesis of mesothelioma, the possible pathophysiological changes of mesothelial cells simultaneously with SET domain containing 2 (SETD2) loss and asbestos exposure remains obscure. Herein, CRISPR/Cas9-mediated SETD2 knockout Met-5A mesothelial cells (Met-5ASETD2-KO ) were established and exposed with crocidolite, an amphibole asbestos. Cell viability of Met-5ASETD2-KO appeared to dramatically decrease with ≥2.5 µg/cm2 crocidolite exposure as compared with Met-5A, although no cytotoxicity and apoptosis changes of Met-5ASETD2-KO and Met-5A was evident with 1.25 µg/cm2 crocidolite exposure for 48 h. RNA sequencing uncovered top 50 differentially expressed genes (DEGs) between 1.25 µg/cm2 crocidolite exposed Met-5ASETD2-KO (Cro-Met-5ASETD2-KO ) and 1.25 µg/cm2 crocidolite exposed Met-5A (Cro-Met-5A), and ITGA4, THBS2, MYL7, RAC2, CADM1, and CLDN11 appeared to be the primary DEGs involved with adhesion in gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Cro-Met-5ASETD2-KO had strong migration but mild adhesion behavior as compared with Cro-Met-5A. Additionally, crocidolite tended to increase migration of Met-5ASETD2-KO but inhibited migration of Met-5A when compared with their corresponding cells without crocidolite exposure, although no further adhesion property changes was evident for both cells in response to crocidolite. Therefore, crocidolite may affect adhesion-related gene expression and modify adhesion and migration behavior for SETD2-depleted Met-5A, which could provide preliminary insight regarding the potential role of SETD2 in the cell behavior of asbestos-related malignant mesothelial cell.


Asunto(s)
Amianto , Mesotelioma , Humanos , Asbesto Crocidolita/toxicidad , Asbesto Crocidolita/metabolismo , Epitelio , Amianto/toxicidad , Silicatos , Molécula 1 de Adhesión Celular/metabolismo
12.
J Virol ; 97(5): e0034023, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37166307

RESUMEN

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Asunto(s)
Sarampión , Enfermedades Neurodegenerativas , Panencefalitis Esclerosante Subaguda , Cricetinae , Humanos , Ratones , Animales , Virus del Sarampión/fisiología , Panencefalitis Esclerosante Subaguda/genética , Hemaglutininas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas Recombinantes/metabolismo , Neuronas , Molécula 1 de Adhesión Celular/metabolismo
13.
Pathol Res Pract ; 246: 154494, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37172522

RESUMEN

NORAD, non-coding RNA activated by DNA damage, is a Long non-coding RNA (lncRNA) transcript that modulates genome stability and has been reported to be dysregulated in different cancers. Although it has been reported to be upregulated in tumor cells mostly for solid organ cancers, it has also been reported to be downregulated in some cancers. Although the pathophysiological mechanism is not fully understood, a negative correlation between NORAD and intercellular cell adhesion molecule-1 (ICAM-1) has been shown in experimental models, but this situation has not been evaluated in terms of cancer. We aimed to evaluate the potential roles of these two biomarker candidates together and separately in the clinicopathological axis in Laryngeal squamous cell carcinoma (LSCC) in a case-control study setting. The interactions of NORAD and ICAM1 at the RNA level were evaluated interactively by the RIblast program. sICAM1 (soluble intercellular cell adhesion molecule-1) levels were determined by ELISA in one hundred and five individuals (forty-four LSCC, sixty-one control) and lncRNA NORAD expression in eighty-eight tissues (forty-four LSCC tumors, forty-four tumor-free surrounding tissues) was determined by Real-time PCR. While the energy treesholud was - 16 kcal/mol between NORAD and ICAM1, the total energy was 176.33 kcal/mol, and 9 base pair pairings from 4 critical points were detected. NORAD expression level was found to be higher in tumor surrounding tissue compared to tumor tissue, and sICAM1 was higher in the control group compared to LSCC (p = 0.004; p = 0.02). NORAD discreminte tumor surrounding tissue from tumor (AUC: 0.674; optimal sensitivity:87.50%; optimal specificity 54.55%; cut-off point as >1.58 fold change; P = 0.034). The sICAM1 level was found to be higher in the control (494,814 ± 93.64 ng/L) than LSCC (432.95 ± 93.64 ng/L) (p = 0.02). sICAM1 discreminte control group from LSCC (AUC: 0.624; optimal sensitivity 68,85%; optimal specificity 61,36%; cut-off point ≤115,0 ng/L; (p = 0.033). A very strong negative correlation was found between NORAD expression and patients' sICAM1 levels (r = -.967; n = 44; p = 0.033). sICAM1 levels were found to be 1.63 times higher in NORAD downregulated subjects compared to upregulated ones (p = 0.031). NORAD was 3.63 times higher in those with alcohol use, and sICAM 1 was 5.77 times higher in those without distant organ metastasis (p = 0.043; 0.004). The increased NORAD expression in the tumor microenvironment in LSCC, the activation of T cells via TCR signaling, and the decrease of sICAM in the control group in correlation with NORAD suggests that ICAM1 may be needed as a membrane protein in the tumor microenvironment. NORAD and ICAM1 may be functionally related to tumor microenvironment and immune control in LSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Molécula 1 de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias Laríngeas/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Microambiente Tumoral
14.
J Mol Biol ; 435(10): 168085, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019174

RESUMEN

Monoclonal antibody (mAb)-based biologics are well established treatments of cancer. Antibody discovery campaigns are typically directed at a single target of interest, which inherently limits the possibility of uncovering novel antibody specificities or functionalities. Here, we present a target-unbiased approach for antibody discovery that relies on generating mAbs against native target cell surfaces via phage display. This method combines a previously reported method for improved whole-cell phage display selections with next-generation sequencing analysis to efficiently identify mAbs with the desired target cell reactivity. Applying this method to multiple myeloma cells yielded a panel of >50 mAbs with unique sequences and diverse reactivities. To uncover the identities of the cognate antigens recognized by this panel, representative mAbs from each unique reactivity cluster were used in a multi-omic target deconvolution approach. From this, we identified and validated three cell surface antigens: PTPRG, ICAM1, and CADM1. PTPRG and CADM1 remain largely unstudied in the context of multiple myeloma, which could warrant further investigation into their potential as therapeutic targets. These results highlight the utility of optimized whole-cell phage display selection methods and could motivate further interest in target-unbiased antibody discovery workflows.


Asunto(s)
Anticuerpos Monoclonales , Antígenos , Biblioteca de Péptidos , Humanos , Especificidad de Anticuerpos , Molécula 1 de Adhesión Celular , Técnicas de Visualización de Superficie Celular/métodos , Multiómica , Mieloma Múltiple/genética
15.
J Int Med Res ; 51(4): 3000605231168017, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37114505

RESUMEN

OBJECTIVES: To explore the relationship between CADM1 expression and sensitivity to TPF-induced chemotherapy in laryngeal squamous cell carcinoma (LSCC) patients, then investigate its potential mechanisms. METHODS: Differential CADM1 expression was examined in chemotherapy-sensitive and chemotherapy-insensitive LSCC patient samples after TPF-induced chemotherapy using microarray analysis. Receiver operating characteristic (ROC) curve analysis and bioinformatics approaches were used to investigate the diagnostic value of CADM1. Small interfering RNAs (siRNAs) were used to knock down CADM1 expression in an LSCC cell line. Differential CADM1 expression was compared by qRT-PCR assays in 35 LSCC patients treated with chemotherapy, including 20 chemotherapy-sensitive and 15 chemotherapy-insensitive patients. RESULTS: Public database and primary patient data both suggest that CADM1 mRNA is expressed at lower levels in chemotherapy-insensitive LSCC samples, suggesting its potential usefulness as a biomarker. Knockdown of CADM1 with siRNAs led to decreased sensitivity of LSCC cells to TPF chemotherapy. CONCLUSIONS: Upregulation of CADM1 expression can alter the sensitivity of LSCC tumors to TPF induction chemotherapy. CADM1 is a possible molecular marker and therapeutic target for induction chemotherapy in LSCC patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Laríngeas , MicroARNs , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Laríngeas/tratamiento farmacológico , Neoplasias Laríngeas/genética , Análisis por Micromatrices , ARN Interferente Pequeño/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proliferación Celular , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo
16.
Arch Dermatol Res ; 315(8): 2403-2411, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36943432

RESUMEN

Cell adhesion molecule 1 (CADM1) is one of the immunoglobulin super family adhesion molecules, that is proposed to contribute in the pathogenesis of various types of cutaneous T-cell lymphoma, including mycosis fungoides (MF). In this work, we decided to examine the immunohistochemical expression of CADM1 in MF specimens compared to premycotic parapsoriasis, benign inflammatory dermatosis and normal control skin specimens. 125 participants were enrolled (50 MF, 25 parapsoriasis, 25 inflammatory dermatosis, and 25 healthy controls). Patients were selected from the Outpatient Clinic of Dermatology and Venereology Department, Tanta University Hospitals. From all, 4 mm punch skin biopsies were taken and examined for CADM1 immunohistochemical expression. The current study revealed statistically significant upregulation of CADM1 expression in MF specimens in comparison to parapsoriasis, inflammatory dermatosis, and normal control specimens. Additionally, there was statistically significant positive correlation between CADM1 expression and progression of TNMB staging of MF disease. Therefore, it is possible to recommend CADM1 as a beneficial diagnostic immunohistochemical marker for differentiation between early stages of MF and both the premycotic parapsoriasis and benign inflammatory dermatosis. Moreover, it may be of value in early detection of neoplastic transformation of parapsoriasis as well as in assessment of MF progression.


Asunto(s)
Dermatitis , Micosis Fungoide , Parapsoriasis , Neoplasias Cutáneas , Humanos , Molécula 1 de Adhesión Celular , Micosis Fungoide/diagnóstico , Micosis Fungoide/patología , Piel/patología , Parapsoriasis/complicaciones , Parapsoriasis/diagnóstico , Parapsoriasis/patología , Dermatitis/patología , Neoplasias Cutáneas/patología
17.
Viruses ; 15(2)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36851682

RESUMEN

The study aims to assess the usefulness of human T-cell leukemia virus type 1 (HTLV-1)-infected cell analysis using flow cytometry (HAS-Flow) as a monitoring method for adult T-cell leukemia (ATL) development in HTLV-1-positive patients with rheumatoid arthritis (RA) under treatment with antirheumatic therapies. A total of 13 HTLV-1-negative and 57 HTLV-1-positive RA patients participated in this study, which was used to collect clinical and laboratory data, including HAS-Flow and HTLV-1 proviral load (PVL), which were then compared between the two groups. CADM1 expression on CD4+ cells in peripheral blood (PB) was used to identify HTLV-1-infected cells. The population of CADM1+ CD4+ cells was significantly higher in HTLV-1-positive RA patients compared to HTLV-1-negative RA patients. The population of CADM1+ CD4+ cells was correlated with HTLV-1 PVL values. There were no antirheumatic therapies affecting both the expression of CADM1 on CD4+ cells and PVLs. Six HTLV-1-positive RA patients who indicated both high HTLV-1 PVL and a predominant pattern of CADM1+ CD7neg CD4+ cells in HAS-Flow can be classified as high-risk for ATL progression. HAS-Flow could be a useful method for monitoring high-risk HTLV-1-positive RA patients who are at risk of developing ATL during antirheumatic therapies.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Virus Linfotrópico T Tipo 1 Humano , Leucemia de Células T , Adulto , Humanos , Estudios Transversales , Estudios Retrospectivos , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Provirus , Molécula 1 de Adhesión Celular
18.
J Clin Lab Anal ; 37(2): e24833, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36604807

RESUMEN

BACKGROUND: The specific pathogenesis of atrial fibrillation (AF) remains unclear. In this study, we examined the expression of differential messenger RNAs (mRNAs), circular RNAs (circRNAs), and long-stranded noncoding RNAs (lncRNAs) from human peripheral blood mononuclear cells to initially construct a circRNA/lncRNA-miRNA-mRNA ceRNA regulatory network to explore the pathogenesis of AF and to screen for potential biomarkers. METHODS: A total of four pairs of AF cases and healthy subjects were selected to detect differentially expressed mRNAs, circRNAs, and lncRNAs in peripheral blood mononuclear cells by microarray analysis. And 20 pairs of peripheral blood from AF patients and healthy subjects were selected for validation of mRNA, circRNA, and lncRNA by quantitative real-time PCR (qRT-PCR).The relevant ceRNA networks were constructed by GO and KEGG and correlation analysis. RESULTS: The results showed that compared with healthy subjects, there were 813 differentially expressed mRNAs (DEmRNAs) in peripheral blood monocytes of AF, including 445 upregulated genes and 368 downregulated genes, 120 differentially expressed circRNAs (DEcircRNAs), including 65 upregulated and 55 downregulated, 912 differentially expressed lncRNAs (DElncRNAs), including 531 upregulated and 381 downregulated lncRNAs. GO and KEGG analysis of DERNA revealed the biological processes and pathways involved in AF. Based on microarray data and predicted miRNAs, a ceRNA network containing 34 mRNAs, 212 circRNAs, 108 lncRNAs, and 38 miRNAs was constructed. CONCLUSION: We revealed a novel ceRNA network in AF and showed that downregulated XIST, circRNA_2773, and CADM1 were negatively correlated with miR-486-5p expression and had a potential targeting relationship with miR-486-5p.


Asunto(s)
Fibrilación Atrial , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , ARN Largo no Codificante/genética , Leucocitos Mononucleares/metabolismo , Redes Reguladoras de Genes , Biomarcadores , Molécula 1 de Adhesión Celular/genética
19.
Nat Commun ; 14(1): 459, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709330

RESUMEN

Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.


Asunto(s)
Molécula 1 de Adhesión Celular , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Sinapsis , Animales , Ratones , Cognición , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo
20.
Clin Cancer Res ; 29(9): 1794-1806, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716293

RESUMEN

PURPOSE: Regulatory T cells (Tregs) exert immunosuppressive functions and hamper antitumor immune responses in the tumor microenvironment. Understanding the heterogeneity of intratumoral Tregs, and how it changes with tumor progression, will provide clues regarding novel target molecules of Treg-directed therapies. EXPERIMENTAL DESIGN: From 42 patients with renal cell carcinoma and 5 patients with ovarian cancer, immune cells from tumor and peripheral blood were isolated. We performed multicolor flow cytometry and RNA-sequencing to characterize the phenotypes and heterogeneity of intratumoral Tregs. In vitro functional assays were performed to evaluate suppressive capacity of Tregs and effect of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)-mediated depletion. The CT26 tumor model was used to evaluate the association between intratumoral Tregs and tumor growth, and examine the in vivo role of CEACAM1+ intratumoral Tregs on antitumor immunity. RESULTS: We found that CEACAM1 was selectively expressed on intratumoral Tregs, whereas its expression on peripheral Tregs or other immune cells was low. The CEACAM1+ intratumoral Tregs accumulated with tumor progression, whereas the CEACAM1- subset did not. Notably, we found that CEACAM1 marked intratumoral Tregs that exhibited highly suppressive and activated phenotypes with substantial clonal expansion. Depletion of CEACAM1-expressing cells from tumor-infiltrating leukocytes led to increased effector functions of tumor-infiltrating T cells. Moreover, CEACAM1+ cell depletion further enhanced anti-PD-1-mediated reinvigoration of exhausted CD8+ T cells. CONCLUSIONS: CEACAM1 marks highly suppressive subset of intratumoral Tregs, and can be a target for selective depletion of intratumoral Tregs. These results may inform future studies on CEACAM1-mediated depletion in patients with cancer.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Molécula 1 de Adhesión Celular/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...