Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Pestic Biochem Physiol ; 201: 105889, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685220

RESUMEN

Amprolium (AMP) is an organic compound used as a poultry anticoccidiostat. The aim of this work is to repurpose AMP to control the land snail, Eobania vermiculata in the laboratory and in the field. When snails treated with ½ LC50 of AMP, the levels of alkaline phosphatase (ALP), total lipids (TL), urea, creatinine, malondialdehyde (MDA), catalase (CAT), and nitric oxide (NO) were significantly increased, whereas the levels of acetylcholinesterase (AChE), total protein (TP), and glutathione (GSH) decreased. It also induced histopathological and ultrastructural changes in the digestive gland, hermaphrodite gland, kidney, mucus gland, and cerebral ganglion. Furthermore, scanning electron micrographs revealed various damages in the tegumental structures of the mantle-foot region of E. vermiculata snails. The field application demonstrated that the AMP spray caused reduced percentages in snail population of 75 and 84% after 7 and 14 days of treatment. In conclusion, because AMP disrupts the biology and physiology of the land snail, E. vermiculata, it can be used as an effective molluscicide.


Asunto(s)
Moluscocidas , Caracoles , Animales , Moluscocidas/farmacología , Caracoles/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Malondialdehído/metabolismo , Reposicionamiento de Medicamentos , Óxido Nítrico/metabolismo , Catalasa/metabolismo , Fosfatasa Alcalina/metabolismo , Glutatión/metabolismo
2.
Pestic Biochem Physiol ; 201: 105855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685235

RESUMEN

Biomphalaria spp. snails are freshwater gastropods that responsible for Schistosoma mansoni transmission. Schistosomiasis is a chronic illness that occurred in underdeveloped regions with poor sanitation. The aim of the present study is to evaluate the molluscicidal activity of benzylamine against B. alexandrina snails and it larvicidal effects on the free larval stages of S. mansoni. Results showed that benzylamine has molluscicidal activity against adult B. alexandrina snails after 24 h of exposure with median lethal concentration (LC50) 85.7 mg/L. The present results indicated the exposure of B. alexandrina snails to LC10 or LC25 of benzylamine resulted in significant decreases in the survival, fecundity (eggs/snail/week) and reproductive rates, acetylcholinesterase, albumin, protein, uric acid and creatinine concentrations, levels of Testosterone (T) and 17ß Estradiol (E), while alkaline phosphatase levels were significantly increased in comparison with control ones. The present results showed that the sub lethal concentration LC50 (85.7 mg/L) of benzylamine has miracidial and cercaricidal activities, where the Lethal Time (LT50) for miracidiae was 17.08 min while for cercariae was 30.6 min. Also, results showed that were decreased significantly after exposure to sub lethal concentrations compared with control. The present results showed that the expression level of NADH dehydrogenase subunit 1 (ND1) genes and cytochrome oxidase subunit I (COI) in B. alexandrina snails exposed to LC10 or LC25 concentrations benzylamine were significantly decreased compared to the control groups. Therefore, benzylamine could be used as effective molluscicide to control schistosomiasis.


Asunto(s)
Biomphalaria , Larva , Schistosoma mansoni , Animales , Biomphalaria/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Larva/efectos de los fármacos , Moluscocidas/farmacología
3.
J Helminthol ; 98: e25, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509855

RESUMEN

Schistosomiasis is a serious health issue in tropical regions, and natural compounds have gained popularity in medical science. This study investigated the potential effects of pumpkin seed oil (PSO) on Biomphalaria [B.] alexandrina snails (Ehrenberg, 1831), Schistosoma [S.] mansoni (Sambon, 1907) miracidium, and cercariae. The chemical composition of PSO was determined using gas chromatography/mass spectrometry. A bioassay was performed to evaluate the effects of PSO on snails, miracidia, and cercariae. The results showed no significant mortality of B. alexandrina snails after exposure to PSO, but it caused morphological changes in their hemocytes at 1.0 mg/ml for 24 hours. PSO exhibited larvicidal activity against miracidia after 2 hours of exposure at a LC50 of 618.4 ppm. A significant increase in the mortality rate of miracidia was observed in a dose- and time-dependent manner, reaching a 100% death rate after 10 minutes at LC90 and 15 minutes at LC50 concentration. PSO also showed effective cercaricidal activity after 2 hours of exposure at a LC50 of 290.5 ppm. Histological examination revealed multiple pathological changes in the digestive and hermaphrodite glands. The PSO had genotoxic effects on snails, which exhibited a significant increase [p≤0.05] in comet parameters compared to the control. The findings suggest that PSO has potential as a molluscicide, miracidicide, and cercaricide, making it a possible alternative to traditional molluscicides in controlling schistosomiasis.


Asunto(s)
Biomphalaria , Cucurbita , Moluscocidas , Esquistosomiasis , Animales , Schistosoma mansoni , Caracoles , Cercarias , Moluscocidas/farmacología , Aceites de Plantas/farmacología
4.
Exp Parasitol ; 259: 108717, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340780

RESUMEN

Schistosomiasis is a neglected disease transmitted through contaminated water in populations with low basic sanitation. The World Health Organization recommends controlling the intermediate host snails of the Biomphalaria genus with the molluscicide niclosamide. This work aims to evaluate the biocidal potential of the nanoemulsion prepared with the essential oil of Ocotea indecora leaves for the control of the mollusk Biomphalaria glabrata, intermediate host of the Schistosoma mansoni, the etiologic agent of schistosomiasis.


Asunto(s)
Biomphalaria , Moluscocidas , Ocotea , Aceites Volátiles , Esquistosomiasis , Animales , Aceites Volátiles/farmacología , Esquistosomiasis/prevención & control , Moluscocidas/farmacología , Schistosoma mansoni
5.
Pestic Biochem Physiol ; 198: 105716, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225073

RESUMEN

Land snails are the most harmful pests in agricultural fields. Eobania vermiculata is a widespread snail species that causes massive damage to all agricultural crops. Thus, the molluscicidal activity of calcium borate nanoparticles (CB-NPs) against Eobania vermiculata was evaluated and compared with metaldehyde (Gastrotox® E 5% G). The amorphous phase of CB-NPs was obtained after thermal treatment at a low temperature (500 °C) which conformed by X-ray diffraction (XRD) analysis. CB-NPs are composed of aggregated nano-sheets with an average thickness of 54 nm which enhanced their molluscicidal activity. These nano-sheets displayed meso-porous network architecture with pore diameters of 13.65 nm, and a 9.46 m2/g specific surface area. CB-NPs and metaldehyde (Gastrotox® E 5% G) exhibited molluscicidal effects on Eobania vermiculata snails with median lethal concentrations LC50 of 175.3 and 60.5 mg/l, respectively, after 72 h of exposure. The results also showed significant reductions of Eobania vermiculata snails hemocytes' mean total number, the levels of Testosterone (T) and Estrogen (E), alkaline phosphatase, acid phosphatase, albumin, and protein concentrations, succinate dehydrogenase, glucose, triglycerides and phospholipids levels, while significant increases in the phagocytic index and mortality index, both transaminases (ALT and AST) and glycogen phosphorylase concentration were observed after the exposure to LC50 of CB-NPs or metaldehyde (Gastrotox® E 5% G) compared to the control group. Therefore, CB-NPs could be used as an alternative molluscicide for controlling Eobania vermiculata, but further studies are needed to assess their effects on non-target organisms.


Asunto(s)
Acetaldehído/análogos & derivados , Boratos , Moluscocidas , Caracoles , Animales , Compuestos de Calcio/metabolismo , Compuestos de Calcio/farmacología , Moluscocidas/farmacología , Flores
6.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(5): 451-457, 2023 Dec 04.
Artículo en Chino | MEDLINE | ID: mdl-38148533

RESUMEN

OBJECTIVE: To establish a snail control approach for spraying chemicals with drones against Oncomelania hupensis in complex snail habitats in hilly regions, and to evaluate its molluscicidal effect. METHODS: The protocol for evaluating the activity of spraying chemical molluscicides with drones against O. hupensis snails was formulated based on expert consultation and literature review. In August 2022, a pretest was conducted in a hillside field environment (12 000 m2) north of Dafengji Village, Dacang Township, Weishan County, Yunnan Province, which was assigned into four groups, of no less than 3 000 m2 in each group. In Group A, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with drones at a dose of 40 g/m2, and in Group B, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with drones at a dose of 40 g/m2, while in Group C, environmental cleaning was not conducted and 5% niclosamide ethanolamine salt granules were sprayed with knapsack sprayers at a dose of 40 g/m2, and in Group D, environmental cleaning was performed, followed by 5% niclosamide ethanolamine salt granules sprayed with knapsack sprayers at a dose of 40 g/m2. Then, each group was equally divided into six sections according to land area, with Section 1 for baseline surveys and sections 2 to 6 for snail surveys after chemical treatment. Snail surveys were conducted prior to chemical treatment and 1, 3, 5, 7 days post-treatment, and the mortality and corrected mortality of snails, density of living snails and costs of molluscicidal treatment were calculated in each group. RESULTS: The mortality and corrected mortality of snails were 69.49%, 69.09%, 53.57% and 83.48%, and 68.58%, 68.17%, 52.19% and 82.99% in groups A, B, C and D 14 days post-treatment, and the density of living snails reduced by 58.40%, 63.94%, 68.91% and 83.25% 14 days post-treatment relative to pre-treatment in four groups, respectively. The median concentrations of chemical molluscicides were 37.08, 35.42, 42.50 g/m2 and 56.25 g/m2 in groups A, B, C and D, and the gross costs of chemical treatment were 0.93, 1.50, 0.46 Yuan per m2 and 1.03 Yuan per m2 in groups A, B, C and D, respectively. CONCLUSIONS: The molluscicidal effect of spraying 5% niclosamide ethanolamine salt granules with drones against O. hupensis snails is superior to manual chemical treatment without environmental cleaning, and chemical treatment with drones and manual chemical treatment show comparable molluscicidal effects following environmental cleaning in hilly regions. The cost of chemical treatment with drones is slightly higher than manual chemical treatment regardless of environmental cleaning. Spraying 5% niclosamide ethanolamine salt granules with drones is recommended in complex settings with difficulty in environmental cleaning to improve the molluscicidal activity and efficiency against O. hupensis snails.


Asunto(s)
Moluscocidas , Niclosamida , Niclosamida/farmacología , Etanolamina/farmacología , Dispositivos Aéreos No Tripulados , China , Moluscocidas/farmacología , Etanolaminas
7.
Parasit Vectors ; 16(1): 419, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968661

RESUMEN

BACKGROUND: Poverty contributes to the transmission of schistosomiasis via multiple pathways, with the insufficiency of appropriate interventions being a crucial factor. The aim of this article is to provide more economical and feasible intervention measures for endemic areas with varying levels of poverty. METHODS: We collected and analyzed the prevalence patterns along with the cost of control measures in 11 counties over the last 20 years in China. Seven machine learning models, including XGBoost, support vector machine, generalized linear model, regression tree, random forest, gradient boosting machine and neural network, were used for developing model and calculate marginal benefits. RESULTS: The XGBoost model had the highest prediction accuracy with an R2 of 0.7308. Results showed that risk surveillance, snail control with molluscicides and treatment were the most effective interventions in controlling schistosomiasis prevalence. The best combination of interventions was interlacing seven interventions, including risk surveillance, treatment, toilet construction, health education, snail control with molluscicides, cattle slaughter and animal chemotherapy. The marginal benefit of risk surveillance is the most effective intervention among nine interventions, which was influenced by the prevalence of schistosomiasis and cost. CONCLUSIONS: In the elimination phase of the national schistosomiasis program, emphasizing risk surveillance holds significant importance in terms of cost-saving.


Asunto(s)
Moluscocidas , Esquistosomiasis , Animales , Bovinos , Esquistosomiasis/epidemiología , Esquistosomiasis/prevención & control , Esquistosomiasis/tratamiento farmacológico , Moluscocidas/farmacología , China/epidemiología , Caracoles , Prevalencia
8.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(4): 394-397, 2023 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-37926476

RESUMEN

OBJECTIVE: To evaluate the molluscicidal activity of surfactin against Oncomelania hupensis, so as to provide the experimental basis for use of Bacillus for killing O. hupensis. METHODS: O. hupensis snails were collected from schistosomiasisendemic foci of Wuhu City on September 2022, and Schistosoma japonicum-infected snails were removed. Then, 60 snails were immersed in surfactin at concentrations of 2, 1, 0.5, 0.25, 0.125 mg/mL and 0.062 5 mg/mL for 24, 48, 72 hours at 26 °C, while ultrapure water-treated snails served as controls. The median lethal concentration (LC50) of surfactin against O. hupensis snails was estimated. O. hupensis snails were immersed in surfactin at a concentration of 24 h LC50 and ultrapure water, and then stained with propidium iodide (PI). The PI uptake in haemocyte was observed in O. hupensis snails using fluorescence microscopy. RESULTS: The mortality of O. hupensis was 5.0% following immersion in surfactin at a concentration of 0.062 5 mg/mL for 24 h, and the mortality was 100.0% following immersion in surfactin at a concentration of 2 mg/mL for 72 h, while no snail mortality was observed in the control group. There were significant differences in the mortality of O. hupensis in each surfactin treatment groups at 24 (χ2 = 180.150, P < 0.05), 48 h (χ2 = 176.786, P < 0.05) and 72 h (χ2 = 216.487, P < 0.05), respectively. The average mortality rates of O. hupensis were 38.9% (140/360), 62.2% (224/360) and 83.3% (300/360) 24, 48 h and 72 h post-immersion in surfactin, respectively (χ2 = 150.264, P < 0.05), and the 24, 48 h and 72 h LC50 values of surfactin were 0.591, 0.191 mg/mL and 0.054 mg/mL against O. hupensis snails. Fluorescence microscopy showed more numbers of haemocytes with PI uptake in 0.5 mg/mL surfactintreated O. hupensis snails than in ultrapure water-treated snails for 24 h, and there was a significant difference in the proportion of PI uptake in haemocytes between surfactin-and ultrapure water-treated snails (χ2 = 6.690, P < 0.05). CONCLUSIONS: Surfactin is active against O. hupensis snails, which may be associated with the alteration in the integrity of haemocyte membrane.


Asunto(s)
Moluscocidas , Schistosoma japonicum , Animales , Moluscocidas/farmacología , Caracoles , Dosificación Letal Mediana , Agua
9.
Molecules ; 28(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37630195

RESUMEN

Schistosomiasis is a tropical disease transmitted in an aqueous environment by cercariae from the Schistosoma genus. This disease affects 200 million people living in risk areas around the world. The control of schistosomiasis is realized by chemotherapy, wastewater sanitation, health education, and mollusk control using molluscicidal agents. This work evaluates the effects of a nanoemulsion containing essential oil from Myrciaria floribunda leaves as a molluscicidal and cercaricidal agent against Biomphalaria glabrata mollusks and Schistosoma mansoni cercariae. The Myrciaria floribunda essential oil from leaves showed nerolidol, ß-selinene, 1,8 cineol, and zonarene as major constituents. The formulation study suggested the F3 formulation as the most promising nanoemulsion with polysorbate 20 and sorbitan monooleate 80 (4:1) with 5% (w/w) essential oil as it showed a smaller droplet size of approximately 100 nm with a PDI lower than 0.3 and prominent bluish reflection. Furthermore, this nanoemulsion showed stability after 200 days under refrigeration. The Myrciaria floribunda nanoemulsion showed LC50 values of 48.11 µg/mL, 29.66 µg/mL, and 47.02 µg/mL in Biomphalaria glabrata embryos, juveniles, and adult mollusks, respectively, after 48 h and 83.88 µg/mL for Schistosoma mansoni cercariae after 2 h. In addition, a survival of 80% was observed in Danio rerio, and the in silico toxicity assay showed lower overall human toxicity potential to the major compounds in the essential oil compared to the reference molluscicide niclosamide. These results suggest that the nanoemulsion of Myrciaria floribunda leaves may be a promising alternative for schistosomiasis control.


Asunto(s)
Moluscocidas , Myrtaceae , Aceites Volátiles , Adulto , Humanos , Aceites Volátiles/farmacología , Moluscocidas/farmacología , Eucaliptol , Niclosamida , Alimentos
10.
Sci Rep ; 13(1): 11597, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463929

RESUMEN

Botanical molluscicides for controlling the invasive snail Pomacea canaliculata have attracted worldwide attention because of their cost and environmental friendliness. Aqueous extracts from discarded tobacco leaf (Nicotiana tobacum) were evaluated for molluscicidal activity against different-sized P. canaliculata under laboratory conditions. The results showed that over 90% of the snails died in 1 g/L tobacco extract within 4 days, and the survival of P. canaliculata was inversely proportional to the snail size, tobacco extract concentration and length of exposure time. Adult males were more susceptible to tobacco extract than females. The snails had few chances to feed or mate in 0.5 g/L tobacco extract, and reproduction was greatly limited in 0.2 g/L. The growth of juvenile snails was inhibited in 0.2 g/L tobacco extract, but adults were unaffected. The antioxidant capacity of P. canaliculata in response to tobacco extract can be size- and sex-dependent, and the activities of superoxide dismutase, catalase, and acetylcholinesterase and the contents of glutathione and malondialdehyde were increased in adult males. These results suggest that discarded tobacco leaves can be useful as a molluscicide for controlling the invasive snail P. canaliculata based on its effects on survival, behaviour, food intake, growth performance and antioxidant capacity.


Asunto(s)
Moluscocidas , Nicotiana , Animales , Acetilcolinesterasa , Antioxidantes/farmacología , Caracoles , Moluscocidas/farmacología
11.
Pestic Biochem Physiol ; 192: 105424, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37105626

RESUMEN

Virtual screening is an efficient way to obtain new drugs, which has become an important method in the field of pesticide research. Protein neural wiskott-Aldrich syndrome isoform X1 (PcnWAS) is a target protein that exists in the haemocytes of Pomacea canaliculata, and in this study, isothermal titration calorimetry (ITC) was used to evaluate the binding ability of protein PcnWAS and pedunsaponin A in vitro. Furthermore, it was set as a receptor, and the design of molluscicidal compounds based on protein PcnWAS was carried out. Results showed that, pedunsaponin A had high binding capacity with protein PcnWAS, and the binding constant (Ka) was 2.98 ± 1.74 × 10-4. A new potential molluscicidal compound thionicotinamide-adenine-dinucleotide (thionicotinamide-DPN) was obtained by virtual screening. In-vivo bioassay indicated that, the LC50 value was 57.7102 mg/L (72 h), and the oxygen consumption rate, ammonia excretion rate, oxygen nitrogen ratio and hemocyanin content of P. canaliculata declined after 60 mg/L thionicotinamide-DPN treated. Furthermore, the treatment of thionicotinamide-DPN also decreased gene expression level of protein PcnWAS. The results of ITC test showed that thionicotinamide-DPN can bind with protein PcnWAS efficiently, which means that it has the same target with pedunsaponin A when interacted with P. canaliculata. All the above results lay a foundation for the development of new molluscicides.


Asunto(s)
Moluscocidas , Saponinas , Triterpenos , Animales , Caracoles , Moluscocidas/farmacología , Proteínas
12.
J Invertebr Pathol ; 198: 107920, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37023891

RESUMEN

The brown garden snail (Cornu aspersum) is a major agricultural pest, causing damage to a wide range of economically important crops. Withdrawal or restricted use of pollutant molluscicides like metaldehyde has prompted a search for more benign control products. This study investigated the response of snails to 3-octanone; a volatile organic compound (VOCs) produced by the insect pathogenic fungus Metarhizium brunneum. Concentrations of 1 - 1000 ppm of 3-octanone were first assessed in laboratory choice assays to determine behavioural response. Repellent activity was found at 1000 ppm whereas attractance was found for the lower concentrations of 1, 10 and 100 ppm. These three concentrations of 3-octanone were carried forward in field evaluations to assess potential for use in "lure and kill" strategies. The highest concentration (100 ppm) was the most attractive to the snails but also the most lethal. Even at the lowest concentration this compound proved toxic effects making 3-octanone an excellent candidate for the development as a snail attractant and molluscicide.


Asunto(s)
Moluscocidas , Compuestos Orgánicos Volátiles , Animales , Cetonas , Moluscocidas/farmacología , Agricultura
13.
Exp Parasitol ; 247: 108481, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36780972

RESUMEN

Schistosomiasis is a parasitic infection of great prevalence worldwide, affecting 250 million people in 78 countries. Faced with this problem, studies that seek to analyze molluscicidal activity from plant extracts have stood out. The present work aimed to obtain the phytochemical characterization and investigate the molluscicidal activity in the hydroalcoholic extract of Ricinus communis leaves on Biomphalaria glabrata. The hydroalcoholic extract was prepared by macerated with solvent ethanol P.A 96%, followed by filtration and concentration in rotary evaporator. Next, five groups of snails with 10 animals each, one being the negative control group, were submitted to treatments with four concentrations of 25, 50, 75 and 100 mg/L of hydroalcoholic extract of R. communis. The parameters mortality, physiological and behavioral aspects of mollusks were analyzed during 96h. The chemical characterization of the extract was performed by high-performance liquid chromatography coupled to mass spectrometry (LC-MS). Chemical characterization revealed the presence of tannins, flavonoids and ricinin alkaloid, but under the conditions analyzed, the presence of saponins was not observed. There was no significant molluscicidal activity of the extract. However, a greater influence was observed in the diet, in addition to the motility and physiological state of the snails (alteration of cephalopodal mass and oviposition). The toxicity test was performed with Artemia salina and no toxicity was observed for this microcrustacean. It is expected that the results obtained contribute to the fight against the expansion of schistosomiasis and that they make room for other studies that investigate the molluscicidal action of plant extracts.


Asunto(s)
Biomphalaria , Euphorbiaceae , Moluscocidas , Esquistosomiasis , Animales , Femenino , Biomphalaria/parasitología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Moluscocidas/farmacología , Fitoquímicos/farmacología , Ricinus
14.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500377

RESUMEN

A new series of nicotinonitrile derivatives 2-7 was designed and synthesized from the starting material (E)-3-(4-chlorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (1) to assess their molluscicidal activity. The newly synthesized nicotinonitrile compounds 2-7 were characterized based on FTIR, 1H-NMR, and 13C-APT NMR spectra as well as elemental microanalyses. The target compounds 2-7 were screened for their toxicity effect against M. cartusiana land snails and were compared to Acetamiprid as a reference compound. The results demonstrated that the nicotinonitrile-2-thiolate salts 4a and 4b had good mortality compared with that of Acetamiprid. The results of the in vivo effect of the prepared nicotinonitrile molecules 2, 4a, and 4b on biochemical parameters, including AChE, ALT, AST, and TSP, indicated a reduction in the level of AChE and TSP as well as an increase in the concentration of transaminases (ALT and AST). A histopathological study of the digestive gland sections of the M. cartusiana land snails was carried out. The nicotinonitrile-2-thiolate salts 4a,b showed vacuolization, causing the digestive gland to lose its function. It could be concluded that the water-soluble nicotinonitrile-2-thiolate salts 4a,b could be adequate molluscicidal molecules against M. cartusiana land snails.


Asunto(s)
Moluscocidas , Animales , Moluscocidas/farmacología , Moluscocidas/química , Caracoles
15.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364450

RESUMEN

Niclosamide (NI) is the main molluscicide used to control Pomacea canaliculata (Lamarck) (Architaenioglossa: Ampullariidae). However, NI failed to inhibit snail climbing during the treatment process. In this study, we examined the effect of NI combined with pedunsaponin A at an ineffective concentration. The molluscicidal effect of Pedunsaponin A on NI was evidently synergistic after 48 h, and the synergism ratio (SR) was 1.82 after treatment for 72 h at 0.8 mg·L-1. Examination of the climbing adhesion effect showed that a high concentration of Pedunsaponin A (0.4 mg·L-1 and 0.8 mg·L-1) combined with NI significantly inhibited the climbing of P. canaliculata. We further studied the synergism mechanism; the results of histopathological observation showed that the siphon appeared cavities, the muscle fibers of the ventricular were severely dissolved, and kidney tubule arrangement was distorted after NI adding Pedunsaponin A. In addition, the hemocyte survival rate and the content of hemocyanin decreased significantly. According to the results of our study, the synergism mechanism may hinder oxygen transport of P. canaliculata, influencing the supply of energy; the ability of immune defense and excretion and metabolic detoxification decreased, prolonging the action time of NI in the body.


Asunto(s)
Moluscocidas , Saponinas , Animales , Niclosamida/farmacología , Moluscocidas/farmacología , Saponinas/farmacología , Caracoles
16.
PLoS Negl Trop Dis ; 16(10): e0010667, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36215300

RESUMEN

BACKGROUND: Schistosomiasis, also known as bilharzia, is the second important parasitic disease after malaria. The present study aimed to evaluate the molluscicidal effects of silver nanoparticles on Biomphalaria alexandrina, B. glabrata, Oncomelania hupensis, snail intermediate hosts of intestinal schistosomes (i.e. Schistosoma mansoni and S. japonicum), along with the changes their antioxidant enzymes. METHODS: Silver (Ag) nano powder (Ag-NPs) was selected to test the molluscicidal effects on three species of freshwater snails. Exposure to Ag-NPs induced snail mortality and the LC50 and LC90 values of Ag-NPs for each snail species were calculated by probit analysis. Control snails were maintained under the same experimental conditions in dechlorinated water. Snail hemolymph was collected to measure the levels of antioxidant enzymes, such as total antioxidants capacity (TCA), glutathione (GSH), catalase (CAT) and nitric oxide (NO). In addition, the non-target organism, Daphnia magna, was exposed to a series of Ag-NPs concentration, similar to the group of experimental snails, in order to evaluate the LC50 and LC90 and compare these values to those obtained for the targeted snails. RESULTS: The results indicated that Ag-NPs had a molluscicidal effect on tested snails with the variation in lethal concentration. The LC50 values of Ag-NPs for B. alexandrina snails exposed for 24, 48, 72 hrs and 7 days were 7.91, 5.69, 3.83 and 1.91 parts per million (ppm), respectively. The LC50 values for B. glabrata snails exposed for 24, 48, 72 hrs and 7 days were 16.55, 10.44, 6.91 and 4.13 ppm, respectively, while the LC50 values for O. hupensis snails exposed for 24, 48, 72 hrs and 7 days were 46.5, 29.85, 24.49 and 9.62 ppm, respectively. Moreover, there is no mortality detected on D. magna when exposed to more than double and half concentration (50 ppm) of Ag-NPs during a continuous period of 3 hrs, whereas the LC90 value for B. alexandrina snails was 18 ppm. The molluscicidal effect of the synthesized Ag-NPs seems to be linked to a potential reduction of the antioxidant activity in the snail's hemolymph. CONCLUSIONS: Synthesized Ag-NPs have a clear molluscicidal effect against various snail intermediate hosts of intestinal schistosome parasites and could potentially serve as next generation molluscicides.


Asunto(s)
Biomphalaria , Nanopartículas del Metal , Moluscocidas , Esquistosomiasis , Animales , Antioxidantes/farmacología , Catalasa , Glutatión/farmacología , Moluscocidas/farmacología , Óxido Nítrico , Schistosoma mansoni , Esquistosomiasis/prevención & control , Plata/farmacología , Agua
17.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 34(4): 404-406, 2022 Apr 13.
Artículo en Chino | MEDLINE | ID: mdl-36116932

RESUMEN

OBJECTIVE: To evaluate the molluscicidal effect of 25% wettable powder of pyriclobenzuron sulphate (WPPS) against Oncomelania snails in hilly schistosomiasis-endemic regions and test its toxicity to fish. METHODS: In October 2020, a snail-infested setting which had been cleared was selected in Nanjian County, Yunnan Province and divided into several blocks, and the natural snail mortality was estimated. 25% WPPS was prepared into solutions at concentrations of 1 and 2 g/L, and 25% wettable powder of niclosamide ethanolamine salt (WPNES) was prepared into solutions at a concentration of 2 g/L. The different concentrations of drugs were sprayed evenly, and the same amount of water was used as blank control. Snails were surveyed using the systematic sampling method 1, 3 and 7 days post-treatment, and snail survival was observed. A fish pond was selected in Nanjian County, and 2 kg 25% WPPS was evenly sprayed on the water surface to allow the effective concentration of 20 g/L. Fish mortality was estimated 8, 24, 48 and 72 h post-treatment. RESULTS: One-day treatment with 1 and 2 g/L WPPS and 2 g/L WPNES resulted in 97.99%, 97.99% and 94.11% adjusted snail mortality rates (χ2 = 3.509 and 3.509, both P values > 0.05), and the adjusted snail mortality was all 100% 3 d post-treatment with 1 and 2 g/L WPPS and 2 g/L WPNES, while 7-day treatment with 1 and 2 g/L WPPS and 2 g/L WPNES resulted in 91.75%, 86.57% and 57.76% adjusted snail mortality rates (χ2 = 14.893 and 42.284, both P values < 0.05). Treatment with 2 g/L WPPS for 72 h resulted in a 0.67% cumulative mortality rate of fish. CONCLUSIONS: 25% WPPS is effective for snail control and highly safe for fish, which is feasible for use in hilly schistosomiasis-endemic regions.


Asunto(s)
Moluscocidas , Esquistosomiasis , Animales , China/epidemiología , Etanolamina/farmacología , Etanolaminas/farmacología , Moluscocidas/farmacología , Niclosamida/farmacología , Compuestos Orgánicos , Polvos/farmacología , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/epidemiología , Esquistosomiasis/prevención & control , Caracoles , Sulfatos/farmacología , Agua
18.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807513

RESUMEN

Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release effect and are toxic to nontarget organisms. Thus, these molluscicides cannot be used on a large scale to effectively act on snails. In this study, gelatin, a safe and nontoxic substance, was combined with sustained-release molluscicide and was found to reduce the toxicity of niclosamide to nontarget organisms. We assessed the effects of gelatin and molluscicide in controlling P. canaliculata snails and eggs. The results demonstrated that the niclosamide retention time with 1.0% and 1.5% gelatin sustained-release agents reached 20 days. Additionally, the mortality rate of P. canaliculata and their eggs increased as the concentration of the niclosamide sustained-release agents increased. The adult mortality rate of P. canaliculata reached 50% after the snails were exposed to gelatin with 0.1 mg/L niclosamide for 48 h. The hatching rate of P. canaliculata was only 28.5% of the normal group after the treatment was applied. The sustained-release molluscicide at this concentration was less toxic to zebrafish, which means that this molluscicide can increase the safety of niclosamide to control P. canaliculata in aquatic environments. In this study, we explored the safety of using niclosamide sustained-release agents with gelatin against P. canaliculata. The results suggest that gelatin is an ideal sustained-release agent that can provide a foundation for subsequent improvements in control of P. canaliculata.


Asunto(s)
Gelatina , Moluscocidas , Animales , Preparaciones de Acción Retardada/farmacología , Vectores de Enfermedades , Gelatina/farmacología , Moluscocidas/farmacología , Niclosamida/farmacología , Caracoles , Pez Cebra
19.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 34(3): 269-276, 2022 Jul 05.
Artículo en Chino | MEDLINE | ID: mdl-35896490

RESUMEN

OBJECTIVE: To evaluate the storage stability of metabolites from actinomycetes Streptomyces nigrogriseolus XD 2-7 and the mollcuscicidal activity against Oncomelania hupensis in the laboratory, and to preliminarily explore the mechanisms of the molluscicidal activity. METHODS: The fermentation supernatant of S. nigrogriseolus XD 2-7 was prepared and stored at -20, 4 °C and 28 °C without light for 10 d; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation supernatant was boiled in a 100 °C water bath for 30 min and recovered to room temperature, and then the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The pH values of the fermentation supernatant were adjusted to 4.0, 6.0 and 9.0 with concentrated hydrochloric acid and sodium hydroxide, and the fermentation supernatant was stilled at room temperature for 12 h, with its pH adjusted to 7.0; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation product of S. nigrogriseolus XD 2-7was isolated and purified four times with macroporous resin, silica gel and octadecylsilane bonded silica gel. The final products were prepared into solutions at concentrations of 10.00, 5.00, 2.50, 1.25 mg/L and 0.63 mg/L, and the molluscicidal effect of the final productswas tested against O. hupensis following immersion for 72 h, while dechlorination water served as blank controls, and 0.10 mg/L niclosamide served as positive control. The adenosine triphosphate (ATP) and adenosine diphosphate (ADP) levels were measured in in O. hupensis soft tissues using high performance liquid chromatography (HPLC) following exposure to the final purified fermentation products of S. nigrogriseolus XD 2-7. RESULTS: After the fermentation supernatant of S. nigrogriseolus XD 2-7 was placed at -20, 4 °C and 28 °C without light for 10 d, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100% (30/30) O. hupensis mortality. Following boiling at 100 °C for 30 min, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100.00% (30/30) O. hupensis mortality. Following storage at pH values of 4.0 and 6.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 100.00% (30/30) O. hupensis mortality, and following storage at a pH value of 9.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 33.33% (10/30) O. hupensis mortality (χ2 = 30.000, P < 0.05). The minimum concentration of the final purified fermentation products of S. nigrogriseolus XD 2-7 was 1.25 mg/L for achieving a 100% (30/30) O. hupensis mortality. The ATP level was significantly lower in O. hupensis soft tissues exposed to 0.10 mg/L and 1.00 mg/L of the final purified fermentation products of S. nigrogriseolus XD 2-7 than in controls (F = 7.274, P < 0.05), while no significant difference was detected in the ADP level between the treatment group and controls (F = 2.485, P > 0.05). CONCLUSIONS: The active mollcuscicidal ingredients of the S. nigrogriseolus XD 2-7 metabolites are maintained stably at -20, 4 °C and 28 °C for 10 d, and are heat and acid resistant but not alkali resistant. The metabolites from S. nigrogriseolus XD 2-7 may cause energy metabolism disorders in O. hupensis, leading to O. hupensis death.


Asunto(s)
Moluscocidas , Caracoles , Adenosina Difosfato/farmacología , Adenosina Trifosfato , Animales , Moluscocidas/farmacología , Gel de Sílice/farmacología , Streptomyces , Agua
20.
Recent Adv Antiinfect Drug Discov ; 17(2): 139-153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692160

RESUMEN

BACKGROUND: Biomphalaria alexandrina snails, as transitional hosts of schistosomiasis, plays an essential part in the spread of the illness. Control of these snails by the substance molluscicides antagonistically influences the oceanic climate, causing poisonous and cancer-causing consequences for non-target life forms. OBJECTIVE: Looking for new naturally safe substances that can treat schistosomiasis disease with minimal side effects on the environment and plants, fish wealth and do not affect vital human functions. METHODS: Fifty fungal species were used to evaluate their activity against Biomphalaria alexandrina. Study the effect of the fungal extract on vital functions of Biomphalaria alexandrina and fish wealth. Purification of active substances and identification of their chemical structures. RESULTS: Cladosporium nigrellum and Penicillium aurantiogresium metabolites were effective against B. alexandrina snails, and the effects of promising fungal extracts sublethal concentrations (IC10 & IC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumin and glucose were determined. Chemical analyses of this filtrate separated a compound effective against snails; it was identified. Protein electrophoresis showed that fungal filtrate affects the protein pattern of snails' haemolymph. Little or no mortality of Daphnia pulex individuals was observed after their exposure to sublethal concentrations of each treatment. CONCLUSION: Certain compounds from fungal cultures could be safely used for biological control of Biomphalaria alexandrina snails.


Asunto(s)
Biomphalaria , Moluscocidas , Esquistosomiasis , Animales , Humanos , Moluscocidas/farmacología , Esquistosomiasis/tratamiento farmacológico , Hemolinfa , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...