Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci Res ; 89(5): 628-38, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21337374

RESUMEN

The close homolog of the adhesion molecule L1 (CHL1) is important during CNS development, but a study with CHL1 knockout mice showed greater functional recovery after spinal cord injury (SCI) in its absence. We investigated CHL1 expression from 1 to 28 days after clinically relevant contusive SCI in Sprague-Dawley rats. Western blot analysis showed that CHL1 expression was significantly up-regulated at day 1 and further increased over 4 weeks after SCI. Immunohistochemistry of tissue sections showed that CHL1 in the intact spinal cord was expressed at low levels. By 1 day and through 4 weeks after SCI, CHL1 became highly expressed in NG2(+) cells. Hypertrophic GFAP(+) astrocytes also expressed CHL1 by 1 week after injury. The increase in CHL1 protein paralleled that of NG2 in the first week and GFAP between 1 and 4 weeks after injury. At 4 weeks, NG2(+) /CHL1(+) cells and GFAP(+) /CHL1(+) astrocytes were concentrated at the boundary between residual spinal cord tissue and the central lesion. NF200(+) spinal cord axons approached but did not penetrate this boundary. In contrast, CHL1(+) cells in the central lesion at 1 week and later colabeled with p75 and NG2 and were chronically associated with many NF200(+) axons, presumably axons that had sprouted in association with CHL1(+) Schwann cells infiltrating the cord after contusion. Thus, our study demonstrates up-regulation of CHL1 in multiple cell types and locations in a rat model of contusion injury and suggests that this molecule may be involved both in inhibition of axonal regeneration and in recovery processes after SCI.


Asunto(s)
Moléculas de Adhesión Celular Neurona-Glia/biosíntesis , Moléculas de Adhesión Celular/biosíntesis , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Axones/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neurona-Glia/genética , Moléculas de Adhesión Celular Neurona-Glia/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Regeneración Nerviosa/genética , Inhibición Neural/genética , Inhibición Neural/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/genética , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo
2.
J Neurosci ; 27(3): 590-603, 2007 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-17234591

RESUMEN

Axonal initial segments (IS) and nodes of Ranvier are functionally important membrane subdomains in which the clustering of electrogenic channels enables action potential initiation and propagation. In addition, the initial segment contributes to neuronal polarity by serving as a diffusion barrier. To study the mechanisms of axonal compartmentalization, we focused on two L1 family of cell adhesion molecules (L1-CAMs) [L1/neuron-glia cell adhesion molecule (L1/NgCAM) and neurofascin (NF)] and two neuronal ankyrins (ankB and ankG). NF and ankG accumulate specifically at the initial segment, whereas L1/NgCAM and ankB are expressed along the entire lengths of axons. We find that L1/NgCAM and NF show distinct modes of steady-state accumulation during axon outgrowth in cultured hippocampal neurons. Despite their different steady-state localizations, both L1/NgCAM and NF show slow diffusion and low detergent extractability specifically in the initial segment but fast diffusion and high detergent extractability in the distal axon. We propose that L1-CAMs do not strongly bind ankB in the distal axon because of spatial regulation of ankyrin affinity by phosphorylation. NF, conversely, is initially enriched in an ankyrin-independent manner in the axon generally and accumulates progressively in the initial segment attributable to preferential binding to ankG. Our results suggest that NF and L1/NgCAM accumulate in the axon by an ankyrin-independent pathway, but retention at the IS requires ankyrin binding.


Asunto(s)
Ancirinas/fisiología , Axones/química , Moléculas de Adhesión Celular Neurona-Glia/fisiología , Moléculas de Adhesión Celular/fisiología , Familia de Multigenes , Factores de Crecimiento Nervioso/fisiología , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Animales , Ancirinas/biosíntesis , Ancirinas/metabolismo , Axones/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neurona-Glia/biosíntesis , Moléculas de Adhesión Celular Neurona-Glia/metabolismo , Línea Celular , Células Cultivadas , Humanos , Factores de Crecimiento Nervioso/biosíntesis , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/biosíntesis , Molécula L1 de Adhesión de Célula Nerviosa/genética , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/química , Neuronas/metabolismo , Unión Proteica/genética , Ratas
3.
J Comp Neurol ; 460(1): 1-12, 2003 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-12687693

RESUMEN

This study investigated the development of the subdivision of the chick inner plexiform layer (IPL). The approach included an immunohistological analysis of the temporal and spatial expressions of choline acetyltransferase, of the neural-glial-related and neural-glial cell adhesion molecules (NrCAM and NgCAM, respectively) and axonin-1, and of inwardly rectifying potassium (Kir) channels in 5- to 19-day-old (E5-E19) embryos. Ultrastructural investigations evaluated whether synaptogenesis accompanies the onset of differentiation of the IPL. We found that the differentiation of the IPL started at E9. Distinct cholinergic strata appeared, NrCAM immunoreactivity showed a poorly defined stratification, and Kir3.2 was expressed in the IPL and in the inner nuclear layer. From E10 until late E14, NgCAM- and axonin-1-immunoreactive strata emerged in an alternating sequence from the outer to the inner IPL. During this period, the NrCAM pattern sharpened, and eventually five bands of weaker and stronger immunoreactivity were found. Conventional synapses formed at the beginning of E9, and stratification of the IPL also began on the same day at the same location. Synaptogenesis and stratification followed a gradient from the central to the peripheral retina. The topographic course of differentiation of the IPL generally corresponded to the course of maturation of ganglion and amacrine cells. Synaptogenesis and the expression of G-protein-gated Kir3.2 channels accompanied the onset of stratification. These events coincide with the occurrence of robust and rhythmic spontaneous neuronal activity. The subsequent differentiation of the IPL seemed to be orchestrated by several mechanisms.


Asunto(s)
Retina/citología , Retina/embriología , Animales , Moléculas de Adhesión Celular/biosíntesis , Moléculas de Adhesión Celular Neurona-Glia/biosíntesis , Moléculas de Adhesión Celular Neuronal/biosíntesis , Embrión de Pollo , Colina O-Acetiltransferasa/biosíntesis , Contactina 2 , Inmunohistoquímica , Microscopía Electrónica , Canales de Potasio de Rectificación Interna/biosíntesis , Retina/metabolismo
5.
J Comp Neurol ; 365(4): 594-609, 1996 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-8742305

RESUMEN

Cell surface glycoproteins expressed on growth cones and axons during brain development have been postulated to be involved in the cell-cell interactions that guide axons into their target area. Nevertheless, an unequivocal description of the mechanism by which such molecules exert control over the pathway of a growing axon has not been done. As a crucial requirement in support of a relevant involvement of an axonal surface molecule in growth cone guidance, this molecule should be expressed in the growth cone. The developing retinotectal system provides an excellent opportunity to test whether a particular neuronal surface molecule fulfills the requirement of the spatiotemporal coincidence between its appearance and the emergence of growth cones because its setup follows the rule of chronotopy, i.e., the position of axons in a certain site is determined by the time of their arrival. We have analyzed axonin-1 and the neuron-glia cell adhesion molecule (Ng-CAM), two axonal surface molecules that promote neurite growth in vitro, for their expression in the retina and in the retinotectal system of the chick throughout its development. At stage 18, both axonin-like (A-LI) and Ng-CAM-like immunoreactivity (Ng-CAM-LI) are clearly present in the area where first retinal ganglion cells (RGCs) are generated. The immunoreactivity spreads synchronously with the formation of RGCs over the developing retina. From stage 32 on, the inner plexiform layer is also stained according to its temporospatial gradient of maturation. In later stages, the outer plexiform layer and the inner segments of photoreceptors also show immunoreactivity. The development of A-LI and Ng-CAM-LI along the optic nerve, chiasm, optic tract, and in the superficial layers of the optic tectum follows the chronotopic pattern of axons, as was found by earlier morphological investigations. Older axons loose their A-LI. This allows to localize the position of newly formed axons. The fact that A-LI and Ng-CAM-LI parallel the formation and maturation of axons suggests that axonin-1 and Ng-CAM may play an important role in the organization of the retinotectal system.


Asunto(s)
Envejecimiento/fisiología , Moléculas de Adhesión Celular Neurona-Glia/biosíntesis , Moléculas de Adhesión Celular Neuronal/biosíntesis , Pollos/crecimiento & desarrollo , Quiasma Óptico/metabolismo , Nervio Óptico/metabolismo , Retina/metabolismo , Colículos Superiores/metabolismo , Animales , Axones/fisiología , Moléculas de Adhesión Celular Neurona-Glia/análisis , Moléculas de Adhesión Celular Neuronal/análisis , Embrión de Pollo , Contactina 2 , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Quiasma Óptico/embriología , Quiasma Óptico/crecimiento & desarrollo , Nervio Óptico/embriología , Nervio Óptico/crecimiento & desarrollo , Retina/embriología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Colículos Superiores/embriología , Colículos Superiores/crecimiento & desarrollo , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...